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The selenium (Se) deficiency is threatening the human health, and the increase

of Se content in food can prevent the Se deficiency of human body. To

increase the Se content in fruit trees and alleviate the Se stress to fruit trees,

the effects of gibberellic acid (GA) on the growth and Se accumulation in

Cyphomandra betacea under Se stress were studied. Although GA increased

the biomass of C. betacea, it did not significantly affect the root/shoot

ratio. The root and shoot biomass had a quadratic polynomial regression

relationship with the GA concentration. Furthermore, GA increased the

photosynthetic pigment content, photosynthetic parameters, and antioxidant

enzyme activity of C. betacea. GA also increased the Se content in C. betacea,

peaking at 300 mg/L GA. For instance, GA (300 mg/L) increased the

Se contents in roots and shoots of C. betacea by 70.31 and 22.02%,

respectively, compared with the control. Moreover, the root Se and shoot

Se contents had a quadratic polynomial regression relationship with the

GA concentration. Correlation and gray relational analyses showed that the

carotenoid, chlorophyll a, and chlorophyll b contents were closely related to

the Se uptake in C. betacea under the GA application. These results show that

GA (300 mg/L) can promote the growth and Se uptake of C. betacea under

Se stress.

KEYWORDS
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Introduction

Soil selenium (Se) is unevenly distributed worldwide, with the most areas lacking
Se (Li et al., 2020). Se is one of the essential trace elements of human body,
and the Se deficiency is threatening the human health. Eating the Se-enriched
vegetables and fruits can safely and effectively increase the Se content in human body
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(Jiang et al., 2016). Therefore, the increase of Se content in
vegetables and fruits can prevent the Se deficiency of human
body (Zhao, 2019; Li et al., 2020). Most crops are non-Se
accumulators with the Se content not exceeding 30 mg/kg,
which cannot meet the dietary requirements in humans (Zhang
et al., 2002). Se content in plants positively correlates with the
exogenous Se concentration application (Jin et al., 2003; Wang
et al., 2016). Various methods, such as the Se application in
soil, Se seed dressing, foliar application of Se on leaves, and Se-
containing nutrient solution culture, are mainly used to increase
the Se content in crops (Hawkesford and Zhao, 2007; Boldrin
et al., 2013). However, these methods have many limitations,
such as high cost and environmental pollution (Wu et al., 2015;
Chen et al., 2018). Therefore, other methods that can improve
the Se uptake ability in crops should be identified.

Se uptake in crops has been improved using agronomic
measures, such as intercropping, grafting, and application
of plant hormones (Luo, 2019; Huan et al., 2021; Pan
et al., 2021). Plant hormones mediate the plant growth and
nutrient (including Se) absorption (Peleg and Blumwald,
2011). For instance, gibberellic acid (GA) promotes the
photosynthesis, vegetative growth, and fruit development of
crops (CastroCamba et al., 2022). GA can regulate the crop
growth and promote the nutrient absorption (Hassan and
Mansoor, 2017; Zhang et al., 2020). GA produces various
responses in plants under stress conditions to improve stress
tolerance, thus promoting the growth of plants (Colebrook
et al., 2014; Niharika Singh et al., 2020). Moreover, GA can
promote the detoxification function of antioxidant enzymes
and antioxidant activity of plants to scavenge reactive oxygen
species (ROS) under heavy metal stress, thus resisting the
adverse reactions of heavy metals (Abolghassem et al., 2020).
GA can resist the cadmium (Cd) stress by regulating the
expression of various genes related to shoot and root growth,
metabolism, photosynthetic pigment, and shoot and root
morphology of plants (Rashid et al., 2021). GA could also
promote the Cd uptake in accumulator plant Stellaria media
and improve its phytoremediation capability (Xie et al., 2016).
However, GA decreases the Cd uptake in other common
plants, thus promoting their growth (Yang et al., 2021). GA
promoted the nitrogen uptake and utilization rate in lettuce,
thus improving the quality and yield of lettuce (Miceli et al.,
2019). Furthermore, GA synthesis-related genes and proteins
promoted the absorption and utilization of phosphorus in
barley GA-deficient mutants (Gualano et al., 2021). GA can
also promote calcium absorption after binding to certain
proteins, possibly because the protein-GA complex activates
Ca2+ channels or promotes the degradation of Ca2+ channel
repressors through the ubiquitin-proteasome pathway. An
unknown auxiliary GA receptor may also be involved in the GA-
induced increase in calcium (Takeshi et al., 2018). Therefore,
GA can promote the growth of plants and improve the plant
stress resistance, thus changing nutrient uptake. However, a few

studies have reported on the effect of GA on the Se uptake in
plants under Se stress.

Cyphomandra betacea is a fruit tree belonging to the
Solanaceae family, with the high ornamental and edible value
(Kouame et al., 2015). A previous study showed that the Se
accumulation capacity is lower in C. betacea than in other
plants (Lin et al., 2020a). So, GA application may increase
the Se accumulation capacity of C. betacea, thus improving
its commercial value. In this study, the effects of different
concentrations of GA on the growth and Se uptake of C. betacea
were studied under Se stress. This study aimed to determine
the best GA concentration that could alleviate the Se stress to
C. betacea, and promote the growth and Se accumulation of
C. betacea. This study may provide a reference for producing
Se-enriched C. betacea.

Materials and methods

Materials collections and treatments

In September 2021, the mature seeds of C. betacea were
collected from a 5-year-old fruiting tree in the Chengdu Campus
of Sichuan Agricultural University (30◦42’N, 103◦51’E). The
seeds were air-dried, then sown in 50-hole plug seedling trays
(53 cm length× 28 cm width× 10 cm height) containing moist
perlite. The seedling trays were placed in the greenhouse at
25◦C, relative humidity of 70%, and 10000 Lux for 14 h during
the day; and at 20◦C, relative humidity of 90%, and 0 Lux for
10 h during the night (Liu et al., 2021). The perlite was irrigated
with 1/2 Hoagland solution every 3 days after seed germination.
The seedlings were transplanted into the pot after growing to
about 15 cm (one month later).

GA (GA3) was obtained from Beijing XMJ Scientific Co.,
Ltd., (Beijing, China).

Se used in this experiment was the analytical pure sodium
selenite (Na2SeO3), and obtained from Nanjing Chemical
Reagent Co., Ltd., (Nanjing, China).

Experimental design

Two uniform C. betacea seedlings were transplanted into
each plastic pot (10 cm height × 15 cm diameter) filled
with perlite in October 2021. The pots were also placed
in the greenhouse under the conditions described above.
Hoagland solution (100 ml) was irrigated into each pot after
transplantation for 7 days. GA solution (0, 100, 200, 300, and
400 mg/L) (Yang et al., 2021) was fully sprayed on both sides of
the leaves (10 ml per pot). The spraying was conducted again
after 15 days. Each treatment had three replicates (three pot as
one repetition, and 45 pots in total). Meanwhile, each pot was
irrigated with Hoagland solution (100 ml) containing 0.1 mg
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L−1 Se in the form of Na2SeO3 (Liu et al., 2019) every 3 days
during the whole plant growth. The positions of pots were
randomly changed to reduce the influence of marginal effects
during the whole growth process. The plants were harvested
after 30 days of the first GA treatment to determine the
various indicators.

Determination of indicators

In November 2021, the fifth mature leaf (from the top)
of each plant were chosen to measure the net photosynthetic
rate (Pn), transpiration rate (Tr), stomatal conductance (Gs),
and intercellular CO2 concentration (Ci) using a Li-6400
photosynthetic system (LI-COR, Lincoln, NE, United States).
The Li-6400 photosynthetic system and measurement time were
conducted as the previous report (Li et al., 2022). The same
leaves were used to determine the contents of photosynthetic
pigments (chlorophyll a, chlorophyll b, and carotenoid) and
antioxidant enzymes [superoxide dismutase (SOD), peroxidase
(POD), and catalase (CAT)] activities. The photosynthetic
pigment content was determined using the ethanol and acetone
extraction method as the previous report (Lin et al., 2020b).
Pre-treatments were conducted as the previous report (Lin
et al., 2020b) for the analysis of antioxidant enzyme activity.
The activities of SOD, POD, and CAT, were determined using
the nitroblue tetrazole, guaiacol colorimetric, and potassium
permanganate titration methods, respectively (Hao et al., 2004).
The plants were harvested, washed, and then dried as the
previous report (Li et al., 2022). The root and shoot biomass
(dry weight) were measured using an electronic balance with an
accuracy of one thousandth. The dry plant samples were finely
ground, soaked with the nitrate acid and perchloric acid for 12 h,
digested until transparent at a hot plate, and then reduced by
the hydrochloric acid. The digested solution was made up to
50 ml using the deionized water, then used to determine the
total Se content via a hydride generation-atomic fluorescence
spectrometry (AFS-9700, Beijing Haiguang Instrument Co.,
Ltd., Beijing, China) (Li et al., 2022). The root/shoot biomass
(dry weight) ratio and chlorophyll a/b ratio were calculated. The
translocation factor (TF) was calculated as follows: Se content in
shoots/Se content in roots (Rastmanesh et al., 2010).

Statistical analysis

The software SPSS 20.0.0 (IBM, Chicago, IL, United States)
was used for all statistical analyses. All data with three
biological repetitions were subjected to a normal distribution
and homogeneity tests before one-way analysis of variance
followed by the Duncan’s Multiple Range Test (P < 0.05). The
relationship between GA concentration and biomass/Se content
was analyzed using regression analysis. Pearson correlation was

used to analyze the relationships among all items. The gray
relational analysis was performed according to the previous
reports (Wang, 2019; Ma et al., 2022).

Results

Biomass (dry weight)

Compared with the control, GA increased the root and
shoot biomass of C. betacea (Figures 1A,B). The root and shoot
biomass increased with the increase of GA concentration up
to 300 mg/L, and then decreased when the GA concentration
was higher than 300 mg/L. The root biomass and shoot biomass
were got the maximums when the GA concentration was
300 mg/L. Compared with the control, the concentrations
of 100, 200, 300, and 400 mg/L GA increased the root
biomass by 23.69, 29.65, 54.29, and 33.21%, respectively, and
increased the shoot biomass by 29.51, 33.29, 59.51, and 40.46%,
respectively. Additionally, the root biomass had a quadratic
polynomial regression relationship with the GA concentration
(y =−2.864E−7x2

+ 0.056, R2 = 0.814, P = 0.000), and the shoot
biomass also had a quadratic polynomial regression relationship
with the GA concentration (y =−1.729E−6x2

+ 0.001x+ 0.323,
R2 = 0.860, P = 0.001). However, GA did not significantly affect
the root/shoot ratio of C. betacea (Figure 1C).

Photosynthetic pigment content

Compared with the control, GA increased the chlorophyll
a, chlorophyll b, and carotenoid contents in C. betacea to
some extent (Figures 2A–C). The contents of chlorophyll a,
chlorophyll b, and carotenoid increased with increasing GA
concentration up to 300 mg/L, and then decreased. When the
GA concentration was 300 mg/L, the contents of chlorophyll a,
chlorophyll b, and carotenoid were got the maximums, which
increased by 36.91, 42.96, and 116.91%, respectively, compared
with the control.

Photosynthetic characteristic

With the increase of GA concentration, the Pn, Gs, Ci,
and Tr of C. betacea increased when the GA concentration
was not higher than 300 mg/L, and then decreased when the
GA concentration was higher than 300 mg/L (Table 1). GA
increased the Pn, Gs, Ci, and Tr to some extent, compared with
the control. When the GA concentration was 300 mg/L, the
Pn, Gs, Ci, and Tr were got the maximums, which increased
by 82.81, 81.01, 30.35, and 72.44%, respectively, compared
with the control.
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FIGURE 1

Biomass of C. betacea. (A) Root biomass. (B) Shoot biomass. (C) Root/shoot ratio. Different lowercase letters indicate significant differences
among the treatments (Duncan’s Multiple Range Test, P < 0.05).
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FIGURE 2

Photosynthetic pigment content in C. betacea. (A) Chlorophyll a content. (B) Chlorophyll b content. (C) Carotenoid content. Different
lowercase letters indicate significant differences among the treatments (Duncan’s Multiple Range Test, P < 0.05).

TABLE 1 Photosynthetic characteristic of C. betacea.

GA concentration (mg/L) Pn (µmol CO2/m2/s) Gs (mol H2O/m2/s) Ci (µmol CO2/mol) Tr (mmol H2O/m2/s)

0 4.120± 0.097e 0.0437± 0.0008c 194.4± 4.26d 0.976± 0.015e

100 5.209± 0.104d 0.0448± 0.0019c 209.1± 8.25c 1.021± 0.011d

200 6.482± 0.165c 0.0631± 0.0033b 216.1± 6.11c 1.362± 0.020c

300 7.532± 0.117a 0.0791± 0.0022a 253.4± 9.47a 1.683± 0.014a

400 6.835± 0.059b 0.0765± 0.0016a 232.5± 6.49b 1.626± 0.021b

Values are means (± SD) of three replicates. Different letters indicate significant differences among the treatments (Duncan’s Multiple Range Test, p < 0.05). Pn, net photosynthetic rate;
Gs, stomatal conductance; Ci, intercellular CO2 concentration; Tr, transpiration rate.

Antioxidant enzyme activity

Compared with the control, GA increased the SOD, CAT,
and POD activities of C. betacea to some extent (Figures 3A–C).
The same as the photosynthetic characteristics, the activities of
SOD, CAT, and POD had the increase trend with the increase of
GA concentration when the GA concentration was not higher
than 300 mg/L, and then had the decrease trend when the GA
concentration was higher than 300 mg/L. The maximums of
SOD, CAT, and POD activities were at the concentration of

300 mg/L GA, which increased by 107.03, 18.20, and 40.37%,
respectively, compared with the control.

Se content

Although GA increased the Se contents in roots and shoots
of C. betacea, the Se contents were higher in roots than in shoots
at the different GA concentrations (Figures 4A,B). The Se
contents were increased in roots and shoots with increasing GA
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FIGURE 3

Antioxidant enzyme activity of C. betacea. (A) SOD activity. (B) CAT activity. (C) POD activity. Different lowercase letters indicate significant
differences among the treatments (Duncan’s Multiple Range Test, P < 0.05).
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FIGURE 4

Se content in C. betacea. (A) Root Se content. (B) Shoot Se content. (C) Translocation factor (TF, shoot Se content/root Se content). Different
lowercase letters indicate significant differences among the treatments (Duncan’s Multiple Range Test, P < 0.05).

concentration up to 300 mg/L, then decrease. The maximums
of Se contents were at the concentration of 300 mg/L GA.
Compared with the control, the concentrations of 100, 200, 300,
and 400 mg/L GA increased the root Se content by 9.42, 38.95,
70.31, and 29.39%, respectively, and the shoot Se content by
4.68, 8.83, 22.02, and 11.85%, respectively. Furthermore, the root
content had a quadratic polynomial regression relationship with
the GA concentration (y = −7.391E−5x2

+ 0.042x + 9.583,
R2 = 0.696, P = 0.001), and the shoot Se content also had
a quadratic polynomial regression relationship with the GA
concentration (y = −1.655E−6x2

+ 0.001x + 1.105, R2 = 0.683,
P = 0.001). GA decreased the TF of C. betacea, and the TF had
an opposite trend to the Se content (Figure 4C).

Correlation and gray relational
analyses

Correlation analysis showed that the biomass, Se
content, photosynthetic pigment content, photosynthetic

characteristic parameter, and antioxidant enzyme activity
were significantly positively correlated with each other
(Table 2). Gray relational analysis showed that the biomass,
photosynthetic pigment content, photosynthetic characteristic
parameter, and antioxidant enzyme activity, and root Se
content were correlated with the shoot Se content (Figure 5).
The order of gray correlation coefficient was as follows:
carotenoid content > chlorophyll a content > chlorophyll
b content > root Se content > SOD activity > POD
activity > Tr > Pn > shoot biomass > Ci > Gs > CAT
activity > root biomass.

Discussion

Gibberellin participates in various plant life activities and
is closely related to the metabolic regulation of plant growth
and development (Gao and Fu, 2018). Previous studies have
shown that appropriate concentrations of GA could increase
the growth of stem length, stem thickness, and leaf area
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of plum, tomato, and sweet pepper seedlings (Tahani et al.,
2019; Miceli et al., 2020). In this experiment, GA increased
the root and shoot biomass of C. betacea under Se stress,
which is consistent with the previous studies (Tahani et al.,
2019; Miceli et al., 2020). Additionally, the biomass of root
and shoot had a quadratic polynomial regression relationship
with the GA concentration. This could be due to: First,
GA directly regulates the content of aspartic acid–glutamic
acid–leucine–leucine–alanine (DELLA) protein in the plant
nucleus, thus promoting the plant growth via ubiquitination
and degradation of DELLA protein by binding to the specific
receptor gibberellin insensitive dwarf 1 (GID1). DELLA protein
is a key regulator in the GA signaling pathway, inhibiting
the expression of downstream genes, thus inhibiting the
elongation of plant hypocotyls and stems (Bai et al., 2019;
Jorge et al., 2020). The exogenous application of GA increases
the concentration of extracellular active GA in plants, thus
enhancing the degradation of DELLA protein (Bai et al., 2019).
Second, GA interacts with other plant hormones, thus indirectly
affecting the plant growth by changing the levels of auxin,
brassinolide, and ethylene (Wang et al., 2017; CastroCamba
et al., 2022).

Chlorophyll and carotenoid participate in photosynthesis
by capturing light energy, driving electron transfer to reaction
centers, and defending against the photo damage (Petra et al.,
2003). Furthermore, the photosynthetic carbon assimilation
ability of plants is closely related to the photosynthetic
traits. Therefore, the photosynthetic indicators can reflect the
growth status and productivity of plants (Sun et al., 2017).
Under Se stress, the contents of chlorophyll a, chlorophyll
b, and carotenoid in C. betacea decreased, and had a
decrease trend with the increase of Se concentration (Lin
et al., 2020a). Studies have shown that a high concentration
(over 40 mg/L) of GA decreased the chlorophyll a and
carotenoid contents, Pn, Ci, Gs, and Tr in spinach seedling
leaves, while a low concentration (less than 40 mg/L) of
GA had the opposite effect under copper stress (Gong
et al., 2021). Under Cd stress, GA also increased the
photosynthetic pigment content and photosynthetic parameters
of C. betacea (Yang et al., 2021). In this study, the contents
of chlorophyll a, chlorophyll b, and carotenoid in leaves
of C. betacea increased with increasing GA concentration
up to 300 mg/L, and then decreased under Se stress.
Moreover, the changes in the Pn, Ci, Gs, and Tr of C.
betacea were similar to the photosynthetic pigment content.
These results are consistent with the previous studies (Gong
et al., 2021; Yang et al., 2021), indicate that the GA
could promote the synthesis of photosynthetic pigments
and improve the photosynthesis of C. betacea under Se
stress. Because the GA can promote the transduction of GA
signal in plants, up-regulates the expression of photosynthetic
pigment synthesis-related genes, and down-regulates the
expression of photosynthetic pigment metabolism-related

Frontiers in Plant Science 06 frontiersin.org

https://doi.org/10.3389/fpls.2022.968768
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-968768 August 29, 2022 Time: 16:12 # 7

Xu et al. 10.3389/fpls.2022.968768

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

RB SB Cha Chb Car Pn Gs Ci TR SOD CAT POD RSe

G
re

y
 c

o
rr

e
la

ti
o

n
 c

o
ef

fi
ci

en
t

FIGURE 5

Gray correlation coefficients of biomass, photosynthetic pigment content, photosynthetic characteristic parameter, antioxidant enzyme activity,
and root Se content with shoot total Se content. RB, root biomass; SB, shoot biomass; Cha, chlorophyll a content; Chb, chlorophyll b content;
Car, carotenoid content; Pn, net photosynthetic rate; Gs, stomatal conductance; Ci, intercellular CO2 concentration; Tr, transpiration rate; SOD,
SOD activity; POD, POD activity; CAT, CAT activity; RSe, root total Se content.

genes, thereby increasing the photosynthetic pigment content
(Keawmanee et al., 2022).

Under stress condition, the excessive ROS are produced
in plants, which may damage the cellular components, disrupt
cell membranes, and inhibit the growth of plants (Labanowska
et al., 2012). Se is similar to toxic metals, which also causes the
excessive ROS to inhibit the growth of plants (Spallholz and
Hoffman, 2002). Under Se stress, the POD and CAT activities
of C. betacea increased, and had an increase trend with the
increase of Se concentration (Lin et al., 2020a). Previous studies
have shown that an appropriate concentration of GA increased
the antioxidant enzyme activity of spinach under copper stress
and okra under NaCl stress (Wang et al., 2019; Gong et al.,
2021). GA also increased the SOD, POD, and CAT activities
of C. betacea under Cd stress (Yang et al., 2021). Herein, GA
increased the SOD, POD, and CAT activities in the leaves of C.
betacea under Se stress, which is consistent with the previous
studies (Wang et al., 2019; Gong et al., 2021; Yang et al., 2021).
These results indicate that GA could improve the resistance of
C. betacea to Se stress, which may be related to the expressions
of antioxidative enzyme-related genes regulating by GA (Peng
et al., 2022).

Plants mainly absorb Se from soil through their roots.
Soil is the main source of Se for plants (Jiang et al., 2016).
Besides soil environment, the form of Se also affects the Se
absorption in plants. The transport mechanism and efficiency
of different valence Se in plants are different (Wang et al.,
2014; Jiang et al., 2016). Some studies have assessed the
characteristics of plant hormones on the absorption of Se.
For instance, indole acetic acid (IAA) could promote the
growth of C. betacea seedlings and increase the Se content
and bioconcentration factor in various organs (Huan et al.,
2021). Methyl jasmonate could promote the absorption of
low-concentration sodium selenate in tea, thus improving
the antioxidant effect (Zhou et al., 2012). Herein, GA

increased the Se contents in roots and shoots of C. betacea.
In addition, the Se contents in roots and shoots had a
quadratic polynomial regression relationship with the GA
concentration. These results indicate that GA could promote
the Se absorption in C. betacea. Additionally, the Se content
was higher in roots than that in shoots of C. betacea,
indicating that Se is mainly concentrated in roots of C.
betacea. This could be because sodium selenite was the
exogenous Se applied. Sodium selenite mainly exists in the
form of selenomethionine (organic Se) in plants, which is
easily fixed in plant roots (Zhu et al., 2009). Moreover,
correlation analysis showed that the biomass, Se content,
photosynthetic pigment content, photosynthetic characteristic
parameter, and antioxidant enzyme activity were significantly
positively correlated with each other. Gray relational analysis
also showed that carotenoid, chlorophyll a, and chlorophyll
b contents were the most related to the shoot Se content.
These results show that photosynthetic pigment content was
closely related to the Se uptake in C. betacea under the
GA application. However, further studies should assess the
action mechanisms.

Conclusion

Under Se stress, GA increased the biomass, photosynthetic
pigment content, photosynthetic rate, and antioxidant enzyme
activity of C. betacea, thereby promoting the growth of C.
betacea. GA also increased the Se content in C. betacea, peaking
at 300 mg/L GA. The biomass and Se content had a quadratic
polynomial regression relationship with the GA concentration.
Among these indicators, the carotenoid, chlorophyll a, and
chlorophyll b contents were the most related to the shoot
Se content. The future work should assess the mechanism
underlying GA promoting effects on the Se uptake in C. betacea.
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