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The classification of plug seedling quality plays an active role in enhancing

the quality of seedlings. The EfficientNet-B7-CBAM model, an improved

convolutional neural network (CNN) model, was proposed to improve

classification efficiency and reduce high cost. To ensure that the EfficientNet-

B7 model simultaneously learns crucial channel and spatial location

information, the convolutional block attention module (CBAM) has been

incorporated. To improve the model’s ability to generalize, a transfer learning

strategy and Adam optimization algorithm were introduced. A system for

image acquisition collected 8,109 images of pepper plug seedlings, and data

augmentation techniques improved the resulting data set. The proposed

EfficientNet-B7-CBAM model achieved an average accuracy of 97.99% on

the test set, 7.32% higher than before the improvement. Under the same

experimental conditions, the classification accuracy increased by 8.88–

20.05% to classical network models such as AlexNet, VGG16, InceptionV3,

ResNet50, and DenseNet121. The proposed method had high accuracy in the

plug seedling quality classification task. It was well-adapted to numerous types

of plug seedlings, providing a reference for developing a fast and accurate

algorithm for plug seedling quality classification.

KEYWORDS

plug seedlings, convolutional neural network, EfficientNet-B7-CBAM model, transfer
learning, quality classification

Introduction

China is the world’s leading producer of vegetables. China’s vegetable cultivated area
sowing area in 2020 was 2148.54 × 104 hm2, and its production was 74912.90 × 104

t (Meng et al., 2021; Zhang et al., 2022). In order to meet the increasing demand
for vegetable planting and ensure a safe and efficient supply of seedlings, vegetable
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seedling production has adopted an intensive plug seedling
cultivation method which is characterized by a high survival
rate, low labor costs, and convenient transportation.
Approximately 60% of the world’s vegetable varieties currently
use plug seedling technology (Li et al., 2021; Shao et al., 2021;
Han et al., 2022). The plug seedlings enhanced the quality of
vegetable seedlings as a whole. However, due to the sowing
accuracy, seed quality, and seedling environment, the nursery
tray contained empty plug cells, seedlings with poor growing
conditions, and dead seedlings. About 5–10% of the total
number of seedlings were comprised of these empty plug cells
and weak seedlings. If they are not eradicated, they will not
only cause economic losses but also hinder future machine
transplantation operations. For the quality of plug seedlings,
it is necessary to remove empty plug cells and weak seedlings
from the tray cells and replant them with strong seedlings (Jin
et al., 2020; Wen et al., 2021; Yang et al., 2021).

In intensive plug seedlings, classification of seedling quality
is necessary to ensure overall seedling quality. Currently, this
process relies heavily on manual labor. Manual classification
is time-consuming, laborious, inefficient, and prone to error,
making it challenging to meet the demands of large-scale
seedling production. Consequently, it is essential to investigate
the automated plug seedling quality classification technology,
and machine vision is a crucial component of this technology
(He et al., 2019; Yang et al., 2020; Tong et al., 2021). Early
identification of plug seedlings using machine vision and
conventional image processing techniques. Tong et al. (2018)
presented a skewness correction algorithm for images of plug
seedlings based on the canny operator and hough transform.
The method is based on the watershed algorithm and the
center of gravity method to extract leaf area and seedling leaf
number from images of plug seedlings for quality evaluation;
the results showed that the average accuracy of empty plug
cells and weak seedlings reached 98%. Wang et al. (2018)
developed a device for automatically supplementing vegetable
plug seedlings to obtain accurate information about plug
seedlings. By obtaining information on the vegetation statistics
values of each cell, the method achieved a 100% accurate
classification of plug cells and seedling cells. Jin et al. (2021)
proposed a computer vision-based architecture to identify
seedlings accurately. The method extracts leaf area information
from plug seedlings using a genetic algorithm and a three-
dimensional block matching algorithm with optimal threshold
segmentation. Based on the results, the detection accuracy for
healthy seedlings reached 94.33%. Wang et al. (2021) proposed
a non-destructive monitoring method for the growth process
of plug seedlings based on a Kinect camera, which determines
the germination rate in trays by reconstructing leaf area analysis
with an error of less than 1.56%. To determine the growth status
of plug seedlings, the primary research used the threshold pre-
processing method for threshold segmentation and statistical
pixel value information. The technology is relatively mature.

Nonetheless, the following problems remain. (1) Following
segmentation, seedling growth data is lost. (2) To obtain the
proper segmentation threshold, a large number of human tuning
parameters are required. (3) More complex algorithms must be
developed to increase the precision of leaf area segmentation.

The application of deep CNN models in agriculture has
achieved significant results in recent years, including disease
detection (Sharma et al., 2022), weed identification (Wang
et al., 2022), and crop condition monitoring (Zhao L. et al.,
2021; Tan et al., 2022). Using deep learning techniques to
classify the quality of plug seedlings can better meet the
development requirements of seedling production. Namin et al.
(2018) proposed a robust AlexNet-CNN-LSTM architecture for
classifying the various growth states of plants. This method
improved model performance by embedding long short-term
memory network (LSTM) units and achieved 93% recognition
accuracy by reducing model parameters. Xiao et al. (2019)
developed a transfer learning CNN for the plug seedling
classification model. Based on a limited sample of empty plug
cells, weak seedlings, and strong seedlings, the final classification
accuracy was 95.50%. Perugachi-Diaz et al. (2021) used an
AlexNet network to predict the growth of cabbage seedlings.
According to the results, the method provided a reliable and
effective classification of cabbage seedlings with an optimal
recognition accuracy of 94%. Garbouge et al. (2021) proposed a
method for tracking the growth of seedlings that combines RGB
with deep learning. As a result of the method, seedlings grown
in plug cells, seedlings at the cotyledon stage, and seedlings
at the true leaf stage performed with an average classification
accuracy of 94%. Compared to other models discussed in the
paper, Kolhar and Jagtap (2021) proposed a CNN-ConvLSTM-
based model for seedling quality classification of Arabidopsis
thaliana that achieved 97.97% classification accuracy with
very few trainable parameters. According to the appeal study,
CNNs had a higher accuracy rate and more excellent stability
than conventional image processing methods without requiring
threshold segmentation. However, the following issues persist:
(1) The majority of current CNN have high computational
complexity and a large number of parameters, making it difficult
to directly deploy and apply them in this paper’s quality
classification of plug seedlings. (2) Due to the variability between
different task goals, CNN models required a certain amount of
target data for adaptive learning. Constructing the desired data
set required much human time and effort.

Using pepper plug seedlings as the research object, a new
and more effective CNN model, EfficientNet-B7-CBAM, is
presented for seedling quality classification. Following is a
summary of the main contributions and innovations.

1. A classification standard for various qualities of plug
seedlings is developed. On the basis of this standard, an
8109-image dataset of plug seedlings is compiled to aid in
developing a plug seedling quality classification model.
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2. A novel attention-based recognition model for plug
seedling quality classification, the EfficientNet-B7-CBAM
model, is proposed. By deeply integrating the CBAM
module and the EfficientNet-B7 model, the model can
simultaneously acquire feature channel information and
spatial information attention and enhance the model’s
ability to learn important information about the plug
seedling region.

3. The lightweight and high-performance EfficientNet-
B7-CBAM model can provide technical support for
developing the automated classification of plug seedling
quality equipment.

Experimental data

Data acquisition

Pepper plug seedlings were grown from Oct to Nov 2021 in
a multi-span seedling nursery at the Academy of Agricultural
Sciences, Luoyang City, Henan Province, China (34◦39′55′′N,
112◦21′58′′E), as shown in Figure 1. The temperature in the
greenhouse was kept between 20–25◦C during the day and
10–15◦C at night. The chosen pepper variety was the stress-
resistant Luo Jiao 308 variety. The seeds were sterilized before
being sown with a single hole and seed. Approximately 9,000
pepper seeds were planted in 540 mm× 280 mm, 32-cell nursery
trays that contained a mixture of peat, vermiculite, and perlite
(at a 3:1:1 ratio).

Image the tops of pepper plug seedlings using the selected
data acquisition equipment Hikvision MV-CE200-10UC color
sensor camera with a frame rate of 14 fps and a resolution of
5472 × 3648 pixels. The USB3.0 port connects the camera to
the computer. The lens was the MVL-HF1224M-10MP model
with a focal length of 12 mm. When shooting, the camera was
mounted vertically above the nursery trays at the height of
H = 545.4 mm, effectively encompassing the standard nursery
trays area. Three light-emitting diodes (LED) with a power of
5.76 W/m were installed on the inner wall of the lightbox to
supplement the light during image capture, thereby enabling the
camera to capture the fine details of the seedlings in the nursery
trays. The image capture system is shown in Figure 2.

Data preprocessing

Pepper seedlings at approximately 21 days after emergence
are shown in Figure 3. Within the same batch of pepper plug
seedlings, there are empty plug cells caused by non-germinating
seeds, weak seedlings with slow growth, and strong seedlings for
transplantation due to biological differences between individual
seedlings. Leaf area characteristics were obtained to classify

three distinct types of plug seedlings with varying qualities to
construct image data sets of empty plug cells, weak seedlings,
and strong seedlings.

Leaf area is a popular gauge employed in agricultural
cultivation and breeding techniques, and it is one of the most
important indicators for determining crop yield and quality.
For the purpose of categorizing the quality of pepper seedlings,
leaf area parameters were extracted from pepper seedlings. The
leaf area extraction procedure for pepper seedlings is shown in
Figure 4.

The distribution of pixel values for the leaf area of 21-day-
old pepper plug seedlings is shown in Figure 5. Leaf areas were 0
in empty plug cells, less than 100 in weak seedlings, and at least
100 in strong seedlings.

In order to construct training data set, empty plug cells,
weak seedlings, and strong seedlings were extracted from the
original RGB image based on their pixel value distributions.
Pepper plug seedlings of differing qualities are shown in
Figure 6. After the reduction, 2,210 empty plug cells, 3,381
weak seedlings, and 2,518 strong seedlings were obtained. Using
the Albumentations library to expand data, the original data
for pepper plug seedlings were enhanced to include additional
image data. The data were clipped, rotated, and inverted to
generate a data set containing 19,603 images, as shown in
Table 1.

Methodology

This study chose the lightweight, high-precision, and
simple-to-deploy EfficientNet-B7 model as the benchmark
network for the application of intelligent recognition algorithms
to images of plug seedlings in agriculture. To increase the
network model’s recognition accuracy, the CBAM module was
introduced to optimize and enhance the EfficientNet-B7 model,
which was then renamed EfficientNet-B7-CBAM.

Efficientnet-B7 network structure

To improve the performance of the CNN model, we
increased the input image’s resolution as well as the network’s
depth and width. However, the concurrent use of the three
methods may result in severe issues, such as the loss of
model gradients and the degradation of models. The emergence
of EfficientNet is characterized by a balance between depth,
width, and resolution. There were B0-B7 EfficientNet versions.
Mobile Inverted Bottleneck Convolution (MBConv) was the
core structure of the network (Zhang et al., 2020; Liu et al., 2021;
Bhupendra et al., 2022). This module introduces the Squeeze-
and-Excitation Network (SE)’s core concept to optimize the
Network’s structure, as shown in Figure 7. The MBConv module
first uses 1 × 1 convolutions to up-dimension the feature
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FIGURE 1

Location of data collecting and multi-span seedling greenhouses.

FIGURE 2

Picture capture system.

map, followed by k × k depthwise convolutions. After that,
SE modules adjust the feature map matrix, and eventually,
1 × 1 convolutions to down-dimension the feature map.
When the input and output feature maps have the same
shape, the MBConv module is also capable of performing

short-cut concatenation. This structure reduces model training
time. A typical Efficientnet-B7 model consists of 55 layers of
MBConvs modules, 2 layers of Convs modules, 1 layer of global
average pool, and 1 layer of FC classification. The network
architecture of EfficientNet-B7 is shown in Figure 8.
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FIGURE 3

Sample of pepper seedlings growing for 21 days.

Convolutional block attention module
model

This section will provide an overview of the CBAM attention
mechanism. Woo proposed CBAM, which would be comprised
of two modules: the channel attention module and the space
attention module (Bao et al., 2021; Gao et al., 2021; Zhao Y.
et al., 2021). The CBAM module is shown in Figure 9. The
CBAM module first generates the feature map F′ via the channel
attention module, then the feature map F′′ via the spatial
attention module, given a middle layer feature map F as input, as
shown in Figure 9A. The process of calculation can be expressed
as Equation 1. {

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′

(1)

where ⊗ represents the multiplication operation between the
corresponding elements. F (∈ RC×H×W) represents the input
feature map. Mc (∈ RC×1×1) represents the output weight of F′

through the channel attention. Ms (∈ R1×H×W) represents the
output weight of F′′ through the spatial attention.

The module of the channel attention mechanism is shown in
Figure 9B. In the first step of the channel attention mechanism,
the average pooling and maximum pooling operations are
performed based on width and height to generate two layers of
C × 1 × 1 feature maps. Then, they are fed to the shared MLP
layer for summation and activated by the sigmoid to produce
the final channel attention feature weights Mc. The channel
attention calculation procedure can be expressed as Equation 2.

Mc(F) = σ[MLP(AvgPool(F)] +MLP[MaxPool(F)] (2)

where σ represents a sigmoid function; MLP represents a
multilayer perceptron.

The module of the spatial attention mechanism is shown
in Figure 9C. As input to the spatial attention mechanism is
the feature map F′. First, the average pooling and maximum

pooling operations are performed on the channel to generate
a two-layer 1 × H × W feature map, which is then subject to
the Concatenate operation. The dimension of the feature map is
then reduced using a 7× 7 convolution kernel, and the Sigmoid
function is used to generate the spatial attention weights Ms.
The spatial attention calculation procedure can be expressed as
Equation 3.

Ms(F) = σ{f 7×7
[AvgPool(Mc);MaxPool(Mac)]} (3)

Where f 7×7 is the convolution operation with a convolution
kernel size of 7 × 7, which is used to extract the spatial
features of the target.

EfficientNet-B7-CBAM model

EfficientNet-B7 is composed of the MBConv stack, with
each MBConv module containing a SE module. The SE
module controls the focus or gating of channel dimensions.
The model can emphasize the channel characteristics that
contain the most information while ignoring the channel
characteristics that are unimportant. However, this operation
only considered the information of the channels and lost the
spatial information, which played a crucial role in the visual
recognition task of seedlings, which negatively impacted the
classification performance of seedlings. CBAM was added to
Efficientnet-B7 in this study to improve the model’s ability to
extract features. The improved EfficientNet-B7-CBAM network
structure is shown in Figure 10. The following enhancements
have been made relative to the original Efficientnet-B7 network
model:

(1) The SE module within each MBConv module of the
original EfficientNet-B7 model was replaced with a CBAM
module. This allowed the network to acquire channel
information without losing crucial spatial information
regarding the pepper plug seedlings.
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FIGURE 4

The image processing flow of the leaf area of pepper seedlings.
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FIGURE 5

Pixel statistical scatter plot of seedling leaf area.

FIGURE 6

Plug seedlings of different qualities. (A) Empty plug cells.
(B) Weak seedlings. (C) Strong seedlings.

(2) The CBAM module was embedded in the EfficientNet-
B7-CBAM model after the second convolutional layer. It
improved the model’s ability to classify different quality
plug seedlings by refining the extracted feature information
and enhancing the model’s classification capability.

Adam optimization algorithm

A classical optimization algorithm is used to optimize the
EfficientNet-B7 model: Stochastic Gradient Descent (SGD). Due
to the same learning rate for each parameter, it was difficult

TABLE 1 The sample size of the training set and validation set.

Class Training dataset Validation dataset Total

Strong seedlings 5,042 843 5,885

Weak seedlings 6,230 1,037 7,267

Empty plug cells 5,480 971 6,451

to obtain a suitable learning rate for the SGD algorithm. In
addition, the SGD optimization algorithm converges rapidly to
a local optimum when training the model, which causes the
model to be unable to obtain an optimal training model when
performing different quality pepper plug seedling classification
tasks. In order to solve the above problem, this paper
employed the Adam optimization algorithm. Each parameter
of the Adam algorithm maintained a learning rate and was
adjusted individually as a result of training. Additionally,
each learning rate adjustment was bias-corrected in order to
reduce the fluctuations in parameter updates and enhance
the smoothness of the model convergence. In the Adam
optimization algorithm, momentum updates are combined
with learning rate adjustments, and the learning rates of each
parameter are dynamically adjusted by the first and second
moments of the gradient (Yu and Liu, 2019; Ilboudo et al., 2020;
Cheng et al., 2021). The calculation process can be expressed as
Equation 4.



θt = θt−1 − α · m̂t√
v̂t+ε

m̂t =
mt

1−βt1
v̂t = vt

1−βt2
mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2

t

gt = ∇θ ft (θt−1)

(4)
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FIGURE 7

Mobile inverted bottleneck convolution.

FIGURE 8

The network structure of EfficientNet-B7.

where θt and θt−1 represents the parameter values of the tth and
t-1th updates. mt represents the exponentially shifted mean of
the gradient. vt represents the squared gradient. m̂t represents
the updated value of mt . v̂t represents the updated value of vt . β1

and β2 represent the constants used to control the exponential
decay. gt represents th first-order derivative. The default values
for each of the parameters are: α = 0.001,β1 = 0.9, β2 = 0.999,
and ε = 10−8.

Transfer learning

Given that images from different domains contain
common underlying features among them, transfer

learning makes the training more stable by transferring
knowledge of common features in the convolutional
layer, thus improving the training efficiency (Espejo-
Garcia et al., 2022; Zhao X. et al., 2022). Inspired by
this, this study is based on transfer learning to train the
EfficientNet-B7-CBAM network.

All models utilized in this study were pretrained on the
ImageNet dataset. The pre-trained weights were used only
for initialization. All models were fully trained using the
previously created plug seedling data. Due to the fact that
there were only three types of plug seedlings, the final fully
connected layer in each network was reduced from 1,000 to 3.
SoftMax activation was implemented in the final layer. Using
the Adam optimization algorithm and categorical cross-entropy
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FIGURE 9

CBAM attention module. (A) Convolutional block attention module (CBAM) structure. (B) Channel attention module. (C) Spatial attention
module. Where W is the width of the feature map, H is the height of the feature map, and C is the number of channels of the feature map.

FIGURE 10

EfficientNet-B7-CBAM model.
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TABLE 2 Results of ablation experiment.

No. Average
Acc/%

Average
Pr/%

Average
Re/%

Average
F1/%

Times of
training
(min)

1 90.67 91.03 90.66 90.84 96.7

2 94.66 94.82 94.67 94.75 73.2

3 95.33 95.41 95.33 95.37 52.5

4 96.66 96.76 96.67 96.72 40.9

5 97.99 98.01 98.00 98.01 36.5

as a loss, the models were trained. The Adam optimization
algorithm’s parameters were as described as: α = 0.001, β1

= 0.9, β2 = 0.999, and ε = 10−8. There was a maximum
of 300 iterations. The initial learning was set to 0.001, and
the learning rate decayed to the original 0.8 for every 10
training epochs. The batch size was limited to 16 due to
hardware limitations. We used dropout before the last layer
of each model. A dropout rate of 0.45 was observed in
this paper’s model.

Experimental results and analysis

Experimental configuration

Configuration of the hardware: GPU: GeForce GTX 1080Ti
with 12 GB of video memory. The NVIDIA graphics drivers
installed were CUDA 10.1 and CUDNNV7.6. It was NVIDIA’s
GPU parallel computing framework that enabled users to solve
complex computing problems using GPUs. CuDNN was a GPU
accelerator developed by NVIDIA for deep neural networks.
Windows 10 was the operating system of the software, and
Python 3.8.5 was used to create the Pytorch deep learning
framework and Opencv open-source visual library.

Model evaluation index

The confusion matrix is an effective tool for evaluating
the classification model’s merit and performance (Gajjar et al.,
2022; Zhao Y. et al., 2022). Typically, the measures of model
performance in the confusion matrix are Recall (Re), F1-Score
(F1), Precision (Pr), and Accuracy (Acc). The above formula for
the four indexes can be expressed as Equations 5, 8.

Re =
TP

TP + FN
(5)

Pr =
TP

TP + FP
(6)

F1 = 2 ·
Precision× Recall
Precision+ Recall

(7)

Acc =
TP + TN

TP + TN + FP + FN
(8)

where TP represents the number of samples predicted by the
model to be in a positive class that were actually in a positive
class, whereas FP represents the number of samples predicted
to be in a positive class that were actually in a negative class.
TN is the number of samples predicted by the model to be in
the negative class that are in the negative class. FN indicates the
number of samples that the model predicted to be in a negative
class but were actually in a positive class.

Results and analysis

In this section, all models were validated on the re-collected
data set of 450 unlabeled images of pepper plug seedlings (150
images of each plug seedling type). Concurrently, the evaluation
index was the proposed confusion matrix from Section “Model
evaluation index.”

FIGURE 11

The training curves of the models.
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TABLE 3 Performance of the model before and after data
augmentation.

Data set Class Pr/% Re/% F1/% Acc/%

Original Empty plug cells 95.45 98.00 96.71 96.45

Weak seedlings 95.36 95.33 95.01

Strong seedlings 94.70 96.00 97.63

Data augmentation Empty plug cells 97.40 100.00 98.68 97.99

Weak seedlings 97.31 96.67 96.99

Strong seedlings 99.32 97.33 98.31

TABLE 4 Performance comparison with other models.

Model Average
Acc/%

Average
Pr/%

Average
Re/%

Average
F1/%

Times of
training
(min)

AlexNet 77.94 78.92 78.67 78.79 80.9

VGG16 81.98 82.75 81.78 82.27 220.9

InceptionV3 85.60 86.24 85.55 85.89 60.3

ResNet50 88.92 82.93 88.89 85.91 48.5

DenseNet121 89.11 89.56 89.11 89.34 42.2

EfficientNet-B7-CBAM 97.99 98.01 98.00 98.01 36.5

Ablation experiments
In order to verify the effectiveness of the EfficientNet-

B7-CBAM model, the following five abatement experiments
were set up. (1) The original EfficientNet-B7 model. (2) In
scheme 1 based on EfficientNet-B7 model trained using transfer
learning, which constructed TL-EfficientNet-B7 model. (3) Used

Adam’s optimization algorithm to train the TL-EfficientNet-
B7 model, which constructed the TL-EfficientNet-B7-Adam
model. (4) Replaced the SE module with the CBAM module
in the TL-EfficientNet-B7-Adam model, which constructed
the TL-EfficientNet-B7-Adam+SE- > CBAM model. (5) The
EfficientNet-B7-CBAM model in this paper.

The training results of the models for the five schemes
described above are shown in Table 2. Compared to the
experimental results of schemes 1 and 2, the average
classification accuracy of the TL-EfficientNet-B7 model for plug
seedlings reached 94.66%, which was 3.99% higher than that
of the model in scheme 1. Additionally, the model’s training
time was reduced by 23.5 min, and the transfer learning
method effectively enhanced the model’s generalization ability.
Compared to the experimental results of schemes 2 and 3, the
average classification accuracy of the TL-EfficientNet-B7-Adam
model was 95.33%, a 0.67% improvement over the scheme
2 models, and its training time was reduced by 20.7 min.
The Adam optimization algorithm could hasten the model’s
convergence and enhance its performance. The effectiveness of
the scheme improvement was demonstrated by the fact that
the overall accuracy of the TL-EfficientNet-B7-Adam model
increased by 4.66%, and the training time was reduced by
44.2 min using both transfer learning and Adam optimization
algorithms. In addition, experiments comparing schemes 3 and
4 demonstrated that the CBAM module possessed superior
attention learning capability to the SE module. Compared to
the experimental results of schemes 4 and 5, the addition of the
CBAM module after the second convolutional layer improves
the model’s ability to extract information. The experimental

FIGURE 12

The EfficientNet-B7-CBAM model confusion matrix.
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results shown in Table 2 demonstrated that the enhanced
EfficientNet-B7-CBAM model achieved a classification accuracy
of 97.99% on the previously constructed plug seedling dataset,
which was 7.32% better than before the enhancement, and that
the model training time was reduced by 60.2 min. The training
curves of the models proposed by the five schemes are shown
in Figure 11. According to Figure 11, the EfficientNet-B7-
CBAM model converged around the 40th iteration, which was
the quickest convergence speed of all models.

In combination with the above findings, the model
training scheme’s feasibility and effectiveness could be
determined. The improved EfficientNet-B7-CBAM model
performed the classification of plug seedling quality with high
accuracy and robustness.

The impact of data enhancement on model
performance

Data augmentation was performed on the plug seedling
images to increase the EfficientNet-B7-CBAM model’s
resistance to interference in complex environments and
prevent overfitting issues. A series of comparison experiments
were designed to demonstrate the effect of data augmentation
on model performance improvement in order to verify the
effect of data augmentation. The experimental results before
and after model data enhancement is shown in Table 3. By
comparing the model’s Acc, Re, Pr , and F1 performance metrics
for each category on the plug seedling test set. On the test set,
the classification recognition accuracy of the model trained
on the original plug seedling data was 96.45%, which was
1.54% than the classification accuracy of the model after data
enhancement. The experimental results demonstrated that data
augmentation can improve model performance and contribute
to the classification of plug seedlings.

The performance comparison of different
convolutional neural network model

Several classical CNN models AlexNet, VGG16,
InceptionV3, ResNet50, and DenseNet121 were used
to classify datasets of different quality cavity seedlings
in order to demonstrate the efficacy of EfficientNet-
B7-CBAM Mode. In addition, the performance was
compared to the EfficientNet-B7-CBAM model. To
ensure the fairness of the experiment, the above CNN
models and EfficientNet-B7-CBAM Mode were trained
using the same strategy and hardware configuration. The
classification performance of several models is shown in
Table 4.

As shown in Table 4, the EfficientNet-B7-CBAM model
had the highest average classification accuracy of 97.99%
on the test set of different quality pepper plug seedlings,
which was 20.05, 16.01, 12.39, 9.07, and 8.88% higher
than the average classification accuracy of a number of

other models, respectively. Additionally, the EfficientNet-
B7-CBAM model’s training time was only 36.5 min. In
summary, the EfficientNet-B7-CBAM model had a significant
advantage in terms of accuracy and training time, and was
better able to meet the classification requirements for plug
seedling quality.

Confusion matrix of the model
The confusion matrix of the EfficientNet-B7-CBAM model

applied to the test set of plug seedlings, as shown in Figure 12.
The average classification accuracy of the EfficientNet-B7-
CBAM model for the three types of plug seedlings was
97.99%, the average Pr was 98.01%, the average Re was
98.00%, and the overall index F1 was 98.01%, as determined
by the confusion matrix. From the confusion matrix, it
was evident that empty plug cells, weak seedlings, and
Strong seedlings were misclassified as one another. Empty
plug cells were misclassified as weak seedlings due to the
presence of shed leaves; weak seedlings were misclassified as
strong seedlings due to the interference of leaves protruding
from seedlings in adjacent cells; and strong seedlings were
misclassified as weak seedlings due to the incorrect angle
of the plug seedlings and the low resolution of the images
in this category.

Conclusion

In order to support effective management of seedlings,
an improved convolutional neural network with an attention
mechanism was proposed in this work. The device acquisition
system was used to collect a total of 8,109 images of plug
seedlings for the model training process. Image augmentation
was used to expand the dataset during the data preparation
stage. The original EfficientNet-B7 model and the CBAM
module were thoroughly integrated to acquire feature channels
and spatial location data simultaneously. To hasten the
model’s convergence, a transfer learning technique and
the Adam optimization algorithm were also applied. The
suggested model underwent extensive training, testing, and
comparative experimentation. The proposed method in
this study reaches recognition accuracy of 97.99%, which
is better than other deep learning techniques currently
in use, according to experimental results. The method’s
competitive performance on the task of classifying the
quality of plug seedlings served as a benchmark for the use
of deep learning techniques in plug seedling classification.
Our follow-up studies aim to expand the dataset and
enhance the model’s ability to generalize in challenging
situations. Additionally, by quantizing and pruning the
model to reduce the number of parameters, and speed up the
model convergence.
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