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Extensive use of chemical control agents and fungicides typically leads to 

numerous risks to human health and the environment. Using plant extracts 

as natural substances represents a dual key for the environment and 

sustainable food production, as it reduces the input of synthetic pesticides 

into the environment and/or controls plant pathogens. For the first time, a 

Plantago lagopus ethanolic extract has been characterized and evaluated for 

its protective and curative effects against Rhizoctonia solani in tomato plants. 

The results showed that P. lagopus extract (10 μg/ml) completely inhibited 

R. solani mycelial growth in vitro. At 20 days of post fungal inoculation, the 

results demonstrated that using P. lagopus extract (100 μg/ml) in vivo enhanced 

tomato plant growth by significantly increasing shoot and root parameters in 

protective and curative treatments. Furthermore, the protective and curative 

treatments significantly reduced the disease index by 18.66 and 38.66%, 

respectively. Induction of systemic resistance with upregulation of PR-1 and 

PR-2 and a significant increase in the transcriptional levels of PR-3 and CHS 

in all P. lagopus extract-treated tomato plants were reported compared to 

untreated plants. HPLC analysis showed that the most common polyphenolic 

components detected in P. lagopus extract were rutin (74206.3 mg/kg), 

naringenin (2388.74 mg/kg), quercetin (1249.13 mg/kg), and p-hydroxybenzoic 

acid (1035.87 mg/kg). In addition, the ellagic acid (798.47 mg/kg), vanillic 

acid (752.55 mg/kg), catechol (648.89 mg/kg), cinnamic acid (332.51 mg/kg), 

ferulic acid (296.32 mg/kg), benzoic acid (295.95 mg/kg), and chlorogenic acid 

(116.63 mg/kg) were also reported. Our study is the first to show that P. lagopus 

extract can help plants fight off R. solani fungal infection. Furthermore, the 

findings imply that using the P. lagopus extract as a natural biocontrol agent 

could be a sustainable strategy to manage plant fungal diseases.
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Introduction

Tomatoes (Lycopersicon esculentum L.) are among the most 
remunerative and widely cultivated vegetables worldwide. It is 
in the family Solanaceae and has tryptophan and tomatin, 
which are very good for human health. Tomatin is a main 
component of the glycoalkaloid. Tomatoes are the first-ranked 
processed vegetable and rank second only to potatoes in the 
world growing area. According to FAOSTAT (2017), global 
tomato production is about 161.7 million metric tons with a 
value of $59 billion. Harmful microorganisms threaten crop 
production and environmental balance (Sabuquillo et  al., 
2006). Various pathogens (Rhizoctonia, Verticillium, Fusarium, 
and Pythium) are responsible for the soil-borne fungal diseases, 
damping-off, and wilt of tomato seedlings (Lucas et al., 1992; 
Kuprashvili, 1996). Rhizoctonia solani is a common soil-borne 
fungal pathogen that causes seedling damping-off and root rot 
in tomatoes (Gondal et  al., 2019). Damping-off caused by 
Rhizoctonia solani is one of the most devastating tomato 
diseases managed by fungicides. Different symptoms are 
associated with damping-off, which causes the death of some 
seedlings in the population (Channa et al., 1995). Symptoms 
start with round spots on seedlings, then stem abrasions at the 
surface level of seedlings (Channa et al., 1995; Heflish et al., 
2021). Because physiological pathogen races have become 
more resistant to fungicides and factors like fungicide residues 
and human health issues, it is hard to develop new ways to 
manage plant diseases.

The concept of biocontrol has sparked a significant 
technological, economic, and political discussion that seeks to 
promote environmentally sustainable agriculture at a lower 
cost to the environment. Accordingly, some nations have 
created a protection plan that minimizes pesticide use by 
approximately 50%. From this perspective, it appears vital to 
increase our understanding of biocontrol to improve its 
application and effectiveness. For all these reasons, research is 
making good progress toward a biological control point of view 
that could be combined with other methods to make a good 
plan for fighting plant diseases (Abo-Zaid et al., 2021). Many 
biocontrol agents are reported to fight R. solani pathogens such 
as Bacillus subtilis and Trichoderma species, which stop the 
pathogen’s growth or progress with different strategies like 
production of siderophores, cell lysis enzymes, or by direct 
intact (hyperparasitism; Wu et al., 2019; El-Benawy et al., 2020; 
Heflish et al., 2021). Also, various plant extracts are reported 
for their antifungal activity against R. solani, including a 
diverse array of bioactive chemicals that are well-known for 

their antimicrobial and antifungal activity without causing 
phytotoxic effects (Al-Askar and Rashad, 2010; Santas et al., 
2010; Abd-El-Khair and El-Gamal Nadia, 2011; Hamza et al., 
2016; Koka et al., 2017; Parveen et al., 2017). The main reasons 
for using plant extracts or essential oils as antifungal agents are 
that they come from nature, and pathogens are less likely to 
become resistant to them. Since plant products are easy to turn 
into common organic materials, they may have less of an effect 
on the physiological processes of plants and less of an impact 
on the environment than their synthetic alternatives 
(eco-friend; Nazzaro et al., 2017; Abdelkhalek et al., 2021).

Many plants and their extracts have been evaluated for their 
antimycotic activities. They are known to have good antifungal 
activities against plant pathogenic fungi (Shuping and Eloff, 2017), 
such as Plantago plants which have been used as anti-inflammatory 
and asthmatic medications in Asia and Europe (Nishibe et al., 
1995). Plantago lanceolata L. extract was used as an antifungal 
against fungi such as Alternaria alternata, Mucor piriformis, and 
Penicillium expansum (Parveen et al., 2014). Also, Plantago extract 
was used as an inhibitor for spore germination of the 
Colletotrichum gloeosporioides Penz, which is the main causal 
agent of blister spot disease in coffee trees (Silva et al., 2008). 
Moreover, (Klironomos, 2003) postulated that P. lanceolata 
protects the treated plants against fungal infection. Four iridoid 
glucosides, i.e., plantamajoside, luteolin-7-O-monoglucoside, 
chlorogenic acid, and rosmarinic acid, were isolated from the 
aerial parts of P. lagopus (Velázquez-Fiz et al., 2000). Moreover, 
p-hydroxybenzoic, chlorogenic, gallic, and vanillic acids or 
apigenin, luteolin, and luteolin-7-O-glucoside were common 
compounds between P. altissima and P. lanceolata extracts (Beara 
et al., 2012).

In addition, the plant extracts contain various chemicals, 
including plant hormones, minerals, antioxidants, and 
osmoprotectants, which effectively boost the defense mechanisms 
(antioxidant enzymes) of plants against environmental challenges 
and play a crucial role in promoting plant growth (Desoky et al., 
2019). These extracts possess protective enzymes and activate 
pathogenesis-related proteins, thereby inhibiting the progression 
of the disease. It was reported that these extracts might stop the 
spread of disease by activating the body’s defenses and causing 
systemic resistance (Prasannath, 2017). Recognizing the 
importance of screening and identifying new plant extracts with 
strong antifungal activities for agricultural applications, 
we hypothesized that P. lagopus extract can fight off the R. solani 
pathogen in vitro, improve tomato growth parameters in vivo, 
and could induce resistance against Rhizoctonia root rot disease. 
To test this hypothesis, we  evaluated the growth inhibitory 
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activity of P. lagopus ethanolic extract against R. solani, its effects 
on growth parameters, total chlorophyll, phenolic content, and 
defense-related gene expression levels, including PR-1, PR-2, 
PR-3, and CHS in tomato plants. Also, use HPLC to figure out the 
P. lagopus extract’s phenolic capacity and its main 
phytochemical components.

Materials and methods

Solvents and reagents

Phenolic standards, namely, catechin, catechol, syringic 
acid, chlorogenic acid, cinnamic acid, ellagic acid, kaempferol, 
ferulic acid, gallic acid, rutin, caffeic acid, naringenin, benzoic 
acid, o-coumaric acid, p-hydroxybenzoic acid, pyrogallol, 
p-coumaric acid, quercetin, quinol, rosmarinic acid, and 
vanillic acid were bought from Merck KGaA (Darmstadt, 
Germany). The purities of standards were up to 99%. The 
solvents used were of analytical grade, dimethylsulfoxide 
(DMSO; Alfa Aesar GmbH & Co KG, Massachusetts, 
United  States), orthophosphoric acid (H3PO4), ethanol, 
methanol, and acetonitrile HPLC-grade (Fisher Scientific 
International, Inc., Hampton, New Hampshire, United States).

Fungus isolation and identification

Tomato samples with root rot disease-like symptoms were 
gathered from El-Beheira Governorate, Egypt. The roots of the 
symptomatic plants were cut and washed with running tap water, 
then cleaned and sterilized several times before drying in laminar 
flow. PDA media were used in the isolation and cultivation 
process. The fungus purification was performed with the hyphal 
tip procedure (Dhingra and Sinclair, 2017). According to the 
previous descriptions (Alexopoulos et al., 1996), the fungus was 
identified based on morphological and microscopic characteristics. 
Moreover, molecular identification processes were performed 
using ITS1 and ITS4 primers (Table 1). PCR reaction conditions 
were done as previously described (Heflish et al., 2021). The PCR 
product was electrophoresed on agarose gel, purified, and 
subjected to sequencing. The obtained nucleotide sequences were 
aligned using MEGA X software and compared to other related 
organisms using NCBI-BLAST. After that, the fungus sequence 
was subjected to the NCBI-GenBank submission portal to obtain 
the accession number.

Preparation of Plantago lagopus extract

Plantago lagopus plants, gathered from the northwest of Egypt, 
were left to dry at room temperature (25°C) for a week and crushed 
to a fine powder using a grinder mill (Moulinex AR1044, France). 
Approximately 100 g of the dried powder was left in 200 ml of 95% 

ethanol for 4 days (Abdelkhalek et al., 2021). The alcoholic mixture 
was filtered through Whatman filter paper No. 1, and the obtained 
extract was evaporated and concentrated by a rotary evaporator 
until all the ethanol was removed. The P. lagopus extract was 
reserved in a brown bottle at 4°C until use. In the in vitro 
experiment, the extract was diluted with DMSO to obtain different 
concentrations (μg/mL). In the in vivo experiment, the extract was 
prepared in 0.1% Tween® 80 (w/v) to get a 100 μg/ml concentration.

Antioxidant activity of Plantago lagopus 
extract

The free radical scavenging activity was measured according 
to previously described methods (Shimada et  al., 1992). A 
3.94 mg of DPPH (1,1-diphenyl-2-picrylhydrazyl) was diluted to 
0.1 ml in 100 ml of methanol. A 1 ml of diluted DPPH was mixed 
with 3 ml of each sample with different concentrations (250, 125, 
62.5, 31.25, and 15.62 μg/ml). The mixture was well mixed by 
vigorous shaking and stored at 25°C for 30 min. Each 
combination’s absorbance value (AV) was spotted at 517 nm. 
Inhibition of DPPH was calculated as I Ao As Ao% /= − ×( ){ } 100 , 
where As is the sample AV and Ao is the control AV reaction 
(contains all reagents except for the sample).

TABLE 1 HPLC conditions and operations used to detect the phenolic 
and flavonoid compounds.

HPLC 
conditions

Phenolic 
compounds

Flavonoid 
compounds

References

Instrument Agilent 1,260 Infinity 

HPLC is equipped 

with an Infinity II 

analytical Quaternary 

pump and a column 

Zorbax Eclipse plus 

C18 

(100 mm × 4.6 mm 

i.d.) with a particle 

size of 3.5 μm 

(Agilent, Santa Clara, 

CA, United States)

Smart line (Knauer, 

Germany) equipped 

with a binary pump 

and a Zorbax Eclipse 

plus C18 (column 

150 mm × 4.6 mm 

i.d.) with a particle 

size of 5 μm (Agilent 

Technologies, Santa 

Clara, CA, 

United States)

Al-Huqail et al. 

(2019); 

Abdelkhalek 

et al. (2020a); 

Ashmawy et al. 

(2020a)

Temperature 

of operation

30°C 35°C

Separation 

elution 

gradient

A: HPLC grade water 

0.2% H3PO4 (v/v)

B: Methanol

C: Acetonitrile

Flow rate 1.0 ml/min

Methanol: H2O with 

0.5%

H3PO4 (50:50)

Flow rate 0.7 ml/min

Injection 

volume

5 μl 5 μl

Detector Variable wavelength 

detector (VWD) at 

λ = 284 nm

UV absorption at 

λ = 273 nm
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HPLC analysis of polyphenolic 
components from the plant extract

The polyphenolic components of ethanolic P. lagopus plant 
extract were determined using HPLC-Agilent. HPLC conditions 
and program properties are illustrated in Table 1.

Quantification of HPLC-detected 
compounds

Quantification was performed by the standard external 
method. The standard stock solutions (1–25 mg/l). A quantitative 
report is generated by combining known data from a calibration 
standard and unknown data from the sample. The UV detector 
can quantify a minimum concentration of 0.1 g/ml.

The antifungal activity of Plantago 
lagopus extract against root rot fungus in 
vitro

Using the food poisoning technique, P. lagopus extract was 
tested for its efficiency against the root rot pathogen (Kumar 
et al., 2008). Different concentrations of P. lagopus extract were 
prepared in final (2, 4, 6, 8, and 10) μg/mL by emerging in PDA 
plates (90 mm diameter) compared with fungicide (Fluconazole 
2.5 μg/ml), and the negative control (PDA plates without 
any additives). Fungus discs were cut from the periphery of 
6 days old cultures, inoculated in the center of the treated 
poured Petri dishes, and then incubated at 25°C for a week. 
Three replicates were used for each treatment. The efficacy of 
P. lagopus extract on the fungus linear growth was measured. The 
growth ( ) ( )inhibition was calculated as % C0 Tx / C0 100= − ×    
(Dissanayake, 2014), where C0 represents the length of the 
fungus growth on the control PDA plates and Tx represents the 
fungus growth in the plant extract treatment.

Greenhouse experimental design and 
growth parameters assessment

The ability of P. lagopus extract to reduce R. solani and 
promote tomato growth was tested in a pot trial under greenhouse 
climate conditions (28 ± 2°C; 75 ± 5%; 14 h light/10 h dark). Each 
pot (20 ×  13.2 ×  12.2 cm) was filled with sterilized soil and 
planted with 4-week-old tomato seedlings of the Peto 86 variety. 
Five days after transplanting, the plant extract of Plantago was 
used with a 100 μg/ml concentration and added to the potting soil 
(20 ml/pot). R. solani inoculum was prepared by inoculating 
pre-sterilized autoclaved moistened barley grains (500 g) with 2 
plugs of R. solani (0.5 cm in diameter) and incubating for 1 week 
at 25 ± 2°C. By the end of incubation, the barley inoculum was 
air-dried, milled to a fine powder, and applied to the pots (5 g 

inoculum/kg) where the inoculum was introduced close to the 
root pan and crown of the plant was going to be  placed 
(Montealegre et al., 2010). The treatments were distributed in five 
replicates. (1). a protective treatment in which plant extract was 
added 2 days before R. solani inoculation, (2). a curative treatment 
in which R. solani was inoculated 2 days before plant extract 
application, (3). a Rhizoctonia treatment in which tomato plants 
were only inoculated with R. solani, and (4). a plant extract 
treatment in which tomato plants were only treated with P. lagopus 
extract. The last treatment was the control treatment, in which 
tomato plants were inoculated with PDA-free microorganisms. 
The plants were carefully uprooted after 1 month of transplanting 
for root rot severity screening according to a 0–5 scale (Abdeljalil 
et al., 2016). The data were calculated as disease index percentage 

The uprooted tomato plants were also used to measure the 
effectiveness of the P. lagopus extract on different tomato growth 
parameters, such as plant height (cm), root length (cm), shoot 
fresh and dry weight (g), root fresh and dry weight (g), and the 
total chlorophyll content (SPAD value). Furthermore, tomato leaf 
samples were collected from each treatment to study the activity 
of the defense-related genes and total phenolic components in 
response to different treatments under pot trials. Tomato leaves 
were collected 20 days of post-inoculation (dpi) with R. solani.

Total phenolic content in tomato plants

Folin–Ciocalteu (FC) method was used to measure the TPC 
values of tomato extracts. Tomato extract (100 μl, 1 mg/ml) was 
combined with 750 μl of FC (diluted to 1:10 in water). The mixture 
was left at 25°C for 5 min, then 750 μl of sodium carbonate was 
added to the mix and gently shaken. After 90 min, the absorbance 
value of the blend was measured at 725 nm. A calibration curve 
was created using a standard reference (a gallic acid concentration 
range of 0.01 to 0.05 mg/ml). As described previously (Velioglu 
et al., 1998), TPC was determined as gallic acid equivalents (μg 
GAE/100 g extract).

Defense-related genes

RNA extraction and cDNA synthesis
Plant total RNA was manually extracted from about 100 mg of 

tomato leaves collected at 20 dpi using a modified guanidium 
isothiocyanate (GITC) method (Abdelkhalek and Sanan-Mishra, 
2019). SPECTROstar Nano was used to determine the purity and 
concentration of extracted RNA (BMG Labtech, Ortenberg, 
Germany). As previously described (AbdEl-Rahim et al., 2010; 
Abdelkhalek et al., 2019), the isolated RNA was utilized to generate 
cDNA using a reverse transcriptase (RT) enzyme. In an Eppendorf 
cycler (Hamburg, Germany), the RT reaction was conducted at 
42°C for 1 h and then deactivated at 80°C for 5 min. The RT-PCR 
product was stored at −20°C until employed as a qRT-PCR template.

( ) ( ) ( )[ ]DI % Number of infected plants / Total plants number 100.= ×
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qRT-PCR assay and data analysis
The expression levels of three tomato pathogenesis-related 

genes (PR-1, PR-2, and PR-3) and one polyphenolic gene (CHS) 
were analyzed using the qPCR and normalized to the reference 
β-actin gene. Primer nucleotide sequences used in this 
investigation are listed in Table 2. For each biological sample, the 
experiments were repeated three times. As previously described 
(Abdelkhalek et  al., 2018), qRT-PCR was carried out using a 
QIAGEN Rotor-Gene 6,000 (ABI System, United  States) with 
Thermo SYBR Green Mix (Foster, CA, USA). The relative 
expression level of the tested gene was calculated according to the 
2−ΔΔCT method (Livak and Schmittgen, 2001).

Statistical analysis

The data were analyzed using CoStat software, and significant 
differences were estimated using Tukey’s honest significant 
differences technique (H.S.D.) at a p  ≤ 0.05, with standard 
deviation (SD) presented as a column bar or values. Upregulation 
of a gene means that the relative expression levels are greater than 
1, whereas downregulation means values less than 1.

Results

Identification of Rhizoctonia solani 
fungus

Following accepted taxonomic phenotypic standards, the 
morphological study of the isolated Rhizoctonia isolate from tomato 
plant roots was compatible with Rhizoctonia genus characteristics. 
The amplified ITS fragment partial sequence was obtained, then 
submitted to GenBank, and was confirmed to be Rhizoctonia solani 

strain Rs34 and assigned the accession number MW664425. The 
alignment of the received sequence of R. solani Rs34 with the other 
sequences downloaded from the GenBank database indicated that 
the genetic homogeneity nearest to 99% of the ITS partial sequence 
was with R. solani (MT408040, MT108198, and MZ754369) and 
isolates of Rhizoctonia sp. (MK084681 and MN106353) Figure 1.

Effect of Plantago lagopus extract on 
mycelial growth of Rhizoctonia solani

The growth reductions of R. solani in response to the tested 
plant extracts are presented in Table 3. Radial growth of R. solani 
decreased significantly with an increase in the concentration of 
plant extracts from 2 to 10 μg/ml. It was found from the results 
that the extract of Plantago lagopus caused 100% inhibition of 
R. solani mycelial growth at 10 μg/ml. At the same time, there was 
no effect on R. solani mycelial growth at the dose of 2 μg/ml 
compared with antifungal fungicide (Fluconazole, 2.5 μg/ml).

Effect of Plantago lagopus extract on 
Rhizoctonia solani root rot disease

The extract of P. lagopus was tested for its efficacy on R. solani 
under greenhouse growth conditions. The disease index (DI%) was 
estimated according to the root browning symptoms and their 
extent levels (using a 0–5 scale) based on each treatment (Figure 2). 
The plant extract substantially reduced the DI% compared to the 
untreated control. P. lagopus extract application before inoculation 
with R. solani (protective treatment) showed a significant reduction 
of the percentage of disease index (18.66%), followed by the curative 
treatment (38.66%; Figure 2). DI% was 86.66% in the Rhizoctonia 
treatment and 0.0% in the control and plant extract treatments.

Effect of Plantago lagopus extract on 
tomato growth parameters

In the greenhouse experiment, both protective and curative 
treatments of P. lagopus extract showed a significant enhancement 
(p ≤ 0.05) in the growth of tomato plants (Table 4). Moreover, the 
influence on the height was substantial due to the plant extract 
treatment. It was recorded that plant height was 36.60 cm in plant 
extract treatment, followed by protective treatment, which recorded 
36.20 cm. Compared to Rhizoctonia treatment (5.2 cm), the plant 
extract and protective and curative treatments significantly increased 
root length by 21.30, 21.10, and 20.70 cm, respectively (Table 4). The 
plant extract, protective, and curative treatments increased shoot-
fresh weight (14.12, 13.78, and 12.24 g, respectively) and root-fresh 
weight (5.96, 5.70, and 5.32 g, respectively) more than the Rhizoctonia 
or control treatments. In addition, non-significant results in all 
treatments were noticed for the dry shoot weights compared to 
control. The root dry weight of tomato plants changed after being 
treated with the plant extract, protective, and curative treatments 
compared with control (Table 4). The plant extract treatment was 
more effective in increasing chlorophyll content (38.88, SPAD value), 

TABLE 2 Primers used in this investigation.

Gene Abbreviation Nucleotide sequences

Internal 

transcribed 

spacer

ITS ITS1-TCCG TAG GTG AACCT GCGG

ITS4-TCCT CCGC TTAT TGA TATGC

Pathogenesis 

related 

protein-1

PR-1 For-GT TCCT CCT TGC CAC CTTC

Rev-TATGC ACCC CCA GC ATAGTT

Endoglucanase PR-2 For-TATA GCC GTTG GAA ACG AAG

Rev-CAACT TGC CATC AC ATTCTG

Chitinase PR-3 For-ATGG AGCA TTG TGCC CTAAC

Rev-TCCTA CCA ACA TCAC CAC CA

Chalcone 

synthase

CHS For-CAC CGTG GAG GAG TA TC GTA 

AGGC

Rev-TGA TCA ACA CAGTT GGAA GGCG

β-actin β-actin For-TGG CAT ACAA AGAC AGGA CAG 

CCT

Rev-ACT CA ATC CCA AGGC CA ACA 

GAGA
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followed by the protective and curative treatments, with significant 
SPAD values of 36.58 and 34.46, respectively, compared with the 
control (37.22) and Rhizoctonia treatment (27.64) Figure 3.

Transcriptional levels of defense-related 
genes

At 20 dpi, the inhibitory effects and relative transcriptional levels 
of four defense-related genes (PR-1, PR-2, PR-3, and CHS) were 

assessed. The antifungal activity of P. lagopus against fungal infection 
was validated by qPCR data, which showed a considerable elevation 
of defense genes inside the treated plants (Figure 4). Compared to 

FIGURE 1

The phylogenetic cladogram shows the relationship of the Rhizoctonia solani Rs34 among closely related R. solani sequences. The GenBank 
alignment was based on partial inter transcripted spacer region (ITS) sequences.

TABLE 3 In vitro growth inhibition (%) of Rhizoctonia solani in 
response to Plantago lagopus extract.

Treatment (μg/mL) Growth inhibition %

Negative control 0.00

2 0.00

4 38.07

6 88.56

8 89.78

10 100.00

Fungicide (Fluconazole, 2.5 μg/ml) 100.00

FIGURE 2

Effect of Plantago lagopus extract on disease index (DI%) of 
tomato root rot caused by Rhizoctonia solani under 
greenhouse conditions. The different letters (a–d) represent 
significant differences.

https://doi.org/10.3389/fpls.2022.966929
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Behiry et al. 10.3389/fpls.2022.966929

Frontiers in Plant Science 07 frontiersin.org

the controls, a significant upregulation of PR-1 was observed in all 
plant extract treatments, while non-treated plants showed a 
downregulation. The highest relative expression level (1.81-fold) was 
reported in plant extract treatment, followed by protective and 
curative treatments with expression levels of 1.39- and 1.26-fold, 
respectively. The expression level of PR-2 showed upregulation in all 
plants treated with plant extract (Figure 4). The most outstanding 
transcriptional level (2.39-fold) was reported in curative treatment, 
followed by protective treatment with a relative transcriptional level 
of 2.12-fold compared to the control. On the other hand, plants in 
Rhizoctonia treatment showed a downregulation with a relative 
transcriptional level of 0.74-fold compared to the control (Figure 4).

Regarding PR-3 expression, a significant upregulation was 
shown with all treatments compared to untreated plants 
(Figure 4). The highest expression level (2.85-fold) was observed 
with plant extract-only treatment, followed by protective, curative, 
and non-treated with relative transcriptional levels of 2.43-, 2.17-, 
and 1.49-fold, respectively. The PR-3 gene produces the chitinase 
enzyme, which hydrolyzes the chitin and prevents plants from 
fungi invasions (Abdelkhalek et al., 2021). The PR-3 gene was 
upregulated in tomato plants infected with Rhizoctonia or treated 
with P. lagopus or the curative or protective treatments in the 
current investigation. P. lagopus-treated plants had the highest 

relative expression. The CHS gene showed an upregulated 
expression level in all treatments compared to untreated plants 
(control). The expression level of curative treatment exhibited the 
greatest level (2.77-fold), followed by protective, plant extract, and 
non-treated plants treatments with 1.66-, 1.62-, and 1.42-fold 
higher expression levels than control, respectively (Figure 4).

TPC accumulation in treated tomato 
plants

The phenolic concentration in the protective treatment was about 
10-fold higher than in control, while in P. lagopus extract or R. solani 
treatments, it was 5.97- and 5.82-fold higher (Table 5). Additionally, 
in the curative treatment, the phenolic concentration was lower than 
those found in all treatments except the control (0.039 μg GAE/100 g) 
but still higher, by about 4.1-fold, than control plants.

Antioxidant activity of the Plantago 
lagopus extract

The DPPH method was used to determine the antioxidant 
potential of P. lagopus extract to act as a free radical scavenger. The 
antioxidant activity value of the extract was 80.23 μg/ml compared 
with the control ascorbic acid (5.04 μg/ml).

HPLC analysis of Plantago lagopus extract

HPLC was used to identify the P. lagopus extract compounds. 
The identified chemical compounds are shown in Figure 5 and 
Table  6. The main compounds were determined as mg/kg: 
rutin (74206.3), naringenin (2388.74), quercetin (1249.13), 
p-hydroxybenzoic acid (1035.87), ellagic acid (798.47), vanillic acid 
(752.55), catechol (648.89), cinnamic acid (332.51), ferulic acid 
(296.32), benzoic acid (295.95), and chlorogenic acid (116.63).

Discussion

Rhizoctonia solani is a widespread fungus disease in 
agricultural soils and a major factor impacting the germination of 

TABLE 4 Effect of treatment with Plantago lagopus extract on growth parameters of tomato plants.

Treatments Plant height 
(cm)

Root length 
(cm)

Shoot fresh 
weight (g)

Root fresh 
weight (g)

Shoot dry 
weight (g)

Root dry weight 
(g)

Control 34.40 ± 5.31 a 08.90 ± 2.30 b 07.15 ± 2.49 b 1.78 ± 0.67 b 3.20 ± 0.73 1.20 ± 0.22 b

Plant Extract 36.60 ± 2.07 a 21.30 ± 3.17 a 14.12 ± 2.64 a 5.96 ± 1.35 a 3.38 ± 0.34 2.30 ± 0.12 a

Curative 35.00 ± 5.87 a 20.70 ± 9.05 a 12.24 ± 4.38 a 5.32 ± 1.54 a 3.20 ± 0.49 2.42 ± 0.16 a

Protective 36.20 ± 3.70 a 21.10 ± 2.24 a 13.78 ± 2.86 a 5.70 ± 0.44 a 3.10 ± 0.29 2.40 ± 0.20 a

Rhizoctonia 25.40 ± 8.79 b 05.20 ± 0.57 b 06.12 ± 3.01 b 1.65 ± 0.57 b 2.82 ± 0.69 1.28 ± 0.30 b

p-Value 0.0287 <0.0001 0.0009 <0.0001 0.5910ns <0.0001

FIGURE 3

Effect of all treatments on total chlorophyll content (SPAD 
value) in tomato plants as affected by root rot disease under 
greenhouse conditions. The different letters (a–e) represent 
significant differences.
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many plant seedlings causing damping-off symptoms (El-Kazzaz 
et al., 2022). Chemical fungicides are routinely and effectively used 
to control Rhizoctonia root-rot. However, their application in the 
field might not always be desired. Considering the disadvantages 
of chemical control of plant diseases, using plant extracts to 
combat plant diseases is gaining prominence (Abdelkhalek et al., 
2020b). Many plant materials, like plant extracts, essential oils, 
gum, resins, etc., have shown biological activity in vitro and in vivo 
and are used as biofungicides. In the current study, the antifungal 

activities of the ethanolic extract of P. lagopus against R. solani were 
evaluated on tomato plants under greenhouse conditions for the 
first time. Moreover, its effect on the tomato growth parameters, 
chlorophyll content, phenolic content, and defense-related gene 
expression was also assessed. Furthermore, the phytochemical 
components of the P. lagopus extract were identified using HPLC.

The morphological study of Rhizoctonia isolates from tomato 
plant roots was compatible with Rhizoctonia genus characteristics 
as it is an anamorphic mycelial septate fungus that did not produce 
asexual spores (Heflish et  al., 2021). The ITS-PCR reaction 
confirmed the morphological identification to be R. solani strain 
Rs34. As stated before, pesticides, biological control, and azoles 
fungicides effectively reduce agricultural losses caused by fungal 
diseases (Hof, 2001; Singh et al., 2016). Our results revealed that 
the growth of R. solani was reduced significantly in response to the 
Plantago lagopus extract from 2 to 10 μg/ml compared to 
Fluconazole (positive control). While Fluconazole had the better 
results in our study, it is often used in commercial rapid antifungal 
susceptibility testing (Rex et al., 1993). It is one of the azole groups 
that had higher minimal inhibitory concentrations (MICs) against 
most Fusarium species (Al-Hatmi et al., 2015), and 90% of Candida 

FIGURE 4

A histogram shows the relative expression levels of the four genes PR-1, PR-2, PR-3, and CHS at 20 dpi of plant extract treatments (100 μg/ml) in 
different treatments compared with control. The different letters (a–e) represent significant differences.

TABLE 5 Total phenolic components activities of all treatments used 
in this study.

Treatment Total Phenolic compounds 
(μg GAE/100 g) ± SD

Control 0.039 ± 0.009 d

Plant extract 0.233 ± 0.010 b

Protective 0.388 ± 0.008 a

Curative 0.160 ± 0.005 c

Rhizoctonia 0.227 ± 0.020 b

P-value <0.0001
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albicans isolates had Fluconazole MICs of less than 1 μg/ml (Rex 
et al., 1995). In some conditions, Fluconazole has been proven 
ineffective against yeasts other than C. albicans (Rex et al., 1995).

The antifungal effect of the P. lagopus extract in vitro against 
R. solani in this study agreed with our recent research results. The 
ethanolic Coccoloba uvifera extract inhibited the development of 
R. solani, Botrytis cinerea, and Fusarium culmorum by 64.4, 100, and 
38.5%, respectively (Ashmawy et al., 2020b). Also, the results are 
consistent with those documented by different authors (Deena and 
Thoppil, 2000; Valarini et al., 2003). They discovered that extracts 
of lantana, garlic, eucalyptus, and lemongrass have an antifungal 
effect on soil fungi mycelial growth. Besides, the n-hexane extract 
of Eucalyptus camaldulensis demonstrated the same high antifungal 
property against F. culmorum and R. solani, especially at 3% (Salem 
et al., 2019). Similarly, wood samples treated with Acacia saligna 
water extract inhibited the growth of F. culmorum and R. solani 
mycelium (Al-Huqail et al., 2019). Meanwhile, Plantago spp. such 
as P. major had antifungal action against all phytopathogenic fungi 
examined with 2000 μg/ml extract. The highest growth inhibition 
(32.2%) was observed against Phytophthora cinnamomi, followed 
by Colletotrichum gloeosporioides (25.7%), C. godetiae, and 
C. nymphaeae (21.1%; Ferreira and Oliveira, 2020). The ethyl 

FIGURE 5

HPLC chromatograms of the phytochemical compounds identified in Plantago lagopus extract.

TABLE 6 Phenolic and flavonoid components identified in Plantago 
lagopus extract.

Components RT (min.) Amount (mg/kg)

Quinol 3.116 91.3

Gallic acid 3.662 23.68

Catechol 5.496 648.89

p-Hydroxy benzoic acid 7.840 1035.87

Catechin 8.941 27.01

Chlorogenic acid 9.338 116.63

Vanillic acid 9.650 752.55

Caffeic acid 10.087 20.48

Syringic acid 10.335 42.41

p-Coumaric acid 13.076 65.19

Benzoic acid 14.438 295.95

Ferulic acid 15.373 296.32

Rutin 16.470 74206.3

Ellagic acid 16.876 798.47

o-Coumaric acid 17.227 74.06

Cinnamic acid 20.404 332.51

Quercetin 21.752 1249.13

Naringenin 22.555 2388.74
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acetate fraction of Plantago sp. was shown to be the most potent in 
vitro against Staphylococcus aureus and Pseudomonas aeruginosa 
bacteria (Karima et al., 2015), while Klebsiella pneumoniae, Proteus 
mirabilis, and Salmonella typhimurium had the lowest antibacterial 
activity (inhibition zone, 16.7 and 13.3 mm; Karima et al., 2015).

Under greenhouse growth conditions, the extract of P. lagopus 
was tested for its efficacy on R. solani and revealed a significant 
reduction in disease symptoms. The same results could be concluded 
from the study of Al-Askar and Rashad (Al-Askar and Rashad, 
2010). They observed the efficacy of clove extract on pea root-rot 
disease incidence in a greenhouse experiment as the clove extract at 
4% concentration, and a chemical fungicide showed a considerable 
improvement in the proportion of plants that survived (40 and 48%, 
respectively) and a significant decrease in disease incidence. 
Furthermore, our findings were consistent with a previous field 
experiment (Abd-El-Khair and El-Gamal Nadia, 2011). They 
reported that using chilli, lantana, and lemongrass extracts revealed 
an incidence reduction of R. solani damping-off disease. Even 
though some researchers who focused only on aqueous extracts 
found that these extracts had antifungal efficacy against specific 
fungi (Bhardwaj, 2012), other studies have compared the 
antimicrobial activities of alcoholic and aqueous extracts and noticed 
that the alcoholic is better than aqueous extracts (Ambikapathy et al., 
2011; Ashraf et al., 2011; Behbahani et al., 2013; Jat and Agalave, 
2013; Moorthy et al., 2013). In the greenhouse experiment, both 
protective and curative treatments of P. lagopus extract showed a 
significant enhancement (p ≤ 0.05) in the growth of tomato plants. 
Several studies had the same effective results that Moringa oleifera 
leaf extract increased tomato growth and yield (Culver et al., 2012), 
common bean growth and yield (Mvumi et al., 2013), and some 
Eruca vesicaria growth parameters and photosynthesis rate (Abdalla, 
2014). Blueberry fruits, red grape, and hawthorn leaf extracts have 
improved maize growth, total chlorophyll content, and roots biomass 
(Ertani et al., 2016). Also, the secondary metabolites, including a 
wide range of compounds such as flavonoids, terpenoids, alkaloids, 
and phenolics, have bioactivity as stimulants or inhibitors of plant 
growth, as reported by many authors (James and Dubery, 2011; 
Singh et al., 2012; Biradar and Rachetti, 2013).

The relative transcriptional levels of four defense-related genes 
(PR-1, PR-2, PR-3, and CHS) were assessed at 20 dpi, which 
showed a considerable regulation of the four defense genes inside 
the treated plants. PR-1 is a crucial regulator of SAR and may serve 
as a marker for early plant defense responses (Hoegen et al., 2002), 
and its importance in plant immunity has been recognized for over 
two decades. The accumulation and expression of PR-1, a SA 
marker gene, are linked to the activation of SA in response to 
pathogens (D’Maris Amick Dempsey et al., 2011; Abo-Zaid et al., 
2021). Compared to the controls, a significant upregulation of PR-1 
was observed in all plant extract treatments, while non-treated 
plants showed a downregulation. This is consistent with previous 
findings of many authors (Su et al., 2013; Chandrasekaran and 
Chun, 2016), indicating that increased PR expression aids 
resistance against hemibiotrophic and necrotrophic pathogen 
infections. As a result, it is possible that the P. lagopus can modify 

the plant’s response, increase resistance, and prevent R. solani from 
suppressing defense genes. As a result of sterol extraction from 
fungal cell membranes, sterol-binding PR1 proteins limit fungal 
cell proliferation (Schneiter and Di Pietro, 2013), while PR2-1,3-
glucanases, combined with PR-3-chitinases, lysis the fungus wall 
(Balasubramanian et al., 2012). The transcriptional levels of PR-2 
were upregulated in the protective and curative treatments and 
downregulated in Rhizoctonia treatment compared to the control. 
Several reports have confirmed that PR-2 proteins are engaged in 
various physiological plant defense processes primarily induced by 
SAR inducers like SA (Abdelkhalek, 2019). The fungal secondary 
metabolites may have boosted PR-2 activity in P. lagopus extract-
treated plants (Druzhinina et al., 2011). This conclusion aligns 
with recent research that shows microbial elicitors enhance PR-2 
mRNA in plants (Roylawar et al., 2015). Increased PR-2 activity in 
the cell wall has been shown to enhance the number of 
oligosaccharides produced, which elicits plant defense systems.

The PR-3 gene was upregulated in tomato plants infected with 
Rhizoctonia or treated with P. lagopus or the curative or protective 
treatments in the current investigation. P. lagopus -treated plants 
had the highest relative expression. The PR-3 gene produces the 
chitinase enzyme, which hydrolyzes the chitin and prevents plants 
from fungi invasions (Abdelkhalek et al., 2021). The findings show 
that the PR-3 gene helps to strengthen plant resistance to fungal 
attacks. The application of P. lagopus increases the activation of 
multiple defensin genes, including PR-3, in leaf tissue, resulting in 
increased pathogen resistance (Heflish et al., 2021). The CHS gene 
showed an upregulated expression level in all treatments compared 
to control. CHS is a required precursor or first enzyme in plant 
flavonoids biosynthesis, converting p-coumaroyl CoA to 
naringenin chalcones (Abdelkhalek et al., 2020b). Surprisingly, 
P. lagopus extract, curative and protective treatments, resulted in 
the highest induction of CHS, which is necessary for flavonoid 
production (Marais et  al., 2006; Abdelkhalek et  al., 2021). In 
previous investigations, CHS overexpression was observed to 
produce large quantities of flavonoids with broad antifungal action 
against various plant pathogens (Martínez et al., 2017; Abdelkhalek 
et al., 2020a). As a result, treating tomato plants with P. lagopus as 
a protective or curative treatment may increase the quantity of 
flavonoid compounds. As a result, we believe that the P. lagopus 
extract contains elicitor metabolite chemicals that can activate SAR 
and boost plant resistance to fungal infection. Following pathogen 
exposure, the activation of defense-related genes has been 
described in numerous plant-pathogen interactions in the primed 
state (Ahn et al., 2007; Niu et al., 2011). This is also apparent in ISR 
against hemibiotrophic and necrotrophic diseases, as evidenced by 
Harpophora oryzae-primed defense genes in the rice-Magnaporthe 
oryzae interaction (Su et al., 2013) and B. subtilis-induced PR genes 
in tomato challenged with Pectobacterium carotovorum 
(Chandrasekaran and Chun, 2016). However, P. lagopus could 
be  used to combat R. solani infections as a biocontrol agent. 
However, further research is needed for future field uses.

Plants treated with plant extract result in the buildup of 
phenolic components, linked to reactive metabolic defense 
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against infectious pathogens. Various studies reported that 
fungal or bacterial pathogen infections caused a potent increase 
in total phenolic content (Martin et al., 2009; Petkovsek et al., 
2011; Rusjan et  al., 2012). Consequently, polyphenolic 
compounds that accumulate in plant extract-treated plants 
potentially act as proton donors, reducing oxidative injury to 
root cells during pathogen infections (Singh et  al., 2011). 
Therefore, the increase in TPC as a plant response to the plant 
extract application in protective treatment alone would 
be  associated with protection against plant pathogens in 
tomato plants. These differences in TPC are caused by the 
phenylpropanoid pathway regulation, as cited (Mikulic-
Petkovsek et al., 2014). Our results coincided with numerous 
studies showing that Plantago species had antioxidant activity. 
Few studies showed high antioxidant activity for Plantago spp. 
(Çoban et al., 2003; Gálvez et al., 2005; Beara et al., 2009), and 
P. major (Samuelsen, 2000; Chiang et al., 2002). In addition, a 
study on the antioxidant activity of P. lanceolate in different 
extracts showed that ethanolic extracts had the highest DPPH 
free radical scavenging capacity (Miser-Salihoglu et al., 2013).

The identified chemical compounds in HPLC analysis revealed 
the existence of many polyphenolic compounds such as rutin, 
naringenin, quercetin, p-hydroxybenzoic acid, ellagic acid, vanillic 
acid, catechol, cinnamic acid, ferulic acid, benzoic acid, and 
chlorogenic acid. Many polyphenols have antimicrobial, antiviral, 
and antioxidant properties, including ferulic acid, quercetin, ellagic 
acid, chlorogenic acid, catechins, gallic acid, caffeic acid, and 
myricetin (Shaygannia et al., 2016; Mani et al., 2020). According to 
our findings, the polyphenolic compounds may act as elicitor 
molecules and play essential roles in SAR. P. lanceolata plants are rich 
in polyphenolic compounds such as syringic acid, cinnamic acid, 
resveratrol, caffeic acid, ferulic acid, rutin, and quercetin. In contrast, 
in P. major plants, more flavonoids, iridoid glycosides, triterpene 
acids, caffeic acid, chlorogenic acid, vanillic acid, and p-coumaric 
acid were found in their HPLC-UV analysis (Samuelsen, 2000). Our 
earlier research has revealed a broad spectrum of phenolic chemicals 
responsible for various medicinal plants’ antioxidant and 
antibacterial activities (Mohamed et al., 2020). However, P. lagopus 
could be used to combat R. solani infections as a biocontrol agent. 
However, further research is needed for future field uses.

Conclusion

In this study, the application of the P. lagopus extract 
(100 μg/ml) boosted tomato plant growth, inducing systemic 
resistance and decreasing root rot disease caused by R. solani 
fungus. Based on our findings, the reduction in disease 
incidence was seen in P. lagopus-treated plants compared to 
control plants, along with upregulation increases of PR-1 and 
PR-2 and a significant increase in the transcriptional levels of 
PR-3 and CHS genes at 20 dpi. P. lagopus extract-HPLC analysis 
indicated that the main compounds were rutin, naringenin, 
quercetin, p-hydroxybenzoic acid, ellagic acid, vanillic acid, 

catechol, cinnamic acid, ferulic acid, benzoic acid, and 
chlorogenic acid. According to our results, the protective 
treatment best reduces root rot disease. Furthermore, our study 
provides the basis for additional investigation of plant extract 
antifungal properties to limit the usage of fungicides, which 
pose many risks to human health and the environment.
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