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Panicle number is directly related to rice yield, so panicle detection and

counting has always been one of the most important scientific research

topics. Panicle counting is a challenging task due to many factors such as

high density, high occlusion, and large variation in size, shape, posture et.al.

Deep learning provides state-of-the-art performance in object detection and

counting. Generally, the large images need to be resized to fit for the video

memory. However, small panicles would be missed if the image size of the

original field rice image is extremely large. In this paper, we proposed a

rice panicle detection and counting method based on deep learning which

was especially designed for detecting rice panicles in rice field images with

large image size. Different object detectors were compared and YOLOv5

was selected with MAPE of 3.44% and accuracy of 92.77%. Specifically, we

proposed a new method for removing repeated detections and proved that

the method outperformed the existing NMS methods. The proposed method

was proved to be robust and accurate for counting panicles in field rice

images of different illumination, rice accessions, and image input size. Also,

the proposed method performed well on UAV images. In addition, an open-

access and user-friendly web portal was developed for rice researchers to use

the proposed method conveniently.

KEYWORDS
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Introduction

Rice is one of the important cereal crops in the world, especially in Asia. The yield of
cereal crops is related to the number of panicles per square meter, grains per panicle and
grain size (Slafer et al., 2014; Lu et al., 2015; Ferrante et al., 2017; Jin et al., 2017). Thus,
in order to predict the yield of rice, panicle count is an appropriate method. However,
manual counting has the defects of high labor cost, time consuming and error-prone.
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Also, for yield prediction, studies tend to process infield large
size images (Fiorani and Schurr, 2013). It is necessary to develop
a method to count panicles fast, accurately and automatically
for filed images.

However, automatic panicle count is an enormous challenge.
For panicle detection, complexity of the field environment
can bring many difficulties, which is shown in Figure 1, such
as different size, different shape, different posture, serious
occlusion, different illumination and water refection. With
the development of artificial intelligence and machine vision
technology, many studies used machines to count the number
of fruits for crop yield prediction, such as cotton (Singh et al.,
2021), corn (Khaki et al., 2021), sugar-beet (Barreto et al., 2021),
citrus (Dorj et al., 2017) and so on. For counting, the current
studies for cereal panicle count can be mainly divided into three
categories: image segmentation, object detection and counting
directly through regressing network.

Image segmentation segments the panicles based on the
phenotypic characteristics, such as color and texture. Combined
with the counting method, the number of panicles can be
counted. Xiong et al. (2017) proposed an algorithm to segment
panicles based on superpixel regions generation, CNN and
superpixel optimization and the F-measure was 76.73%. Hayat
et al. (2020) proposed an algorithm for rice panicle segmentation
based on unsupervised Bayesian learning and the mean F1
score was 82.10%. Ma et al. (2020) proposed EarSegNet based
on semantic segmentation for winter wheat ears segmentation
and the F1 score was 87.25%. Yang et al. (2020) used FPN-
Mask model to segment panicles during grain filling stage
and the pixel accuracy was 0.99. Misra et al. (2020) proposed
SpikeSegNet for wheat spike detection and counting and the
average accuracy for spike counting was 95%. Wang et al.
(2020) proposed an algorithm using 3D point cloud to obtain
agricultural crop dimensions, which was suitable for panicle
count at high density. However, this method was designed for
indoor images and could not be directly generalized to field.
Besides panicle number, panicle shape, size, position and color
et al. can also be obtained after panicle segmentation, which
is convenient for further phenotypic analysis. However, the
accuracy of the counting is largely dependent on the accuracy
of panicle segmentation. When the rice panicles occluded
with each other, it is hard to separate the panicles. And
panicle segmentation needs to be combined with the counting
method to obtain the panicle number, which would lead to
error accumulation.

Object detection is a common method for counting by
detecting and drawing bounding boxes. Besides panicle number,
object detection can also obtain information about panicle size

Abbreviations: CNN, convolutional neural network; UAV, unmanned
aerial vehicle; TP, true positive; TN, true negative; FP, false positive; FN,
false negative; NMS, non-maximum suppression; IOU, intersection over
union.

and position. Ji et al. (2021) proposed a detection method, which
contained light saturation correction and Itti saliency-based
system for candidate areas detection and combined with feature
extraction and the usage of LS-SVM classifier for elimination of
false. The F1 score of this method was 88.36%. However, without
deep learning, this method might be limited for directly used
in other applications due to comparably insufficient learning
ability. In the research of object detection using deep learning,
some of the studies directly resized the images due to the need
of the deep learning networks. Zhou et al. (2019) proposed an
improved R-FCN for rice panicle detection and the F-measure
was 87.4%. Yang et al. (2021) proposed an improved YOLOv4
for detection of wheat spikes and the accuracy of the wheat
spikes with different density distributions was 94%, 96.04% and
93.11%. However, the above two algorithms directly resized the
images before feeding to the model, which might lead to lots of
missing of the small panicles as the size of the small panicles
would be largely decreased or even disappeared after resize when
the original image size was large.

Using object detection for counting panicles in images
with large image size, sliding window and image cutting are
two commonly used methods. However, repeated detections
between the adjacent sub-images bring new challenges. Desai
et al. (2019) used a sliding window to detect the flowering
regions based deep learning. However, this method counted
the regions containing panicles to predict the panicle number,
which was not suitable for the situation of dense growth and
different sizes of rice panicles. Xu et al. (2020) proposed an
algorithm namely multi-scale hybrid window panicle detect
(MHW-PD) for rice panicle count. For images with large
number of panicles, this algorithm cut the images into sub-
images without overlapping and detected the sub-images based
on convolutional neural network. If the two bounding boxes in
the adjacent sub-images were close and the sum of the area of
the two boxes was close to the average size of a panicle, the two
boxes would be merged. This algorithm was not suitable for the
panicles with different sizes. In addition, the author mentioned
that for more dense and occluded rice panicles, the accuracy
of the method was reduced and it would cause more miss-
detection. For images with 71-80 panicles, the counting accuracy
of this algorithm was 86.7%. Lyu et al. (2021) also split the large
size images into small tiles and used the DBSCAN algorithm
to remove the repeated detections. The average error of this
counting method was 33.98%.

Counting directly through regressing network was another
commonly used method for object counting. Lu et al. (2017)
proposed a regressing network, TasselNet to count tassels
directly. However, this method might be less robust in the
later growth stage than object detector (Madec et al., 2019).
TasselNetV2 and TasselNetV2 + was subsequently proposed by
the same research group to improve the counting accuracy and
efficiency (Xiong et al., 2019; Lu and Cao, 2020). Compared with
other deep convolution neural networks, TasselNetV2 + reduced
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FIGURE 1

Challenges in rice panicle detection. (A) Different size. (B) Different shape. (C) Different posture. (D) Occlusion. (E) Different illumination.
(F) Water reflection.

the use of the video memory and would be able to analyze
large size images efficiently. Similarly, Khaki et al. (2022)
proposed WheatNet for wheat head counting and its overall
prediction error was 8.7%. One disadvantage of the counting
directly through regressing network method was that this
method can only obtain the panicle number. Thus, it was
difficult to make a more specific analysis of the phenotype of
panicles after counting.

The size of panicles varies greatly even in the same plot.
Some panicles would be extremely small (for instance, blue
boxes in Figure 2). If the original large size image was directly
resized before feeding to the detection network, small panicles
would be missed in detection.

To detect and count panicles in rice field images with
large image size, an algorithm based on deep learning was
proposed in this paper. Firstly, an original high-resolution image
was cut into several sub-images in an overlapping manner
to ensure that a panicle would be appeared completely in
at least one sub-image. Then, the sub-images were fed into
the panicle detection networks and the detection results were
merged to get the detection result. Three object detectors,
namely YOLOv3, YOLOv5 and Faster R-CNN, were used
and compared in this study. The repeated detections in the
overlapping area of adjacent sub-images were then removed
using two indicators. To validate the proposed algorithm,
panicle detection for field rice images taken by ground-based
imaging system with different illumination, rice accessions

and spatial resolution were tested. To further investigate the
robustness of the proposed method, panicle detection for field
rice images taken by UAV was also tested.

Materials and methods

Rice cultivation and image acquisition

In this study, the experimental paddy field was located in
Wuhan, Hubei province, China (30.5N, 114.3E). Rice (O. sativa)
seeds were sown and germinated during the summer of 2017.
Each field plot (96 × 80 cm2) had 20 rice plants of the same
accessions, which were planted in 5 rows and 4 columns. The
spacing between each plant was 16 × 16 cm2 and the spacing
between each plot was 32 cm. Considered the edge effect, a guard
row of rice plants was planted on the boundary between two
adjacent plots. Rice plants in different plots belonged to different
accessions. In total, 104 rice accessions were used for training
and testing in this work. All these accessions come from core
germplasm resources of Japonica rice in China. The names of
the 104 rice accessions are listed in Supplementary Table 1. The
panicle number of each field plot varied from 75 to 190. For each
plot, the top-view image was acquired. A ground-based imaging
bracket was used to obtain rice plot images. The camera (Canon
EOS 760D, 18 mm focal length lens, 6000 × 4000 pixels) were
mounted at the top of the imaging bracket. Wireless shutter was

Frontiers in Plant Science 03 frontiersin.org

https://doi.org/10.3389/fpls.2022.966495
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-966495 August 11, 2022 Time: 7:6 # 4

Wang et al. 10.3389/fpls.2022.966495

FIGURE 2

Example of rice field image. The size of rice panicles varies
greatly. Red boxes show examples of large panicles and blue
boxes show examples of small panicles.

used to trigger the camera to take images when the imaging
bracket moved manually in the paddy field.

Main flow of rice panicle detection
algorithm

The rice panicle detection algorithm included off-line
training and on-line detection (Figure 3).

In total, 104 field-rice images (each image belonged to a
different accession) with a resolution of 6000 × 4000 was used
for training and testing our panicle detection algorithm. The 104
images were randomly split into 2 sets: 67 images for training
and 37 images for testing.

The off-line training mainly contained 3 steps: (1)
The original training images were divided into sub-
images of appropriate size using sliding windows in an
overlapping manner (Figure 3C). (2) The sub-images were
annotated using the software, LableImg (Figure 3D); (3)
The data was augmented and the PanicleDetect model was
trained (Figure 3E).

The on-line detection stage mainly included 4 steps: (1)
An original testing image was divided into sub-images of
appropriate size using sliding windows in an overlapping
manner (Figure 3C); (2) All sub-images corresponding to the
original image were fed into the pre-trained PanicleDetect
model (Figure 3H); (3) The detection results of the sub-
images (Figure 3I) were merged (Figure 3J); (4) Repeated
detections in the overlapping areas of the adjacent sub-images
were deleted (Figure 3K).

An open-access and user-friendly web portal1 was developed
for rice researchers to use the proposed method conveniently.
The detailed operation of the website is illustrated in
Supplementary Video 1. Users can upload a single image
or multiple images at a time. Detection results including the
resultant images and a text file recording the panicle number at
each image can be downloaded.

Training of the PanicleDetect model

From the collected 104 images, 67 images were randomly
selected and each original image were divided into sub-
images using sliding windows in an overlapping manner. The
overlapping size (stride) was determined by the average size of
the large panicles to ensure that most of the panicles appeared
completely in at least one sub-image. And the size of the sub-
image was determined by the panicle size, the selected network
and the video memory. In this study, the size of sub-image was
set as 1056 × 1056 and the stride was set as 756. Therefore,
each field rice image was divided into 40 sub-images. In total,
67 × 40 = 2680 sub-images were obtained for training the
PanicleDetect model. Then we randomly selected 2144 images
for training and 536 images for validation from the 2680 sub-
images in an 8:2 ratio.

The PanicleDetect model was built based on YOLOv5x.
YOLOv5x is a fully convoluted network. In the structure of
backbone of YOLOv5x, the input image needs to be down-
sampled for 5 times, and each down-sampling reduces the image
size by half. Therefore, the input image size should be a multiple
of 32. In this study, all the sub-images were resized to 416× 416
pixels before feeding to YOLOv5x.

During training of the object detector, the data was
augmented using image resizing, image blurring, image flipping
and rotating, and transformation of hue, saturation and value.
The training was run on the Windows 10 operating system
(16-core i7 CPU, 2.5 GHz per CPU core, 16GB of memory,
and an NVIDIA GeForce RTX 2070 super graphics card). The
network was pre-trained on the COCO-Train2017 dataset, and
the generated weight file was loaded as the initial weight. SGD
optimizer (Song et al., 2013) was used in the training and the
momentum (He et al., 2019) was set to 0.937. The training of

1 http://44g29257r5.zicp.vip/
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FIGURE 3

The flow diagram of the panicle detection algorithm. (A) Original high-resolution image. (B) Cutting into sub-images in an overlapping manner.
(C) Sub-images. (D) Manual annotation and data augmentation. (E) Panicle detection model generation. (F) Testing sample. (G) Cutting the
testing sample into sub-images in an overlapping manner. (H) Feeding the testing sub-images into the Panicle detection model. (I) Panicle
detection results of the sub-images. (J) Panicle detection result after merging the detection results of the sub-images. (K) The final detection
results of the original image after deleting the repeated detections in the overlapping area of the adjacent sub-images.

FIGURE 4

The specific processing steps of deleting the repeated detections. (A) Repeated detections in the overlapping area of two adjacent sub-images.
(B) Merging results directly. (C) Deleting the repeated detections in two adjacent sub-images.
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FIGURE 5

Examples of two overlapping situations. (A) high density panicles
(1,2,3) that should be retained. (B) Repeated detection (4,5) that
should be deleted.

FIGURE 6

Performance of the PanicleDetect model.

model was divided into two stages, each of which trained for
50 epochs. At the first stage, the parameters of the backbone
of YOLOv5x were frozen. And at the second stage, all the
parameters of YOLOv5x were trained.

Removing the repeated detections in
the overlapping areas

The specific processing steps of removing the repeated
detections are illustrated in Figure 4. There were two types
of overlapping boxes: overlapped panicles that should be
retained (Figure 5A) and repeated detections that should be
removed (Figure 5B).

Non-maximum suppression (NMS) method using
Intersection over Union (IOU) was the most widely used

method to quantify and remove the overlapping detection
boxes. Furthermore, methods similar to NMS for removing
overlapping results have also been proposed, such as GIOU
(Rezatofighi et al., 2019) and DIOU (Zheng et al., 2019). The
definitions of IOU, GIOU and DIOU are provided in Eqs.
(1)–(3).

IOU =
Boxsmaller ∩ Boxbigger
Boxsmaller ∪ Boxbigger

(1)

GIOU = IOU −

∣∣Ac − Boxsmaller ∪ Boxbigger
∣∣

|Ac|
(2)

DIOU = IOU −
ρ2

c2 (3)

where Ac is the smallest enclosing box area, ρ is the Euclidean
distance between the center points of two boxes, and c is the
diagonal length of the smallest enclosing box.

When the areas of the overlapping boxes were similar, NMS
methods can remove the repeated boxes correctly. However,
when the areas of the overlapping boxes varied greatly, the
union between overlapping boxes was very close to the bigger
box, so some NMS methods may not work. In this work,
the original large size rice image was divided into small sub-
images in an overlapping manner. A panicle would appear in
several sub-images. And a small part of a panicle may appear in
one sub-image while the complete panicle appears in another
sub-image. Therefore, the areas of the overlapping boxes of
the repeated detections would vary greatly. In this case, the
NMS methods may not be suitable. To remove the repeated
detections while retain the overlapped panicles, two parameters,
namely IOB and BOU (defined by Equation 4 and 5), were
introduced in this manuscript to quantify the overlapping mode
and degree between two overlapping boxes. If IOB > threshold
of IOB and BOU > threshold of BOU, the bounding box which
had a smaller area in two overlapping boxes was removed.

IOB =
Boxsmaller ∩ Boxbigger

Boxsmaller
(4)

BOU =
Boxbigger

Boxsmaller ∪ Boxbigger
(5)

where Boxsmaller is the box with the smaller
area of the two overlapping boxes and Boxbigger
is the box with the bigger area of the two
overlapping boxes.

Performance evaluation using 6
indicators

In order to test the detection algorithm, 37 rice field images
were selected. Six indicators, including the mean absolute
percentage error (MAPE), Precision, Recall, F-measured,
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TABLE 1 Comparison of different object detectors for panicle counting.

Object detector MAPE Precision Recall F1-measure R2 Accuracy Time/ms

YOLOv3 4.18% 96.54% 93.13% 94.77% 0.96 90.80% 103.72

YOLOv5l 3.99% 97.00% 95.12% 95.99% 0.94 92.82% 83.61

YOLOv5x 3.44% 96.24% 95.81% 95.98% 0.96 92.77% 92.58

Faster R-CNN 3.37% 96.31% 96.01% 96.12% 0.95 92.92% 159.47

TABLE 2 Evaluation of detection results of different methods.

MAPE Precision Recall F1-measure R2 Accuracy

Proposed method 3.44% 96.24% 95.81% 95.98% 0.96 92.77%

NMS IOU 3.76% 95.92% 95.03% 95.40% 0.93 91.78%

GIOU 3.99% 95.77% 95.75% 95.69% 0.93 92.23%

DIOU 4.21% 93.22% 94.84% 93.95% 0.94 89.30%

coefficient of determination (R2) and Accuracy were adopted to
evaluate the performance of the detection. Among them, MAPE
and Accuracy were used to evaluate the detection accuracy of the
algorithm. The lower the MAPE and the higher the Accuracy,
the more accurate the detection is.

Precision represents that how many panicles detected
by the algorithm are ground-truth annotations. And Recall
illustrates that among all the panicles identified by the human
experts, how many panicles are detected by the algorithm.
In practice, Precision and Recall interact with each other,
so we need to balance these two indicators. F-measure
was used to evaluate the detection performance in a more
comprehensive way. A high F-measure value means that the
rice panicle detection algorithm has a good performance. In
addition, the coefficient of determination (R2) was used to
test the fitting degree of machine counting results versus
manual counting results. The definition of MAPE, Precision,
Recall, F-measure and Accuracy are provided in Eqs. (6)–(10).

MAPE =

(∑n
i=1
|yi−ŷi|

yi

)
n

× 100 (%) (6)

Precision =
TP

TP + FP
× 100 (%) (7)

Recall =
TP

TP + FN
× 100 (%) (8)

F =
2× Precision× Recall
Precision+ Recall

× 100 (%) (9)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (%) (10)

Where n is the number of the test images, yi is the panicle
number calculated manually, and yi is the panicle number
calculated by our algorithm. TP, TN, FP, and FN represent the
numbers of true positive, true negative, false positive, and false

negative, respectively. In this paper, the true positive (TP) is
the number of bounding boxes which detect the rice panicles
correctly. The true negative (TN) is always considered to be zero
because background is not determined for object detection in
this study. The false positive (FP) is the number of bounding
boxes which detected backgrounds falsely as rice panicles. The
false negative (FN) is the number of ground truth rice panicles
which are not detected by the algorithm.

Robustness evaluation of the
PanicleDetect model

To evaluate the robustness of the PanicleDetect model to
different rice accessions and illumination, 37 field rice images
belonging to 37 different rice accessions were tested for panicle
detection. In addition, the illumination of the different images
varied due to the outdoor environment.

In order to improve the robustness of the model, the
height and width of the input images were randomly scaled
in data augmentation at the training stage. To evaluate the
robustness of the model to different image size and spatial
resolution, the sub-images (1056× 1056) of the test images were
resized to 256 × 256, 416 × 416, 608 × 608, 800 × 800 and
1056× 1056, respectively, in the testing stage. Subsequently, the
sub-images were detected by the model trained with sub-images
of 416× 416 pixels.

To further investigate the universality of the proposed
method, panicle detection for field rice images taken by
UAV was also tested. The tested UAV images were taken
by the camera (FUJIFILM GFX 100 camera, 63 mm focal
length lens) installed on the UAV platform (DJI M600 Pro,
20 m flight altitude, 1 m/s flight speed). Before detecting,
the height and width of the test images were magnified 3.5
times because of the huge differences in spatial resolution
between the UAV images and the training set. The spatial
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FIGURE 7

Detection results of rice image processed by the proposed method and other methods. (A) The areas of the overlapping boxes were similar.
(B–D) The areas of the overlapping boxes varied greatly. In the detection results, green boxes are correct bounding boxes and red boxes are FP
boxes.

resolution of the UAV images was about 2mm per pixel
while the spatial resolution of the training images was about
0.2 mm per pixel.

Comparison with other methods for
panicle counting

Panicle-SEG (Xiong et al., 2017) was an algorithm for
rice panicle segmentation. Combining Panicle-SEG with an

appropriate image processing method, the number of the
panicles in the image can be obtained by counting the
connected components. For the binary images obtained by
Panicle-SEG, opening and closing operations with a 5 × 5-
size kernel was performed to remove noise and separate
occluded rice panicles. Then the number and area of connected
components were obtained. In order to deal with the
occluded rice panicles, the median area of the connected
components in each image was calculated. If the area of a
component was larger than twice of the median area, the
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FIGURE 8

Examples of rice field images with different rice accessions. (A) Thick and straight. (B) Short and small. (C) Loose, bent and long. In the detection
results, green boxes are correct bounding boxes; white boxes are FN boxes; red boxes are FP boxes.

component’s area would be divided by the median area and
then round up to an integer, which was regarded as the
number of rice panicles corresponding to the component.
For other connected components, each one was regarded
as one rice panicle. The panicle number for each image
was then computed.

MHW-PD (Xu et al., 2020) was an advanced algorithm for
rice panicle count and was similar to the proposed method. In

comparison, this paper calculated the mean counting accuracy
in their manner (Xu et al., 2020), which is shown in Eq. (11).

Pc =
Ncor

Nreal
× 100 (%) (11)

where Pc is the counting accuracy, Ncor is the correct (true
positive) number of rice panicles detected by the model and
Nreal is the actual number of the rice panicles in the test set.
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Results and discussion

We tested the proposed panicle detection algorithm using
37 field rice images. Each rice image belonged to a different
accession. Convolution neural network, YOLOv5x was trained
for panicle detection. The results of YOLOv5x are shown in
Figure 6. The mean values of the MAPE, Precision, Recall,
F-measure, R2 and Accuracy were 3.44%, 96.24%, 95.81%,
95.98%, 0.96, and 92.77%, respectively.

Comparison of different object
detection models for panicle counting

Four object detection models: YOLOv3 (Redmon and
Farhadi, 2018), YOLOv5l, YOLOv5x and Faster R-CNN (Ren
et al., 2017) were tested and compared for panicle counting
(Table 1). The average time consumption for detecting one sub-
image was also computed. The detection was run on the same
environment as training.

The results showed that the proposed counting method
had good adaptability to different object detection networks.
Furthermore, YOLOv5x and Faster R-CNN outperformed the
other two networks. Considering the detection efficiency,
YOLOv5x was selected as the optimal network for the
PanicleDetect algorithm.

Comparison of different methods for
removing repeated detections in the
adjacent sub-images

The proposed method using IOB and BOU was compared
with the NMS IOU, GIOU and DIOU methods for removing
the repeated detections. Six indicators were used to evaluate
the results. The results are shown in Table 2. The results
showed that the overall performance of the proposed
method was better than other methods. The main reason
for why the proposed method outperformed the other
methods is presented in Figure 7. When the areas of the
overlapping boxes were similar, high overlapping degree
of the boxes would lead to high IOU, GIOU, DIOU,
IOB and BOU, so all the 4 methods can remove the
repeated boxes correctly (Figure 7A). However, when
the areas of the overlapping boxes varied greatly, even if
the overlapping degree of the boxes were very high, for
instance, one box completely covered the other box, the
IOU, GIOU and DIOU would be also low. In contrast,
the IOB and BOU would still be high. In this case, the
repeated boxes might be kept by the other methods, but be
removed by the proposed method (Figures 7B–D). Thus, the
proposed method used IOB and BOU performed better than
the other methods.

Detection results under different rice
accessions and illumination
environments

The appearance of rice panicles varies greatly among
different rice accessions. For example, the panicles were thick
and straight in Figure 8A short and small in Figure 8B, and
loose, bent and long in Figure 8C. In addition, the large growth
density would cause occlusion between panicles or between
leaves and panicles. Results showed that the proposed method
was robust for detecting panicles of different rice accessions.

The illumination of the different images varied due to
the outdoor environment. Therefore, it was important for the
model to accurately detect images under different illumination
conditions. As illustrated in Figure 9, for the high brightness
image (Figure 9A), the FP is 3 and the FN is 4. In the image
of medium brightness (Figure 9B), the FP was 1 and the FN was
3. In the image of low brightness (Figure 9C), the FP was 2 and
the FN was 12. From the results, the model performed best for
medium brightness image detection. And the model was robust
to the images with different brightness. Specially, for images
with extremely low brightness, such as Figure 9C, manual
annotation was error-prone, labor-intensive and inefficient.
However, the proposed algorithm performed well.

Panicle detection of images with
different image size and spatial
resolution

Different devices and methods are used for capturing rice
field images, which may cause differences in spatial resolution.
Therefore, it is important that the proposed counting algorithm
is robust for the images with different spatial resolution.
Table 3 shows the performance of the PanicleDetect model with
different input size/spatial resolution. The results showed that,
enlarging or reducing the size of the input image by nearly twice,
the MAPE of the model detection results could be kept within
5%, meaning that the proposed algorithm was robust to different
spatial resolution.

Panicle detection of the field images
taken by unmanned aerial vehicle

Using UAV to capture the rice field images is convenient
and efficient. Thus, it is meaningful that the proposed algorithm
can detect the panicles accurately in the field images taken
by UAV. But the images taken by UAV may have the
problems of low-resolution or defocus blur, which will bring
challenges to rice panicle detection. The PanicleDetect model
was trained using data augmentation with image blur, so the
model was more robust for this situation. Figure 10 shows
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FIGURE 9

Examples of rice field images with different illumination. (A) High brightness. (B) Medium brightness. (C) Low brightness. In the detection results,
green boxes are correct bounding boxes; white boxes are FN boxes; red boxes are FP boxes.

TABLE 3 Comparison of the different input size/spatial resolution for the PanicleDetect model.

Input image size MAPE Precision Recall F1-measure R2 Accuracy

256× 256 4.60% 94.24% 94.94% 94.51% 0.93 90.21%

416× 416 3.44% 96.24% 95.81% 95.98% 0.96 92.77%

608× 608 3.64% 96.71% 95.54% 96.06% 0.95 92.87%

800× 800 3.11% 97.08% 95.99% 96.48% 0.96 93.62%

1056× 1056 3.50% 95.88% 95.87% 95.82% 0.95 92.47%
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FIGURE 10

Detection results of field images taken by UAV. In the detection results, green boxes are correct bounding boxes; white boxes are FN boxes; red
boxes are FP boxes.

the detection results of two representative images with about
1000 × 1000 pixels taken by UAV. The results showed that, the
proposed algorithm had a relatively high accuracy for counting
panicles in UAV images.

Comparison with other methods for
panicle counting

Panicle-SEG (Xiong et al., 2017) was an algorithm for
rice panicle segmentation. Combining Panicle-SEG with an
appropriate image processing method, the number of the
panicles in the image can be obtained by counting the connected
components. The counting method was described in detail in the
method section. The same testing set was used to evaluate the
performance of panicle counting using segmentation method,
and the mean values of the MAPE, Precision, Recall, F-measure,
R2 and Accuracy were 13.59%, 79.39%, 80.66%, 79.49%, 0.68,
and 71.79%, respectively. This counting method has difficulty
in dealing with the occluded rice panicles and rice panicles
with different sizes. Therefore, the accuracy of this method
was relatively low.

MHW-PD (Xu et al., 2020) was an advanced algorithm for
rice panicle count and was similar to the proposed method.
Specifically, this algorithm firstly cut the images into sub-images
without overlapping, then detected the panicles in the sub-
images using Faster R-CNN and fused the results. The panicle

count accuracy of MHW-PD achieved about 93% for images
with 0∼30 panicles per image, and about 87% for images
with 31∼80 panicles per image. In comparison, this paper
calculated the mean counting accuracy in their manner. The
results showed that the proposed method reached an accuracy
of 95.81% for images with 75∼190 panicles per image. In
conclusion, the proposed method is able to process images
with much higher number of rice panicles, and can maintain a
higher accuracy.

Conclusion

It is challenging and meaningful to accurately measure
panicle number in the field. This paper proposed a rice panicle
counting algorithm that are especially designed for field images
with extremely large image size. Instead of greatly resizing
or cutting images without overlapping, small panicles can be
preserved intact in the images. This algorithm enables the object
detect networks, which were designed for input of relatively
small image size, to detect small objects in large images. For
field images of 6000 × 4000 pixels with an average of 140
panicles per image, the MAPE of this algorithm was 3.44%.
The proposed method was proved to be robust and accurate for
counting panicle in field rice images of different illumination,
rice accessions, and spatial resolution. The proposed method
also performed well on UAV images. One limitation for this
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work is that the proposed method was only tested at a single
planting density, which was slightly higher than the typical
planting density used for rice cultivation. Panicle detection at
different planting densities will be tested in our future work.
Generally, the method was robust and especially useful for
panicle detection of extremely large images. In addition, this
algorithm can be visited online so the researchers can use the
algorithm to get panicle numbers conveniently.
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