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Southwest, Ministry of Agriculture, Chengdu, Sichuan, China
Drought stress is one of the primary environmental stress factors that gravely

threaten crop growth, development, and yields. After drought stress, plants can

regulate the content and proportion of various hormones to adjust their growth

and development, and in some cases to minimize the adverse effects of

drought stress. In our previous study, the tobacco cis-abienol synthesis gene

(NtCPS2) was found to affect hormone synthesis in tobacco plants.

Unfortunately, the role of NtCPS2 genes in the response to abiotic stress has

not yet been investigated. Here, we present data supporting the role of NtCPS2

genes in drought stress and the possible underlying molecular mechanisms.

NtCPS2 gene expression was induced by polyethylene glycol, high-

temperature, and virus treatments. The results of subcellular localization

showed that NtCPS2 was localized in the cell membrane. The NtCPS2-

knockdown plants exhibited higher levels of gibberellin (GA) content and

synthesis pathway genes expression but lower abscisic acid (ABA) content

and synthesis pathway genes expression in response to drought stress. In

addition, the transgenic tobacco lines showed higher leaf water loss and

electrolyte loss, lower soluble protein and reactive oxygen species content

(ROS), and lower antioxidant enzyme activity after drought treatment

compared to wild type plants (WT). In summary, NtCPS2 positively regulates

drought stress tolerance possibly by modulating the ratio of GA to ABA, which

was confirmed by evidence of related phenotypic and physiological indicators.

This study may provide evidence for the feedback regulation of hormone to

abiotic and biotic stresses.
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Introduction

cis-Abienol belongs to labdane terpenoids, which occur

widely in Abies oleoresins and in particular in the oleoresin of

Abies balsamea (L.) Mill. (Canada balsam) (Carman and Dennis,

1968). At present, all the abienol reported are cis-abienol, but the

existence of trans-abienol has not been reported in nature (Jassbi

et al., 2017). Labdane terpenoids were first isolated from aged

Turkish tobacco by Giles and Schumacher (1961), and cis-

Abienol was the main labdane terpenoid in tobacco. cis-

Abienol is one of the terpenoid aroma precursors peculiar to

the trichome exudate of most aromatic tobacco and some cigars

(Wang, 2016), which is synthesized by the drive of 8-hydroxy-

Copalyl diphosphate synthase (CPS2) by trichome specific

promoter (Philipp et al., 2012). Sallaud et al. (2012) proved

through in vitro experiments that the NtCPS2 gene encodes

cobacyl pyrophase synthase and participates in the synthesis of

8-hydroxy-cobacyl pyrophophate (8-OH-CPP), a precursor of

labdane compounds. Zhang et al. (2020) used CRISPR/Cas9

technology to knock out the CPS2 gene in tobacco, and the

results showed that the expression level of CPS2 and the content

of abienol were significantly reduced, so the synthesis of cis-

abienol compound could be inhibited after knocking out CPS2.

Isoprenoids are essential for normal growth and

development processes in all living organisms (Pulido et al.,

2012). Isopentenyl diphosphate (IPP; C5) is a common

metabolic precursor of all isoprenoids (Engprasert et al., 2004).

It has been reported that there are two distinct pathways of IPP

synthesis in plants, one being the mevalonate (MVA) pathway in

the cytoplasm and the other being the alternative mevalonate-

independent (2C-methyl-D-erythritol 4-phosphate; MEP) in the

plastids (Rohmer et al., 1993; Rodrıǵuez-Concepción and

Boronat, 2015; Barja and Rodrı ́guez-Concepción, 2021).

Geranylgeranyl diphosphate (GGPP) synthase catalyses the

consecutive condensation of an allylic diphosphate with three

molecules of IPP to produce GGPP, an essential linear precursor

for the biosynthesis of terpenoids (Wang and Ohnuma, 1999).

cis-Abienol, and gibberellin (GA) belong to diterpenoids and

carotenoids belong to tetraterpenoids, which were synthesized

via a non-mevalonate pathway (Rohmer et al., 1993). GGPP

forms the precursor substance 8-OH-CPP of cis-abienol, the

precursor substance copalyl-pyrophophate (CPP) of GAs and

the precursor substance carotenoid of abscisic acid(ABA)under

the catalytic action of CPS2, ent-copalyl diphosphate synthase

(CPS) and phytoene synthase(PSY)respectively (Rohmer et al.,

1993; Wang et al., 2001; Cheng et al., 2002; González-guzmá

et al., 2002; Sallaud et al., 2012; Finkelstein, 2013).

Recently, we performed transcriptome analyses of tobacco

plants with cis-abienol synthesis gene NtCPS2 knockdown and

studied their physiology and biochemistry characteristics (He

et al., 2021a; He et al., 2021b). We found that knocking down the

cis-abienol synthesis gene NtCPS2 not only reduced the relative

expression of NtCPS2 gene and the content of cis-abienol, but
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also affected related genes in the GA synthesis pathway, thus

increasing the GA content. In addition, it was reported that ABA

and GA interact with each other and regulate plant growth, such

as seed germination and dormancy (Tang, et al., 2021), and plant

shoot growth (Qin, et al., 2013; Shu et al., 2018). Yang et al., 2015

found the activities of MDA, Vit C, Proline and CAT in Ziziphus

jujuba Mill. treated with exogenous ABA and GA3 of different

concentrations were characterized by mutual restriction or

antagonism. Song et al. (1998) showed that GA3 and ABA had

antagonistic effects, and the intensity of antagonistic effects

varied with different semi-dwarf varieties of indica rice.

Moreover, under the condition of gibberellin treatment, the

inhibition of ABA on shoot growth of rice was relieved (Shu

et al., 2018).

ABA regulates stomatal movement (Cutler et al., 2010;

Hubbard et al., 2010; Popko et al., 2010; McAdam and Brodribb,

2015; Wilkinson and Davies 2010), while stomata regulation is one

of the most important mechanisms that enable plants to regulate

and optimize water loss through evaporation (Chaves et al., 2016).

In angiosperms, ABA binds to receptors (plasma membrane

receptors and intracellular receptors) to activate G proteins,

which in turn activate phospholipase, resulting in abi1-1, NAD

(P) H-dependent ROS and ABI2-1 involved in Ca2+ signal

transduction (Murata et al., 2001). Through Ca2+ dependent

signal transduction pathways, Ca2+ inhibits K+ internal circulation

channels, activates K+ outflow channels and anionic channels, and

promotes K+ outflow (Grabov and Blatt, 1998a; Grabov and Blatt,

1998b; Macrobbie, 2000), ultimately leading to stomatal closure or

inhibiting stomatal opening (Lemichez et al., 2001). In addition,

ABA induces stomatal closure through Ca2+ independent signal

transduction pathways, i.e. by raising cytoplasmic pH and activating

K+ outflow channels and anionic channels (Hartung et al., 1998;

Netting, 2000). The stomata of leaves are the main channels for

plant water loss (Lin et al., 2020). Under conditions where soil water

is limited and/or there is a high atmospheric evaporative demand,

the stomata on the leaf surface close partially or completely

depending on the turgidity of the surrounding guard cells to

maintain a favourable water balance while limiting carbon gain

(Boyer, 1982; Ciais et al., 2005; Franks, 2013; Vinya et al., 2013).

Tombesi et al. (2015) have shown that in V. vinifera passive

hydraulic control of stomatal closure appears to be dominant

over any chemical signals during the early stages of drought

stress. (Dow et al. 2014a; 2014b) showed that the number, size,

and distribution of stomata (stomatal trait) influence stomatal

conductance. The stomatal pores on the leaf surface open or close

depending on the severity of the surrounding guard cells to protect

against desiccation. (Gupta et al., 2020).

At present, the effects of NtCPS2 on the diterpenoid

metabolic synthesis pathway have been reported (Philipp et al.,

2012; Sallaud et al., 2012), but the relationship between the

NtCPS2 gene and abiotic - biotic stress is rarely reported. The

flue-cured tobacco strain ‘8306’ was used in this study. We

compared the physiological and biochemical differences of wild-
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type (WT) and transformed NtCPS2-knock down plants (T3-26,

T3-45, T3-48) under abiotic or biotic stress, especially drought

stress, to clarify the regulation mode of NtCPS2 gene on abiotic

and biotic stresses and provide evidence for the feedback

regulation of terpenoids to abiotic and biotic stresses.
Materials and methods

Plant materials, growth conditions, and
experimental treatments

Seeds from the wild-type (WT) and the homozygous

transgenic plants T2 generation (T3-26, T3-45 and T3-48) were

collected and grown hydroponically in a growth room with 65-

70% relative humidity, 28 ± 2°C daytime and 18 ± 2°C nighttime

temperatures, a photoperiod of 14 h light/10 h darkness at a light

intensity of approximately 4000 Lx. Seeds were first germinated

in an I-shaped square seedling sponge with Hoagland’s solution.

The germinated seeds were then transferred to vermiculite for

growth. Tobacco plant seedlings with three true leaves were

transplanted into hydroponic plastic pots for the experiments.

For poly-ethylene glycol (PEG-6000) treatments, 10-week-old

seedlings were transferred to Hoagland’s nutrient solution

supplemented with 0% PEG-6000 (Control) and 20% PEG-6000

(Drought) for cultivation. And seedlings were sampled separately

after PEG-6000 treatment for 6h, and plant phenotypes were

recorded. These experiments were performed in three biological

replicates. Harvested samples were immediately frozen in liquid

nitrogen and then stored at −80°C for subsequent experiments.

For heat treatments, 10-week-old seedlings were maintained at

45°C for heat stress (65% relative humidity) in growth chambers,

and seedlings were sampled separately after heat treatment (0, 48h),

and plant phenotypes were recorded. And fresh PVY-infected or

TMV-infected tobacco leaves were frozen in liquid nitrogen and

thoroughly crushed, then diluted 1:100 with water (Ren et al., 2021).

The transgenic and WT plants were inoculated with PVY or TMV

by rubbing, and susceptibility symptoms were assessed after 5 or 7

days. These experiments were performed in ten biological replicates.

Harvested samples were immediately frozen in liquid nitrogen and

then stored at −80°C for RNA isolation.
CRISPR/Cas9 construction strategy and
vector information

The gene knockdown model of NtCPS2 was constructed

using CRISPR/Cas9 gene editing technology in tobacco

(Nicotiana tabacum cv. 8306) to inhibit the function of

NtCPS2 in vitro (Zhang et al., 2020). Based on the provided

mRNA sequences and corresponding genomic sequence

information, 2 CRISPR target sites (Table S1) were designed to

improve the gene targeting efficiency. The target loci PCR
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amplification primers were designed (Table S2), and the

primers were sent to Tianyi Huiyuan Biotechnology Co. for

synthesis. After primer synthesis, the fragment containing the

target site was amplified by overlap extension PCR. PCR

fragment was cloned into the final CRISPR expression vector

using recombinase from Nanjing Novozymes Biotechnology Co.

The constructed CRISPR vector was electrotransferred into E.

coli and positive clones were screened based on colony PCR for

transformation of Agrobacterium and genetic transformation of

tobacco strains.

Mutation detection of target gene target site sequences in

edited plants

Tobacco genomic DNA was extracted by a modified CTAB

method. samples T1-26, T1-45, and T1-48 were ground using a

grinder, and then genomic DNA was extracted using a CTAB

extraction buffer. DNA samples were air-dried and added to

ddH2O for 100 mL.
The primers 17 KN48-df (5’!3’): ATCATAGCGGAATTG

TTTGTCTC and 17 KN48-dr (5’!3’): TCCGTATAGATACCT

AAGCGATCTG were designed to amplify the target bands and

purified. The sequencing results were compared with

the template sequences using DANMAN 6.0 software.

Amplification reaction system: 2×PCR Mix10mL each primer

0.3mL, ddH2O 8. 9ml, tobacco genome dna0.5ml. reaction

procedure: 94°C pre-denaturation 5 minutes, 32 cycles (94°

C30s, 56°C30s, 72°C40s), 72°C5 minutes, 25°C1 minute. The

above PCR amplification products were detected by

electrophoresis using 1% lipose gel.

The relative expression of Nicotiana tabacum ribosomal

protein L25 (L25, L18908) was stable across treatments,

tissues, and periods and was suitable for use as an internal

reference. Schmidt et al. evaluated the expression stability of

eight commonly used tobacco internal reference genes based on

22 samples of K326, which were in descending order of L25 >

EF-Ia > Ntubc2 > PP2A > 18SrRNA > Actin > B-Tubulin > a-

Tubulin (Schmidt and Delaney 2010).

Four promoter sequences (pGhU6.1, pGhU6.4, pGhU6.7, and

pGhU6.9) were amplified from the tobacco genome and verified

with Sanger sequencing. Promoter pGhU6.9 was finally chosen for

vector modification because of its high identity with that of AtU6-

26. Its Bsa I restriction site was mutated to avoid multiple Bsa I

sites in the final vector. The pRGEB32 plasmid, a gift from Xie

et al. (2015), was linearized with Hind III and Sbf I double

digestion, resulting in deletion of the gRNA terminator

fragment. The promoter pGhU6.9 was assembled with the

gRNA-terminator segment using an overlapping PCR method.

The assembled fragment was inserted to the linearized pRGEB32

using ClonExpressII One Step Cloning Kit (Vazyme, Nanjing,

China), thus generating the pRGEB32-GhU6.9 vector. It has a hpt

selection marker and was used to target a reporter gene DsRed2,

which was firstly transformed into cotton with a vector carrying

NPT II (Neomycin phosphotransferase II). For endogenous gene

targeting, we changed the selection marker hpt with NPT II
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between two restriction sites, Pspx I and Xmal I, using the

abovementioned one-step cloning strategy. This vector, defined

as pRGEB32-GhU6.9-NPT II, was used for stable genetic

transformation to knock out NtCPS2 in tobacco (Figure S1).
Subcellular localization analysis

To verify the subcellular localization of the CPS2 protein, the

coding sequence of CPS2 was cloned into the GFP vector

(pHBT-GFP-NOS) driven by the 35S promoter, to generate

the CPS2-GFP fusion protein (Figure S2). The resulting vector

was then transformed into protoplasts of Nicotiana

benthamiana following a previously published protocol (Liu

et al., 2017; Xu et al., 2020). Afterward, the fluorescence

signals of the protoplasts were observed using a confocal laser

scanning microscope (Lecia sp8, Germany).
Seeds germination characteristics and
plant biomass

The moistened and sterilized absorbent cotton and filter paper

were soaked with deionized water in a clean petri dish, then laid on

the petri dish. 100 disinfected seeds were evenly ordered on the

surface filter paper and cultured in an artificial climate incubator

(MGC-350BP-2L, Yiheng, China). The light intensity was set at

4950 LX, the light duration was 12 h/d, the relative humidity was

60%, and the temperature was 26°C.Timed observations were made

every day, and deionized water was added in time. The number of

germinated seeds was counted on 7d (germination potential) and

14d (germination rate) after sowing, and the germinating standard

was the radicle exceeding 1/2 of the seed length (Ye et al., 2017).

Plant biomass measurements included fresh weight. The leaf fresh

weight of the plant was measured 70d after seeding.

Germination potential

= (number of seeds germinated after 7 days of cultivation

=number of seeds testedÞ � 100%

Germination rate

= (number of seeds germinated after 14 days of cultivation

=number of seeds tested)� 100%
Water loss rate and stomatal
apertures analyses

For water loss rate studies, the leaves of 10-week-old

transgenic and WT plants were detached, placed on dry
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philtre paper at room temperature, and weighed at time points

(0,0.5, 1, 1.5, 2, 2.5 and 3 h). The water loss rates were

determined on the basis of the water content of the leaves.

Water loss rates were calculated based on the initial fresh weight

of the plants (Zhao et al., 2018).

To understand whether leaf water loss rate mediated by

NtCPS2 is related to stomata movement, leaves were detached

from 10-week-old transgenic and WT plants, placed on dry

philter paper at room temperature, and stomata were

observed with a metalloscope (ML10, Mingmei, China) and

stomata rate calculated at time points 0 and 3 h. The stomata

size was determined by the stomata movement. The size of the

stomata that were smaller than 0.5 μm was considered

as closure.
Measurements of physiological-
biochemical parameters

Leaf samples of WT and T3-26, T3-45, and T3-48 were

sampled immediately after PEG-6000 treatment for 6h. Leaf

samples were measured for relative electrolytic leakage (Zhang

et al., 2019), soluble protein (sPRO), hydrogen peroxide (H2O2)

and activities of major antioxidant enzymes, including catalase

(CAT), and peroxidase (POD), as described previously. H2O2

accumulation was detected by 3,3’-diaminobenzidine (DAB)

staining as described by Sun et al. (2019). The antioxidant

enzymes sPRO, H2O2, MDA, CAT and POD content or

activities were measured using the corresponding detection

kits (PC0010, BC3595, BC0025, BC0205, and BC0095,

Solarbio, China) following the manufacturer’s protocols. The

experiment was repeated at least three times.
Extraction and assay of phytohormone
abscisic acid and gibberellin

ABA and GA in tobacco leaves were determined at different

time points (0, 6 h) during PEG-6000 treatment using an ELISA kit

provided by China Agricultural University and included three

independent biological replicates as described by Chen et al.

(2021). The detection limit of quantitative GA in the assay kit is

2–313 ng·mL−1, and that of ABA is 2–311 ng·mL−1. All samples

were rapidly frozen in liquid nitrogen and stored at −80 °C prior

to analysis.

The extraction, purification and determination of endogenous

levels of GA3, ABA and iP + iPA by an indirect ELISA technique

were performed as described by He (1993). The samples were

homogenised in liquid nitrogen and extracted in cold 80% (v/v)

methanol with butylated hydroxytoluene (1 mmol·L−1) overnight

at 4°C. The extracts were collected after centrifugation at 10000 ×

g (4°C) for 20 min, the extracts were passed through a C18 Sep-
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Pak catridge (Waters, Milford, MA) and dried in N2. The residues

were dissolved in PBS (0.01 mol·L−1, p H 7.4) in order to

determine the levels of GA3, ABA and iP + iPA. Microtitration

plates (Nunc) were coated with synthetic GA3, iP + iPA, or ABA-

ovalbumin conjugates in NaHCO3 buffer (50 mmol·L−1, pH 9.6)

and left overnight at 37°C. Ovalbumin solution (10 mg/ml) was

added to each well in order to block nonspecific binding. After

incubation for 30 min at 37°C, standard GA3, ABA, iP + iPA,

samples and antibodies were added and incubated for a further

45 min at 37°C. The antibodies against GA3, ABA and iP + iPA

were obtained as described by Weiler et al. (1981). Then

horseradish peroxidase-labelled goat antirabbit immunoglobulin

was added to each well and incubated for 1 h a t 37°C. Finally, the

buffered enzyme substrate (orthophenylenediamino) was added,

and the enzyme reaction was carried out in the dark at 37°C for

15 min, then terminated using 3 mol·L−1 H2SO4. The absorbance

was recorded at 490 nm. Calculations of the enzyme-

immunoassay data were performed as described by Weiler et al.

(1981). In this study, the percentage recovery of each hormone

was calculated by adding known amounts of standard hormone to

a split extract. Percentage recoveries were all above 90%, and all

sample extract dilution curves paralleled the standard curves,

indicating the absence of nonspecific inhibitors in the extracts.
Determination of photosynthetic
parameters

Leaf transpiration rate (E) and stomatal conductance (GS)

were measured in the culture chamber using a CIRAS-3 portable

photosynthetic system (PP-Systems, UK). Environmental

conditions were tightly controlled, with light intensity (PAR)

set at 1000mmol/(m2·s), molar content of CO2 at 390mmol/mol,

and temperature at 25°C. The average value of 10 consecutive

cycles was taken as the test value. Five representative plants were

selected for each variety, and each plant was repeated for three

times to get its average value.
Real-time quantitative PCR

Extraction of total RNAs and synthesis of cDNAs were

performed according to the method described by Xia et al.

(2018). The quantitative real-time PCR(RT-qPCR) was

checked with gene-specific primers to investigate the

transcription levels of some genes for cis-abiol, gibberellins

and abscisic acid biosynthetic enzymes. The RT-qPCR assay

was performed using SYBR Green PCR Master Mix (Tiangen
Frontiers in Plant Science 05
Biotech, China) for 20 μL of the reaction mixture on an IQ5

Light Cycler System (Bio-Rad, Hercules, CA, USA). Relative

transcript levels were calculated as described by Zhang et al.

(2019), and using the L25 as the reference gene. Primers used for

RT-qPCR are listed in Table S3.
Statistical analysis

Microsoft Excel (Microsoft Corporation, USA) was used for

data collection, and SPSS (version 20.0, SPSS Inc., Chicago, IL,

USA) for statistical analysis of data, and RStudio (1.4.1106 RStudio,

Boston USA) was used for mapping. Data were reported as mean

values ± standard error (SE). Data were analyzed using one-way

analysis ANOVA, and means were compared using Duncan’s

multiple range test at a significance level of p< 0.05.
Results

Expression analyses of NtCPS2 in
response to abiotic and biotic stress

To investigate the gene expression patterns of NtCPS2 under

different abiotic and biotic stresses, we examined the transcript

levels of NtCPS2 in 10-week-old tobacco seedlings exposed to

drought, heat, PVY, and TMV. As shown in Figure 1, NtCPS2

gene expression increased significantly within 6 hours after

drought treatment, and transgenic plants wilted more than

WT. After hot treatment, the expression level of the NtCPS2

gene increased by 50% on average after 48 h, and the leaves of

transgenic plants were browned earlier than WT (Figure 1B).

After inoculation with PVY and TMV virus, the transgenic

plants developed disease on days 5 and 7, respectively, but WT

did not develop the disease. Meanwhile, the expression level of

the NtCPS2 gene was significantly increased. The results

confirmed that the NtCPS2 gene expression could be induced

by abiotic stress and biological stress.
Subcellular localization of
NtCPS2 protein

To monitor the subcellular location of NtCPS2, we fused the

NtCPS2 gene (using its CDS sequence) to the N-terminus of a

GFP reporter gene, and the resulting expression cassette was

transiently expressed in tobacco leaf epidermal cells. As shown

in Figure 2, the fluorescence of the NtCPS2-GFP fusion protein

was observed in the cell membrane.
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NtCPS2 knock-down improves tobacco
seedling growth

Under optimal growth conditions, the seed germination and

seedling stage of the three transgenic lines andWT differed on the

Petri dish (Figure 3A), the transgenic plants were larger than the
Frontiers in Plant Science 06
WT plants (Figure 3A). Then, we counted the germination

potential and germination rate of the tobacco seedlings on petri

dish, and found that the transgenic plants had higher germination

potential and germination rate than the WT plants (Figures 3B,

C). Similarly, the transgenic lines exhibited higher seedling fresh

weight than the plants from WT (Figure 3D).
A

B

D

E

F

G

H

C

FIGURE 1

Transcript profiles of tobacco copalyl diphosphate synthase 2 (NtCPS2) genes in response to abiotic stress or biological stress. Ten-week-old
tobacco seedlings were treated with drought, 45°C heat, PVY or TMV, the photos were taken after 6 hours of drought stress, 48 hours of heat
stress, 7 days of PVY inoculation or 7 days of TMV inoculation (A–D). And seedlings were sampled after photography to extract RNA, and then
transcript levels of NtCPS2 were checked by quantitative PCR (RT-qPCR) under drought stress (E), heat stress (F), PVY (G) or TMV (H). In each
quantitative reverse transcription quantitative PCR (RT-qPCR), the transcript levels of the tobacco reference gene L25 in different samples were
also evaluated. Three technical replicates were performed for each experiment. The data shown are the mean ± SD of three independent
experiments. Statistical analysis was performed using the ANOVA test (p< 0.05) and significant differences are indicated by different letters.
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NtCPS2 knock-down alters the content
of GA and ABA

According to the biosynthetic pathways of diterpenoids,

the same substrate, geranylgeranyl pyrophosphate (GGPP), is

used for the synthesis of cis-abienol and GA. NtCPS2

knockdown positively affects GA synthesis. The GA3

contents in transgenic plants were 18.94%, 23.20% and

28.68% higher, respectively, under control treatment
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compared with that of the WT (Figure 4A). The GA3

content was not significantly changed under drought

treatment from that of the control treatment. As shown in

Figure 4B, the ABA contents in transgenic plants were 71.82%,

72.61% and 53.36% lower, respectively, under control

treatment compared to WT. In addition, the content of ABA

increased sharply under drought treatment with that of the

control treatment. Meanwhile, the GA3/ABA in transgenic

plants increased sharply compared with that of the WT,
A B

D

C

FIGURE 3

The phenotypic analyzes of NtCPS2 transgenic plants and WT plants. (A) Phenotype of WT and transgenic seeds sown for 7, 21, and 70 days,
respectively. (B) Germinative force of WT and transgenic seeds sowed for 7 days. (C) Germinative rate of WT and transgenic seeds sowed for 14
days. (D) Fresh weights of 70-day-old WT and transgenic plants. Bars = 0.1 cm, 0.5 cm or 1.0 cm. Error bars represent means ± SD. Statistical
analysis was performed using the ANOVA test (p< 0.05) and significant differences are indicated by different letters. .
FIGURE 2

Subcellular location of NtCPS2 in tobacco epidermal cells. (A) Green fluorescence of 35S::NtabDOG1L-T-GFP; (B) Red fluorescence of 35S::
NtabDOG1L-T-GFP; (C) Chlorophyll fluorescence; (D) bright-field images; (E) merged images. Bars = 7.5 mm.
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indicating that NtCPS2 knockdown resulted in increased

gibberellin content, and decreased abscisic acid content, and

then increased the ratio of gibberellin content to abscisic acid

content (Figure 4C). Furthermore, the changes in GA and ABA

contents in transgenic plants and WT plants under drought

treatment were consistent with those under control treatment.
NtCPS2 knock-down alters the
expression of GA- and ABA-
related genes

To further prove that NtCPS2-knockdown promotes GA

synthesis by regulating the expression of gibberellin synthesis

pathway genes, and the antagonistic effect of gibberellin and

abscisic acid on transcription level, L25 was used as a

housekeeping gene to analyse the expression of 6 key genes by

qRT-PCR. These genes included four gibberellin genes (ent- acid

synthase gene KS, ent- acid oxidase gene KO, and ent-acid

oxidase gene KAO, GA2-oxidase gene GA2ox) and two

abscisic acid genes (zeaxanthin epoxidase gene ZEP, and 9-cis

epoxycarotenoid dioxygenase gene NCED), which have been

shown to play a key role in gibberellin and abscisic acid

synthesis. As indicated in Figures 5A-D, the relative expression

levels of KS, KO and KAO genes promoting gibberellic acid

synthesis in these transgenic lines were higher than those in the

WT under control and drought conditions. And the relative

expression level of the GA2ox gene which inhibited gibberellic

acid synthesis was lower in transgenic than in WT. Meanwhile,

the relative expression levels of ZEP and NCED, which promote

ABA synthesis, in transgenic lines were lower than those in the

WT, especially the relative expression level of NCED in

transgenic lines was 59.58% lower than that in the wild type

under drought conditions (Figures 5, F). These data indicate that

NtCPS2 knockdown regulates the expression of gibberellin and

abscisic acid-related genes, and significantly affects the

expression of abscisic acid-related genes under drought stress.
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NtCPS2 knock-down increased the
stomatal aperture and water loss of the
transgenic plants

Next, we investigated the functions of NtCPS2 in drought

stress tolerance using transgenic tobacco. Water loss rate and

stomatal aperture are often used as indicators of drought

tolerance in plants. The stomatal openings of the NtCPS2

transgenic NtCPS2 plants were significantly larger under

drought stress at room temperature than those of the WT

(Figure 6A). And after 3 hours of dehydration stress, the

stomatal closure rate of NtCPS2 transgenic plants was

significantly smaller than that of WT (Figure 6B). Similarly,

water loss from the detached leaves was recorded every half hour

in both NtCPS2 transgenic lines and the plants from WT. As

shown in Figure 6C, the three transgenic plants had higher water

loss rates than the plants from WT.

To further detect stomatal closure and water loss of leaves, we

tested stomatal conductance and transpiration rate of leaves, and

found that after drought treatment for 6hours, stomatal conductance

and transpiration rate of the NtCPS2 transgenic plants were

significantly higher than those of WT (Figures 6D, E). These tests

showed that the decreased expression ofNtCPS2 gene was not good

forplant leafwater retention, resulting in the lowerdrought resistance

of NtCPS2 transgenic plants thanWT.
NtCPS2 knock-down reduces the
antioxidant capacity of transgenic
tobacco plants

To uncover the possible physiological mechanisms

underlying the enhanced drought tolerance of NtCPS2-

knockdown plants, we measured the levels of hydrogen

peroxide (H2O2) and the activities of several antioxidant

enzymes in NtCPS2-knockdown plants and WT plants grown

under optimal conditions and drought.
A B C

FIGURE 4

NtCPS2 functions in endogenous hormone. (A, B) The content of gibberellin and abscisic acid. (C) Gibberellin to abscisic acid ratio. Error bars
represent means ± SD. Statistical analysis was performed using the ANOVA test (p< 0.05) and significant differences are indicated by different
letters.
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To confirm the ability of the transgenic tobacco plants to

scavenge ROS, the accumulation of ROS was determined under

optimal growth conditions and under drought stress. There was

a difference in H2O2 accumulation between WT and transgenic

seedlings (Figure 7A). After drought treatment for 6 hours, H2O2

accumulation in transgenic lines was higher than WT, observed

as brown (DAB staining) pigments (Figure 7A). To quantify this

difference, H2O2 content was measured in whole tobacco

seedlings with or without drought stress. Under optimal

growth conditions, H2O2 content was slightly higher in the

transgenic line than in WT (Figure 7B). After 6 hours of

drought, three transgenic lines contained significantly more

H2O2 than WT, especially T3-45 and T3-48 (Figure 7B).

Next, we evaluated the activities of two antioxidant enzymes,

guaiacol peroxidase (POD) and catalase (CAT) in the transgenic

and WT plants (Figures 7C, D). The results showed that POD

and CAT activities significantly increased after drought stress,

however, the increase in transgenic plants was less than that in

WT plants (Figures 7C, D).

These results suggest that NtCPS2-knockdown increases the

accumulation of ROS by reducing the activities of several

antioxidant enzymes.
NtCPS2 knock-down increases the
membrane permeability of transgenic
tobacco plants

Furthermore, to further confirm the status of the membrane

system in transgenic plants, we examined the relative electrolytic

leakage and soluble protein content (Figures 8A, B). The relative
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electrolytic leakage in these transgenic lines was about 25% and 42%

higher than those in WT plants under suitable and drought

conditions, respectively. (Figure 8A). Furthermore, the soluble

protein content was significantly lower in the transgenic lines

compared to WT, especially after treatment with drought stress

(Figure 8B). These results evidenced that the increased membrane

permeability caused by NtCPS2 knockdown is due to the decreased

sPRO content, which reduces the tolerance to drought stress.
Discussion

To date, most of the studies have been focused on the roles of

CPS2 genes in the important synthesis of diterpene-diol cis-

abienol processes including in balsam fir (Abies balsamea),

tobacco (Nicotiana tabacum; family Solanaceae) and Bolivian

sunroot (Polymnia sonchifolia; family Asteraceae) (Cheng et al.,

2002). Recently, through transcriptome analyses, we have

discovered that NtCPS2 genes is involved in the synthesis of

GAs (He et al., 2021), reducing GAs levels or signaling promotes

plant tolerance to environmental stresses, including drought

(Nir et al., 2014). In this study, NtCPS2 had strong responses

to drought, heat, PVY, and TMV treatments. Meanwhile,

phenotypes of NtCPS2 knockdown lines and WT plants were

significantly different under abiotic and biological stresses. In

addition, we report phenotypic analyses of molecular and

physiological responses of the NtCPS2 knockdown plants

under drought stress. Our results have demonstrated that

NtCPS2 knockdown reduces drought stress tolerance by

changing plant hormone levels, breaking antioxidant

metabolism and membrane permeability.
A B

D E F

C

FIGURE 5

(A) The relative expression of ent- acid synthase gene KS. (B) The relative expression of ent- acid oxidase gene KO. (C) The relative expression
of ent-acid oxidase gene KAO. (D) The relative expression of GA2-oxidase gene GA2ox. (E) The relative expression of zeaxanthin epoxidase
gene ZEP. (F) The relative expression of 9-cis epoxycarotenoid dioxygenase gene NCED. Error bars represent means ± SD. Statistical analysis
was performed using the ANOVA test (p< 0.05) and significant differences are indicated by different letters.
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Both cis-abienol and GAs are diterpene compounds. GGPP

is used as a precursor to generating cis-abienol and ent-kaurene

through terpene synthases (TPSs) catalysis, and then ent-

kaurene is treated by cytochrome P450 monooxygenases

(P450s) and 2-oxoglutarate-dependent dioxygenases (2ODDs)

generates GAs (Smith et al., 1998; Okada et al., 2000; Achard

et al., 2006; Shi et al., 2006). After the gene NtCPS2 encoding

terpene synthase was edited, the content of cis- abienol decreased

while GAs content increased significantly, so it was speculated

that the decrease of cis-abienol content may reduce the

competition for common precursor GGPP (Zhang et al., 2020)

and lead to the increase of GAs content (He et al., 2021). In

addition, this study found that editing the NtCPS2 gene affected

related genes in the GAs synthesis pathway, thus increasing GAs
Frontiers in Plant Science 10
content, but at the same time, after editing the NtCPS2 gene, the

ABA content and related gene expression levels of common

precursors with cis-abienol alcohol and GAs were significantly

reduced. Therefore, the effect of editing the NtCPS2 gene on

ABA content is different from that of GAs, and the decrease in

ABA content may be caused by its antagonism with GAs (Lin

et al., 2020). Zhou et al. (2010) found that exogenous application

of different concentrations of GA3 reduced the ABA content of

Guar beans, and the results of this study were similar. Studies

have also shown that gas-induced Ca2+/calmodulin signaling

regulates hydrolase synthesis and secretion, while ABA blocks

the expression of hydrolase, which may explain the antagonism

between GA and ABA (Sun and Guble 2004; Yu and

Helen 2011).
A

B

D E

C

FIGURE 6

NtCPS2 functions in drought tolerance. (A) Stomata of WT and transgenic plants under desiccation treatment. Scale bar =200 mm. (B) Ratio of
stomata of WT and transgenic lines after dehydration. (C) Water loss rates of leaves detached from WT and transgenic lines. (D) Stomatal
conductance (gs) of WT and transgenic lines after 6 h of drought treatment. (E) Transpiration rate (E) of WT and transgenic plants after 6 h of
drought treatment. Error bars represent means ± SD. Statistical analysis was performed using the ANOVA test (p< 0.05) and significant
differences are indicated by different letters.
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It is well documented that the plant hormone ABA plays an

important role in the reaction of plants to drought

(Vishwakarma et al., 2017). The decrease of ABA content in

NtCPS2-knockdown tobacco resulted in the decline of stomatal

closure, an increase of stomatal conductance and reduction of

drought resistance. Wang et al. (2004) showed a significant

negative correlation between ABA content and stomatal

opening, and the results of this study were similar. Meanwhile,

Tal et al. (1972) also showed that the stomatal aperture of plant
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mutants with too low endogenous ABA level significantly

increased. Živanović et al. (2021) found that the two ABA

levels formed different tomato genotypes WT and flacca

mutant tomato had different responses to drought. Compared

with WT, ABA content in leaves of the mutant tomato decreased

by about 25%, resulting in more obvious stomatal opening and

reduced drought resistance. The results of our study were similar

to Živanović et al. (2021), suggesting that the decrease of ABA

content indirectly led to the sensitivity of plants to drought
A B

FIGURE 8

NtCPS2 functions in membrane permeability. (A) Comparisons of relative electrolyte leakage rates in the transgenic lines and WT. (B) The
content of soluble protein (sPRO) in the transgenic lines and WT. Error bars represent means ± SD. Statistical analysis was performed using the
ANOVA test (p< 0.05) and significant differences are indicated by different letters.
A B

DC

FIGURE 7

NtCPS2 functions in antioxidant capacity. After 6 h of drought treatment, WT and transgenic plants were stained with DAB (A) and subjected for
H2O2 content determination (B). The activity levels of antioxidant enzymes CAT (C), POD (D) in three transgenic plants and WT plants were
treated with drought for 6 h. Scale bar =0.2 cm. Error bars represent means ± SD. Statistical analysis was performed using the ANOVA test (p<
0.05) and significant differences are indicated by different letters.
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stress, and it was speculated that the increase of stomatal

conductance caused by the decrease of ABA content could

lead to the increase of water loss and the decrease of drought

resistance of leaves (Virlouvet and Fromm 2014; Fleta-Soriano

et al., 2015) In conclusion, after editing the NtCPS2 gene, the

relative expression level of the NtCPS2 gene in NtCPS2-

knockdown tobacco decreased, and the content of GGPP

increased. Meanwhile, the relative expression level of the

positive regulation gene of GAs synthesis increased, and the

relative expression level of negative regulation gene decreased.

These physiological molecular changes lead to an increase in

GAs content and a decrease in ABA content of NtCPS2-

knockdown tobacco, thus reducing the stomatal closure rate.

As a result, the water diffused from mesophyll tissue to the

outside environment through stomata increases, thus increasing

the sensitivity of plants to drought stress. The metabolic

synthesis network is shown in Figure 9.

Plants usually cope with drought stress in three ways:

shortening the life cycle or improving developmental

adaptability, increasing water absorption and reducing water

loss, regulating osmosis, antioxidant capacity and drought

tolerance (Yue et al., 2006). Our results suggest that changes in

several mechanisms in NtCPS2-knockdown plants jointly show

increased sensitivity to drought stress. In this study, we first

found that tobacco with NtCPS2-knockdown significantly

improved seedling growth, seed germination and seedling

fresh weight (Figure 3). The higher seed germination and fresh

weight of the transgenic plants (Figure 3), could absorb more

water under water deficit conditions thus increasing drought

stress. Secondly, high stomatal opening leads to continuous
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wilting of the leaves (Tal and Imber, 1972). In the process of

dehydration, the stomatal closure rate of NtCPS2-knockdown

plants was significantly lower than that of WT plants, while the

stomatal conductance and transpiration rate were increased

(Figure 6), suggesting that the transgenic plants lose more

water under drought conditions. Third, the relative electrolyte

loss under drought stress was higher in transgenic plants than in

WT, and sPRO content was lower than in WT (Figure 8). In

addition, the activities of POD, and CAT were decreased in the

transgenic plants under drought conditions (Figures 7C, D) and

H2O2 accumulation was enhanced (Figure 7B). Electrolyte losses

are commonly used as indicators of membrane damage and

plant resistance (Tsikas, 2017; Demidchik et al., 2014).

Antioxidant enzymes can remove harmful substances and

reduce membrane damage in an unfavourable environment

(Chen et al., 2017; Khan et al., 2019). The results showed that

NtCPS2-knockdown tobacco exhibited lower drought resistance.

The advantages and limitations of the present study. In

previous studies we used CRISPR/Cas9 gene editing

technology to knock down NtCPS2. A CRISPR/Cas9 NtCPS2

expression vector was constructed with the high aroma plant

8306 and NtCPS2 knockout transformed plants were obtained.

High-throughput RNA sequencing (RNA-seq) technology was

used to compare the expression profiles of mutant and 8306

plants. The sequencing results were validated by fluorescence

quantitative polymerase chain reaction (PCR) and relevant

physiological and biochemical assays were performed, which

revealed that the NtCPS2 gene not only affected the lysobarbital-

like diterpene metabolic pathway, effectively reducing the

content of cis-cryptoxanthin, but also affected the gibberellin
FIGURE 9

Metabolic network of the effect of NtCPS2 gene on drought resistance in tobacco.
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terpene metabolism, increased the content of gibberellin and

thus increased the height of the plants.

Based on the results of previous studies, the pure editorial

line 8306 was subjected to biotic and abiotic stresses and the

function of the NtCPS2 gene was investigated. In this study,

although biotic (drought, high temperature) and abiotic stresses

(PVY, TMV) were applied to 8306 wild-type and pure editorial

lines, the focus of the experiment was on drought stress, and

several other stresses were used only as an auxiliary proof of

the results.

Taken together, these data indicate that NtCPS2 negatively

affects tobacco drought tolerance at least in part, through the

decrease in ABA content and antioxidant capacity induced by

the up-regulation of GAs gene expression, as well as the down-

regulation of ABA gene expression following the decrease in

relative NtCPS2 gene expression. Our results provide valuable

information for the potential application of NtCPS2 in

genetically improving drought of crops and gene pleiotropy

of NtCPS2.
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