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The fast and precise detection of dense litchi fruits and the determination

of their maturity is of great practical significance for yield estimation in litchi

orchards and robot harvesting. Factors such as complex growth environment,

dense distribution, and random occlusion by leaves, branches, and other

litchi fruits easily cause the predicted output based on computer vision

deviate from the actual value. This study proposed a fast and precise litchi

fruit detection method and application software based on an improved

You Only Look Once version 5 (YOLOv5) model, which can be used for

the detection and yield estimation of litchi in orchards. First, a dataset of

litchi with different maturity levels was established. Second, the YOLOv5s

model was chosen as a base version of the improved model. ShuffleNet

v2 was used as the improved backbone network, and then the backbone

network was fine-tuned to simplify the model structure. In the feature

fusion stage, the CBAM module was introduced to further refine litchi’s

effective feature information. Considering the characteristics of the small

size of dense litchi fruits, the 1, 280 × 1, 280 was used as the improved

model input size while we optimized the network structure. To evaluate the

performance of the proposed method, we performed ablation experiments

and compared it with other models on the test set. The results showed

that the improved model’s mean average precision (mAP) presented a 3.5%

improvement and 62.77% compression in model size compared with the

original model. The improved model size is 5.1 MB, and the frame per second

(FPS) is 78.13 frames/s at a confidence of 0.5. The model performs well in

precision and robustness in different scenarios. In addition, we developed

an Android application for litchi counting and yield estimation based on

the improved model. It is known from the experiment that the correlation

coefficient R2 between the application test and the actual results was 0.9879.
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In summary, our improved method achieves high precision, lightweight,

and fast detection performance at large scales. The method can provide

technical means for portable yield estimation and visual recognition of litchi

harvesting robots.
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object detection, YOLOv5, ShuffleNet v2, litchi, yield estimation

Introduction

Litchi (Litchi chinensis Sonn.) is a subtropical evergreen
fruit tree whose cultivation range has widespread worldwide. Its
fruit is nutritious and tasty. Meanwhile, litchi is an important
economic crop and has a high economic value. Today, China
is one of the primary litchi producers, accounting for about
one-third of the world’s annual litchi production. Litchi trees in
China are mainly distributed in the southern hilly regions, and
the annual output value of litchi-related industries is more than
four billion US dollars (Qi et al., 2019).

The construction and implementation of smart orchards
have become a current research focus. The detection and
evaluation of fruit maturity are crucial for yield estimation and
harvest in smart orchards. Currently, there are destructive and
non-destructive methods for judging fruit maturity. Destructive
methods are used to find the physicochemical or biochemical
properties of fruits. They need high technical requirements
and have to destroy materials. The detection speed is slow,
but more phenotypic information can be obtained. In contrast,
non-destructive methods have the advantages of lower cost,
more reliable detection results, and no need to destroy
the fruit (Arunkumar et al., 2021). Various non-destructive
detecting methods for fruit maturity have been extensively
studied, such as ultrasonic methods (Yildiz et al., 2018), near-
infrared spectroscopy (Pissard et al., 2021), scanning laser
Doppler vibrometers (Hosoya et al., 2017), magnetic resonance
imaging (Srivastava et al., 2018), electronic nose (Calvini and
Pigani, 2022), and so on. Although these methods have high
detection accuracy, they are only suitable for a single fruit or
laboratory detection. The scope and prospect of promotion
among fruit farmers are small, and they are not suitable
for judging large-scale fruit maturity and yield estimation
in orchards. In addition, computer vision is also a non-
destructive method that can be used for inspection and has
been found to be applicable in precision agriculture. Fruits
are accurately detected with the help of computer vision

Abbreviations: YOLO, you only look once; CBAM, convolution block
attention module; CAM, channel attention module; SAM, spatial attention
module; AP, average precision of A class; mAP, average precision of
multiple classes; FPS, frame per second; SSD, single shot multibox
detector.

technology, after which the fruit harvest work is achieved
using robot technology. This harvesting method is significant
to the intelligent and automatic management of orchards
(Tang et al., 2020; Wang and He, 2021; Qi et al., 2022). In
present-day China, most regions rely mainly on manual litchi
harvesting. Due to the strong seasonality of litchi ripening,
it takes massive labor to complete the large-scale litchi fruit
harvesting quickly. At the same time, the maturity of litchi
during the growing period is inconsistent, and even litchi from
the same orchard or the same tree are ripened in batches
(Jin, 2020; Chen et al., 2022). Therefore, it is important to
detect litchi and classify their maturity through computer
vision technology, achieve litchi orchards yield estimation, and
then guide harvesting robots or fruit farmers to unfold the
picking efforts in a timely, selective, and batch manner. Among
them, litchi detection is a prerequisite for realizing orchard
yield estimation. It is an urgent issue to be solved in today’s
orchard production.

Over the years, related scholars have discussed some
traditional object detection methods for fruits, and the feature
extractors used are often based on features determined by
artificial prior knowledge, and it is difficult to achieve robust
feature representation (Wang C. et al., 2022). Wan et al. (2018)
used a back-propagation neural network to detect the maturity
of fresh tomatoes. Dameshwari and Ravindra (2017) employed
MATLAB software for defect identification and maturity
detection of mango fruits. Khojastehnazhand et al. (2019)
realized maturity detection and volume estimation of apricot
with the help of image processing technology. Wang et al. (2017)
studied four effective color components and six visual features
commonly used in image recognition, trained the Bayesian,
KNN, ANN, and SVM classifiers, and finally integrated them
to realize litchi recognition. However, the disadvantage of this
method is that the detection algorithm requires a long reasoning
time. He et al. (2017) used an improved LDA classifier to
detect green litchi per plant. However, the parameters used
in the multi-stage processing need to be manually specified,
and the parameter debugging process is too cumbersome to be
widely promoted. Xiong et al. (2018) proposed a nighttime litchi
identification method based on Otsu, but the method requires a
single environment and is not suitable for litchi recognition in a
natural environment.
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In recent years, there have been some two-stage fruit
detection methods with the development of deep learning.
Among them, the Faster R-CNN is widely applied as a classical
algorithm (Barnea et al., 2016; Sa et al., 2016; Fu et al., 2020).
Apolo-Apolo et al. (2020) employed the Faster R-CNN to
detect citrus images captured by Unmanned Aerial Vehicles
and then estimated citrus yield with an average standard error
of 6.59%. Gao et al. (2020) achieved multi-class fruit detection
with the help of the Faster R-CNN, such as apples. Fu et al.
(2018) implemented a two-stage detection of kiwifruit fruit
images using Faster R-CNN and ZFNet network. The average
accuracy of the model was 92%, and the average processing
time for a single image was 0.27s. Vasconez et al. (2020)
applied the Faster R-CNN with the Inception V2 network
implementation to detect avocado, lemon, and apple under
different field conditions, with an mAP of 93%, and it took 0.22s
on average to process a single image. Although the two-stage
object detection method shows good performance, its detection
speed has limitations that make it difficult to be applied to field
real-time detection.

To meet the requirements of real-time object detection
under complex agricultural application scenarios, it is usually
necessary to seek an optimum between detection accuracy and
calculation time. The single-stage object detection algorithm
represented by the YOLO series has achieved a better balance
between accuracy and speed. Koirala et al. (2019) improved the
YOLOv3 network for mango detection by merging feature maps
of different resolutions from the middle layer. The mAP of 98%

was achieved, and the model took 0.07 s for a single image. Liu
et al. (2020) replaced the traditional rectangular bounding box
of the YOLOv3 model with a circular bounding box for tomato
detection, achieving an mAP of 96% and a detection speed of
0.054 s on an image of 3, 648 × 2, 056 pixels. Liang et al.
(2020) adopted the YOLOv3 model for detecting litchi fruits
in a natural environment at night while extracting a region of
interest on the main stem of litchi. Tian et al. (2019) combined
YOLOv3 and DenseNet to detect apples in orchards with an F1
score of 0.817, IoU of 0.896, and a processing time of 0.304 s for
a 4, 000 × 3, 000 pixel image. Wu et al. (2021) put forward an
improved YOLOv3 model based on clustering optimization for
multi-object recognition of banana buds and inflorescence axes.
Zheng et al. (2021) improved the framework of YOLOv4 and
proposed a multi-scale convolutional neural network based on
a bidirectional feature pyramid network to detect green citrus
with an accuracy rate of 91.55%. Wang L. et al. (2022) trained
the improved YOLOv4 model to detect dense plums. Compared
with some results from the original YOLOv4 model, the model
size of the improved model was compressed by 77.85%. The
parameters were only 17.92% of the original model parameters,
and the detection speed were accelerated by 112%. Li D. et al.
(2021) proposed to use a MobileNet-YOLOv4 model for fast
and accurate detection of longan strings in Unmanned Aerial
Vehicles images. Nevertheless, further studies are needed for
highly occluded and overlapped fruit objects.

Litchi grows in haphazard and seriously adhered clusters
in the natural environment, which branches and leaves may

FIGURE 1

The geographical location of the image acquisition.
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block. In litchi images used for yield estimation, minor pixel
points on litchi fruits can make insufficient extraction of
important feature information, resulting in missed or false
detection. Although it is more convenient to carry out long-
range detection with Unmanned Aerial Vehicles, only litchi
distributed in the superficial layers are detected, and fruits that
are obscured or overlap may be missed, which would give low
yield estimates (Peng et al., 2022). Object detection methods
based on deep learning have shown good performance on public
datasets, but these models do not consider processing small,
dense objects. When facing small object litchi that is densely
obscured, problems such as insufficient feature extraction often
occur. While with larger-scale detection feature maps, detection
speed becomes a bottleneck of the model. In addition, although
some lightweight fruit algorithms based on edge devices have
also been studied (Zhang et al., 2021), deploying deep learning
algorithms in the real-time field remains challenging. In this
case, according to the biological characteristics of litchi fruit,
our object detection algorithm needs to take into account
the detection speed while considering the problem of densely
occluded small objects. Consequently, how to improve the
accuracy and speed of litchi object detection under dense and
high overlaps becomes an essential goal of this study.

Since You Only Look Once version 5 (YOLOv5) model
has been proven to perform well in other application domains
to detect small objects (Chen et al., 2021; Zhang et al., 2022).
In response to the above problems, this study will carry out
improvement work based on the YOLOv5 model regarding the
accuracy, model size, and detection speed to obtain a deep
learning model suitable for litchi fruit detection. The specific
improvements include: (1) increasing the recognition capability
of the model for small objects by changing the input size
of the model; (2) enhancing the accuracy of model detection
by replacing and fine-tuning the backbone feature extraction
network and adding an attention mechanism; and (3) further
reducing the model parameters and accelerating the reasoning
time of the model by deleting the detection head. Finally, an
Android application based on the improved model will be
developed to obtain the maturity and yield information of
litchi conveniently and quickly by mobile phone. In conclusion,
the improved method presented in this paper achieves high
performance and fast detection performance in litchi orchard
environments, providing technical means for portable litchi
yield estimation and visual recognition of litchi harvesting.

Materials and methods

Materials

Image data acquisition
RGB images of litchi used in this study were all taken from

the Litchi Exposition Park in Conghua District, Guangzhou

City, Guangdong Province, China (2334
′

60
′′

N, 11337
′

12
′′

E),
and the location is shown in Figure 1. All images were acquired
between 9:00 a.m. and 6:00 p.m. on May 17, June 11, and
June 30, 2021. The acquisition device used is a smartphone
with three postfixed cameras: a 40-megapixel main camera,
a 12-megapixel ultra-wide-angle camera, and an 8-megapixel
telephoto camera. The 40-megapixel main camera at a pixel
density of 400 ppi was chosen for this study. The sensor model is
Sony IMX600 with CMOS photosensitive chip. The lens uses an
f/1.6 aperture and an RYYB filter. The device supports optical
image stabilization and the autofocus in three modes (laser
focus/phase focus/contrast focus). In this study, the image’s
resolution was set to 3, 648 × 2, 736 pixels, and the exposure
parameter was set to auto mode. Finally, the images were
saved in JPEG format.

In the natural growth state, litchi grows in dense clusters
for litchi orchards. Immature litchi is turquoise and close to
the branches and leaves. Mature litchi appears red. To capture
as many images of litchi fruits in the natural environment
as possible under multiple weather conditions, the acquisition
equipment randomly transformed the sampling angle within
a 2–5 m imaging distance. A total of 1,375 original litchi
images were collected in this study, and litchi fruit samples
with different maturity, posture, size, background, density,
and occlusion were included in this dataset. Table 1 shows
the sample collection site’s weather conditions and quantity
distribution during the collection period.

Building the dataset
At the data processing stage, litchi fruits were divided

into two classes according to their maturity: mature litchi
(litchi) and immature litchi (raw_litchi). As shown in Figure 2,
LabelImg software was used to manually annotate the ground
location boxes and class of litchi fruits in the original image
and generated the corresponding annotation files. After the
image annotation work was completed, the entire dataset was
randomly divided into a training set, validation set, and test
set according to the ratio of 7:1:2 for subsequent training and
testing of the model. Statistically, each image collected in this
study contains 10–100 fruits, and there are 53,855 labels for the
litchi fruits dataset. The class ratio between the two is about 1.28,
illustrating no significant data imbalance within the dataset.

Before the training of the model, this study performed
several random combinations of offline data augmentation

TABLE 1 The weather conditions and quantity distribution during the
image collection period.

Date Weather conditions Number

May 17, 2021 Rainstorm to cloudy 375

June 11, 2021 Sunny to cloudy 500

June 30, 2021 Sunny and breezy 500
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FIGURE 2

Data annotation example: the blue box represents mature litchi, and the yellow box represents immature litchi.

methods such as flipping, clipping, rotation, scaling, translation,
brightness, histogram averaging, salt and pepper noise, and
Gaussian noise on the training set (Taylor and Nitschke, 2018;
Lyu et al., 2022). The five data augmentation methods were
specifically (1) random horizontal flip of 25% of the training
set + random vertical flip of 25% of the training set + random
crop of 0–20% region of the image width/height; (2) histogram
averaging + pepper noise 2%; (3) rotation 10◦; (4) random
modification of the brightness to 50–150% of the original +
random Gaussian noise; (5) random scaling transformation 70–
95% + random panning (−15–15%). To guarantee the quality
of the data annotations before and after data augmentation,
the anchor box positions in the annotation files associated with
the original images were also coordinately transformed with
different data augmentation methods. As shown in Table 2, the
number of training sets after data augmentation was enlarged
by five times, yielding a total of 5,710 image data available for
network training. Ultimately, there are 6,175 image data for
the litchi dataset.

Methodologies

YOLOv5 model
YOLOv5 (Glenn et al., 2021) is one of the YOLO series

of networks and an improved version of YOLOv3 (Redmon
and Farhadi, 2018). The idea of the YOLO series of networks
is to convert the object detection problem into a regression

problem. Using the CNN network to process the image can
directly obtain the class and position coordinates of the object,
which makes the model have high-performance results in
detection accuracy and speed. Compared to the YOLOv4 model
(Bochkovskiy et al., 2020), the YOLOv5 model has achieved
a better balance between accuracy and speed. The YOLOv5
model consists of multiple versions of different scales, from
which extended lightweight model versions can be deployed on
various devices.

The network structure of YOLOv5 is composed of a
backbone network, a neck network, and a detection head. The
YOLOv5 model employs the new CSP-Darknet53 structure as
the backbone network to extract image features. The structure
contains CBS modules, the C3 modules, and the SPPF module.
CBS indicates the synthesis module of Conv, BN, and SiLU
activation functions. The C3 module is the main module for
residual feature learning, and its structure is divided into
two branches. One is stacked by multiple Bottlenecks and

TABLE 2 Details of the litchi image dataset.

Dataset Number of original
images

Number of
augmented images

Training set 962 5772

Validation set 138 138

Test set 275 275

Total 1375 6175
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three standard convolution layers, and the other only passes
through a basic convolution module. Finally, the two branches
are merged. The SPPF module further integrates multiple
parallel MaxPool2d of different sizes, which can solve the
multi-scale object problem to a certain extent. When the
size of the input image is 640 × 640, the feature maps of
80 × 80 × 128, 40 × 40 × 256, and 20 × 20 × 512
are output after passing through the backbone network. As
the neck of the network, the path aggregation network (Liu
et al., 2018) plays the role of feature fusion and aggregates
information paths in a combined bottom-up and top-down
manner to obtain richer features from each layer. Like
the YOLOv3 model, the YOLOv5 model also adopts three
scales of head to detect small (80 × 80 × 128), medium
(40 × 40 × 256), and large objects (20 × 20 × 512),
respectively. Finally, these feature maps are divided into
grids, and the K-means algorithm is used for each grid to
generate anchor coordinate boxes to predict object boundaries
iteratively. Each detection box outputs a feature vector of
predicted bounding box center coordinates(x, y), width, height,
confidence score, and class probability. To prevent a single
object from generating redundant or overlapping prediction
boxes, a Non-Maximum Suppression threshold is set to
determine the final detection box. The last detection result of
the input image is rescaled to the original image size, enabling
the detection of the object.

Lightweight backbone network
Typically, the deep learning model has a large number

of parameters and computations, requires high computer
requirements, and is challenging to run directly on mobile
phones or other edge devices. In this context, Ma et al.
(2018) proposed a computationally efficient and lightweight

CNN model suitable for mobile devices—ShuffleNet v2. The
research results show that ShuffleNet v2 has higher accuracy
than MobileNet v2 (Sandler et al., 2018) and Xception (Chollet,
2017) under the same model complexity. The contribution of
ShuffleNet v2 lies in that it summarizes four rules of network
design according to the performance of the actual scenarios,
namely: (1) keep the number of input and output channels of
the convolution layer equal to minimize memory access cost;
(2) reduce group convolution operations to reduce memory
access cost; (3) reduce network branching structures to enhance
parallel computing power; and (4) reduce element operations to
speed up the network speed.

The ShuBlock module is the basic unit of ShuffleNet v2
(Figure 3). The module has two branches. A branch is a residual
unit containing a 1 × 1 convolution, a 3 × 3 deep separable
convolution, and a 1 × 1 convolution. The other one needs to
be handled in two cases: if the stride is 1, the residual edge is a
shorted connection branch; if the stride is 2, the residual edge
is a branch composed of a 3 × 3 deep separable convolution
and a 1 × 1 convolution. Finally, the two components are
stacked together, and a Channel shuffle is introduced to achieve
information exchange between channels.

Convolution block attention module
The Convolution Block Attention Module (CBAM) is an

attention mechanism that combines the Channel Attention
Module (CAM) with the Spatial Attention Module (SAM)
(Woo et al., 2018). It is often seamlessly integrated into some
CNN networks for end-to-end training due to its lightweight
and generalized characteristics. Its function is to strengthen
the model’s ability to extract features and suppress invalid
background information by refining the input feature map (Li
X. et al., 2021).

FIGURE 3

ShuBlock module.

FIGURE 4

Convolution block attention module structure.
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As shown in Figure 4, the CBAM structure is a tandem
of two sub-modules of the channel and spatial attention, and
the input of SAM is the feature map modified by the CAM
mechanism, which can obtain more comprehensive and reliable
attention information. The feature matrix is first input to the
channel attention sub-module, where each channel represents a
feature detector. The role of the CAM here is to process feature
maps from different channels and focus on the meaningful
feature map information. After that, the channel compression
weight matrix is output, then multiplied by the original input
feature characteristic matrix. When the feature map adjusted
by CAM enters the spatial attention sub-module, the SAM will
process the feature region of meaningful information in the
feature map, generate the spatial compression weight matrix,
and perform the same multiplication operation. And finally, the
refined feature map is obtained. The CAM and SAM modules
selectively fuse deep and shallow features. High dimensional
features guide low dimensional features for adaptive feature
refinement of CAM, and low dimensional features guide high
dimensional features in reverse for the screening of Sam.

This sequential way improves the network model’s ability to
extract features without significantly increasing the amount of
computation and parameters.

In Figure 4, MaxPool represents the maximum global
pooling; AvgPool represents global average pooling; Share
MLP represents a multi-layer perceptron with shared weights;
Channel Attention indicates the channel attention map output
by CAM; Conv indicates convolution operation; Spatial
Attention denotes the spatial attention map.

The improved YOLOv5s network
structure

The YOLOv5 model is classified into x, l, m, s, and n versions
according to the complexity of the network structure. To better
balance accuracy and speed, this study chose the 6.0 version
structure of YOLOv5s as the basis for model improvement. This
study will investigate the accuracy, model size, and detection
speed to find a more suitable litchi fruit detection model.

FIGURE 5

Network structure diagram of the improved model.
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Specifically, we will first replace and fine-tune the backbone
network structure to compress the model size. Then we will
add an attention mechanism to strengthen the accuracy of the
model detection. After that, we will change the input size of the
model from 640 × 640 pixels of the original YOLOv5 model
to 1, 280 × 1, 280 pixels to improve the model’s ability to
recognize small objects. And finally, we will reduce the model
parameters and computation to accelerate the detection speed
of the model by removing the large-scale detection head.

Fine-tuning the lightweight backbone network
This study used the building blocks of ShuffleNet v2 to form

the backbone network of the improved model. First, the 6 × 6
convolution method from the first layer of the original backbone
network was retained, and the first layer convolution of the
ShuffleNet v2 was also changed from 3 × 3 to 6 × 6. Second,
the successive stacks of ShuBlock building blocks are used to
construct the lightweight backbone network. In this way, the
number of model parameters can be reduced as much as possible
to ensure the feature extraction capability. Afterward, like the
original model, the SPPF structure was used on the output of
the last layer to strengthen the extracted features. Therefore,
when the size of the input image is 1280 × 1280, the output
feature maps of (160 × 160 × 116), (80 × 80 × 232),
and (40 × 40 × 464) will be obtained after the improved
backbone network.

Optimize the network structure
In the feature fusion stage, low dimensional feature maps

were introduced to increase the feature information of small
objects while raising a large amount of background noise,
impairing the accuracy of hierarchical object detection. To
this end, we added a CBAM module to gain adequate feature
information and suppress background noise before the feature
maps entered the neck network.

For the three detection heads output by the original
YOLOv5 model, the size(20, 20, 512) is used to detect large-
scale objects. For the small object litchi in this study, the large-
scale detection head had little contribution to the recognition
results. Therefore, to further simplify the complexity of the
detection model, this paper removed the 21st–23rd layers of
the original YOLOv5 network and the detection output head
(20, 20, 512) mimicking the network structure of the YOLOv4-
tiny model (Wang et al., 2021). The pruned model has only
two detection heads. This pruning operation gave the shallow
feature map a smaller receptive field, which is more suitable for
identifying dense small object litchi. Figure 5 shows the network
structure of the improved model and the illustrations of each
specific module, which are distinguished by different colors. In
Figure 5, the blue area indicates the network structure of the
improved model, and the gray area shows the illustration of each
specific module that appears in the improved model. Where
Conv is convolution; Concat is a feature fusion method based

on the addition of channel numbers; BN is Batch Normalization;
UpSample is upsampling; BottleNeck indicates bottleneck layer.
The size of the input image is a tensor with dimensions of
1, 280 × 1, 280 × 3, and the final convolution operation will
form image tensors with dimensions of 80 × 80 × 232 and
160 × 160 × 116.

Training of litchi object detection
model

To make the model learn more valuable features, the input
image of the model was first adjusted to 1, 280 × 1, 280 pixels,
and the image padding method was applied to maintain the
aspect ratio of the original image. After that, we improved the
model according to the proposed improvement method. During
this process, the loss function of the original YOLOv5s model
was not altered. Finally, the annotated litchi training set was
trained to utilize the Pytorch deep learning framework, and the
validation set was used to verify the effect and performance of
the model training.

The experimental environment in this study is shown in
Table 3. First, the annotated VOC format dataset was converted
to the data format accepted by the YOLOv5 model. Second,
the parameters of the model training process need to be
configured. After that, it is time to turn on the improved
object detection network training. The training parameters
of the improved model are: the initial learning rate is set
to 0.01, the eta_min is 2 × 10−3, the last_epoch is −1,
the momentum parameter is 0.937, the delay parameter is
5 × 10−3, the batch size is set to 8, and the T_max is
250. Optimized by the AdamW optimizer during the training
process. Eight workers were employed for multi-threaded model
training, and the cosine annealing learning rate was performed
to update optimally during the training process. Besides offline
augmentation methods, Mosaic data augmentation was also
used to further enrich the background of detected objects,
reinforce the awareness of litchi fruits characteristics, and
strengthen the robustness and generalization performance of
the model. The data-augmented network took about 28 h of
training duration.

TABLE 3 The experimental environment in this study.

Name Value

CPU AMD R5-5600X 6-Core

Memory 32GB

Storage SSD 512GB

Graphics card Nvidia RTX 2060 SUPER

Graphics memory 8GB

Operating System Windows10

CUDA version 10.2

PyTorch version 1.7.1
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FIGURE 6

The comparison of mAP@0.5 of the model before and after improvement on the training set.

Experimental results and
comparative analysis

Model evaluation indicators

To precise evaluate the detection performance of the model
on dense litchi images, we adopted eight evaluation indicators
that are commonly used in classical object detection algorithms:
Precision (P), Recall (R), F1-score, average precision (AP),
mean average precision (mAP), network parameters, model size,
and detection speed. And the IoU value was 0.5 during the
experiment. This study used frames per second (FPS) to evaluate
the model’s real-time detection performance. The larger the FPS,
the faster the model detection speed. Each formula of P, R, F1,
AP, and mAP is shown in Equations (1–5).

P =
TP

TP + FP
(1)

R =
TP

TP + FN
(2)

F1− score =
2PR

P + R
(3)

AP
(
k
)
=

∫ 1

0
P (R) dR (4)

mAP =
∑Q

1 AP
(
k
)

Q
(5)

In the above formulas, Q is the total number of classes;
AP(k) denotes the AP value of the kth class, k = 2 in this study;
TP represents the number of litchi fruits correctly detected
(true positive); FP indicates the number of false detected (false

positive); FN represents the number of missed detection (false
negative). F1-score is defined as the harmonic mean of model
precision and recall. AP represents the area of a PR curve
and coordinate axis drawn according to different thresholds.
It is the standard to measure the model’s sensitivity to an
object. The higher the AP value, the better the performance of
the object detection algorithm. The mAP is the average value
of multiple AP classes, representing the universal detection
performance of the algorithm for all classes. Compared with
the F1-score, mAP is an indicator that more closely reflects the
global performance of the network.

Experimental results and analysis

Experimental results
As shown in Figure 6, we used the mAP@0.5 indicator to

measure the model’s overall performance on the training set.
The upward climbing speed of the curve changed from fast to
slow before the 170th epoch. After the 170th epoch, the curve
flattened gradually, and the slope slowly tended to 0. The result
value of mAP@0.5 exceeded 90% during the period. In addition,
comparing the change of the mAP@0.5 value of the model
before and after improvement on the training set, the improved
model consistently exceeded the mAP@0.5 value of the original
YOLOv5 model, and the fluctuation between them is shown in
the yellow shaded part in Figure 6. The above results illustrate
that the improved YOLOv5s model performs better for litchi
fruit detection.

Table 4 presents the evaluation results of the improved
model on the test set consisting of 275 images. The experimental
data shows that the improved YOLOv5s model performed on
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TABLE 4 Evaluation results of the improved model on the test set.

Class P/% R/% mAP@
0.5/%

F1-
score

Model
size/MB

FPS

litchi 88.1 88.4 93.9

raw_litchi 87.1 82.7 90.8 0.87 5.1 78.13

all 87.6 85.6 92.4

the test set with an overall mAP of 92.4%, F1-score of 0.87,
model size of 5.1 MB, and average detection time of 78.13
frames/s (FPS ≥ 24), which meet the requirement of real-
time detection. The gap between the precision and recall of
each class ranges from −0.3 to 4.4%, and the AP values of
mature and immature litchi are similar. In conclusion, the litchi
detection model proposed in this study has the advantages of
high precision, lightweight, and fast inference speed.

Detection effect of the improved model in
different scenarios

Precisely detecting the obscured litchi fruits before
harvesting is significant for litchi yield estimation. Most litchi
tree grows in open and unstructured mountain orchards.
Factors such as uncertain light exposure, occlusion, and
clustered aggregation of fruits, especially the color similarity
between immature litchi fruits and the background, make
detecting all fruits on litchi trees in a natural environment
very challenging.

To investigate the influence of different maturity stages and
light conditions on the litchi fruit detection model, we show
litchi’s image detection results in Figure 7. Where the white
oval indicates that the fruit was falsely detected; the yellow oval
represents the missed detected fruits; the green oval represents
that the model is temporarily unable to distinguish whether it is
immature or mature litchi.

As presented in Figure 7, the improved model has a high
recognition accuracy for litchi fruits in the mature (Figure 7A)
or immature stage (Figure 7C). For the transition period
of litchi fruits, the improved model shows good recognition
performance, but there is one missed detection (as marked
by the yellow oval in Figure 7B) and three places where the
maturity could not be determined (as denoted by the green
oval in Figure 7B). After alignment of detected results, it is
found that the accuracy values judged by the model as mature
litchi are all higher than those of immature litchi. Because the
color distinction of the semi-mature fruits in the middle or later
stages of veraison is not significant, the classification results
of the model are rocked between mature and immature. This
situation will be solved by further refining litchi categories in
future research.

The model can clearly recognize fruits in the forward
and side light conditions with high identification values
(Figures 7D,E). The fruit characteristics are clear and stable

in the forward and side light conditions. The contour of the
fruit area is well separated from the background so that even
an indistinct fruit with wind jitter or camera jitter can be
identified. The model exhibits a friendly performance for the
identification of these two situations. Although fruits in the
backlight condition are mostly recognizable, there appeared
instances where the model falsely detected curled litchi leaves
as immature fruits (as indicated by the white oval mark in
Figure 7F). Without external interference, the model may only
notice the approximate candidate box of the fruit without
wrapping the entire fruit outline. Therefore, extracting fruit
contour edge features under the backlight condition in natural
orchards is highly challenging. Although the method proposed
in this paper has some errors, it still accurately and sensitively
completes the detection of the litchi fruit in the image.

To explore the detection performance of the improved
model for occluded litchi fruits, we collected the detection
clipping images that were occluded in various ways. Figures 8A–
C are the clipping images only obscured by leaves, other
litchi fruits, and branches. It can be seen from Figures 8A–
C that the improved model has better recognition results for
litchi fruits with single occlusion. Fruits mixed with multiple
occlusion methods can also be identified by the improved model
(Figure 8D), but multiple fruits with high overlap or severe
occlusion can be mistaken for one fruit or directly missed
(Figure 8E). The reason may be that litchi fruits grow tightly in
clusters, some fruits are heavily occluded, and essential features
such as contours are lost, making the predicted yield lower than
the actual yield. There is another possibility that the collected
litchi dataset is limited, and it is difficult for the model to use
a limited dataset to traverse various occlusion cases in natural
orchards. This problem will be solved by expanding the dataset
in the future. As shown in Figure 8F, some shaded parts or
curled dry leaves similar to the shape of the fruit may also be
falsely detected as litchi fruits. The morphology of litchi trees
in the natural environment is random and unstructured. The
obstacles in front of the fruit are dense and three-dimensional,
and the degree of occlusion from different perspectives is also
different, causing the illusion of the existence of the fake fruit.
The case will make the predicted output value higher than the
actual output value. To solve this problem, the planting structure
of plants needs to be changed in the future by increasing the
tightness of the combination of agricultural machinery and
agronomy so that the morphology of the litchi tree is more
suitable for mechanized harvesting in agriculture.

To evaluate the detection accuracy of the improved model
for images with different densities, we randomly selected some
images for experimental comparison research. Among them, for
images below 40 litchi fruits, we considered it to be light dense.
For images containing 40–80 litchi fruits, it is called moderately
dense. For images where the number of litchi fruits exceeds 80, it
is called heavily dense. The model detection results under three
density levels are shown in Figure 9.
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FIGURE 7

The improved model’s detection results at different maturity stages. Where the white oval indicates that the fruit was falsely detected; the yellow
oval represents the missed detected fruits; the green oval represents that the model is temporarily unable to distinguish whether it is immature
or mature litchi.

FIGURE 8

The detection effect of the improved model for various occlusion methods appearing in the dataset. (A–D) Indicates that the occluded litchi
can be detected accurately by the improved model, and (E–F) indicates that the occluded litchi are not detected correctly by the improved
model (false detection or missed detection).

Figures 9A–C show the original images of litchi with
three density levels, and Figures 9D–F are the corresponding
litchi detection results. Longitudinally, only one missed
detection occurred in the light and moderately dense images,
and eight missed detections occurred in the heavily dense
images. The missed detection rate was within 3%. After

viewing the enlarged Figure 9F, it is known that two
fruits missed detection because of the complete overlap
of different sizes. There are three missed detections
because of severe occlusion of leaves and incomplete
splicing of fruit contour edges. The remaining missed
detections resulted from distortions or blurring of the
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FIGURE 9

The detection effect of the improved model on litchi images with three density levels.

TABLE 5 The effect of different improvement schemes on the model performance.

Models Image size mAP@0.5 (%) Parameters Model size (MB) FPS

YOLOv5s 640 × 640 88.9 7,015,519 13.7 104.17

+ ShuffleNet v2 640 × 640 87.1 3,680,751 7.42 119.05

+ CBAM 640 × 640 89.7 7,058,821 13.8 108.70

+ 1280 640 × 640 93.2 7,015,519 14.1 48.31

+ ShuffleNet v2+ CBAM 640 × 640 88.4 3,716,133 7.5 114.94

+ 1280+ ShuffleNet v2+ CBAM 1, 280 × 1, 280 92.5 3,716,133 7.95 56.82

+ 1280+ ShuffleNet v2+ CBAM+ cut (ours) 1, 280 × 1, 280 92.4 2,251,496 5.1 78.13

Bold values indicates the final version of model improvements in this paper.

fruit caused by a long distance so that the improved
model could not confirm the contour area of the fruit.
The next step is sharpening the fruit’s contour using
a motion blur super-resolution algorithm. In terms of
horizontal comparison, the improved model shows better
recognition performance on litchi images with different density
levels and maintains a high number of recognitions and
recognition rates.

TABLE 6 Detection results of different object detection algorithms on
litchi images.

Models mAP (%) Model size (MB) FPS

YOLOv5s_ShuffleNet_v2_
CBAM_1280_cut (ours)

92.4 5.1 78.13

YOLOv5s 88.9 13.7 104.17

YOLOv4-tiny 74.7 22.4 124.89

MobileNetv3-YOLOv4 82.87 53.7 56.83

SSD with VGG 69.13 91.1 25.66

Bold values represent the best performance exhibited among detection models.

Ablation experiments

Based on the YOLOv5s model, we analyzed the influence of
different improvement schemes on the detection performance
of the model employing ablation experiments. All improvement
operations were trained and validated using the same
training and validation sets, and the tests were done on
the same test set. The experimental results are shown in
Table 5.

As shown in Table 5, the mAP of the original YOLOv5s
model on 275 test images is 88.9%, the F1-score is 0.85,
the number of parameters is 7,015,519, the model size is
13.7 MB, and the FPS is 104.17 frames/s. In contrast to the
original model, the three improvement points proposed in
this study positively impact different aspects. After replacing
the backbone network alone, the model’s overall performance
was slightly fine-tuned. It is worth noting that the model’s
number of parameters and size is reduced to approximately
half of the original model. When the CBAM module was
added again, the mAP of the model showed a hint of
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FIGURE 10

Schematic diagram of the detection scheme of the Litchi APP.

elevation and a slight decrease in FPS values. After setting
the input size of the model to 1, 280 × 1, 280 on this
basis, the model gained more refined feature information.
Its mAP reached 92.5%. The model size increased slightly
with the enlarged image size, and the detection performance
was significantly improved. After optimizing the network,
the number of parameters continued to decrease when the
overall mAP was similar, and the detection speed of the
model accelerated by 37.5%. Compared with the original
YOLOv5 model results, the mAP of the improved model
presented a 3.5% improvement and 62.77% compression in
model size. In summary, the improved method proposed in this
paper achieves high-precision, small-scale, and fast detection
performance at a large scale, which meets the requirements of
real-time detection.

Comparison with other deep learning
models

Several more classical network models were
selected for retraining in this study to investigate the
performance differences between the improved model
and other models. We adopted the control variables
method to guarantee the reliability of the results. All
models were trained on the same training set using the
same training environment, and finally, the detection
results of the network models were contrasted on
the same test set.

The comparison results are shown in Table 6. The
differences between the models are mainly reflected in mAP
detection performance, model size, and detection speed. The
recognition results of the original YOLOv5s model for litchi
fruits are 6.03, 14.2, and 19.77 percentage points higher

than those of the MobileNetv3-YOLOv4 model (82.87%), the
YOLOv4-tiny model (74.7%), and the SSD with VGG model
(69.13%), respectively. The recognition result of the improved
model is 3.5% higher than that of the original YOLOv5s model.
In conclusion, it can be concluded that the improved model
has better recognition performance than the other four network
models. Compared with the rest of the object detection networks
on the model size, the improved YOLOv5s network is only
5.1 MB, which is the smallest. In terms of detection time, the
detection frame rate of the improved model is 78.13 frames
per second, which is 46.76 frames/s lower than that of the
YOLOv4-tiny model but significantly higher than that of the
MobileNetv3-YOLOv4 model and the SSD with VGG model.
Therefore, our model has superior recognition results, model
size, and inference speed as an improved lightweight object
detection model.

FIGURE 11

The fitted curve between the ground truth in the orchard and
the predicted value of the Litchi APP.
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The deployment of model APP
Based on the model proposed in this study, we developed

a mobile application software on the Android platform
that can count the number of litchi fruits at different
maturity stages in the image. Figure 10 is a schematic
diagram of the detection scheme of the Litchi APP. The
design scheme of the software was to first convert the
pt model file from the trained PyTorch model into an
ONNX model. Secondly, the ONNX model was converted
into the NCNN model, and then the modified model was
subjected to Fp16 quantization operation to complete the
final model conversion. Finally, Android Studio software’s
interface development and programming were carried out. The
software had the online and offline detection function for litchi
images. Some results for the selected litchi images, such as
the number of litchi fruits with different maturity levels, the
total number of fruits in the image, and the total time spent
in detecting images, will be shown in the result area after
model recognition.

To evaluate the detection precision by the application
software, thirty images from the test set containing different
maturity, light conditions, and density levels were randomly
selected for detection. Each image was tested three times, and
the average detection time was calculated. The test results were
recorded and compared with the actual number of fruits. The
fitted curve between the actual result value of the image and
the software test result is shown in Figure 11. The Equation
of the fitted curve is in the form of a linear function, and
the correlation coefficient R2 is close to 1, indicating that the
software test result value is very close to the actual result
value of the image. It can be inferred that the software
we developed has a high-precision detection performance in
yield estimation. Meanwhile, for the detection speed of the
model on the mobile phone terminal, the average time for
statistical test detection on a smartphone with a Kirin990
processor is 182 ms.

Conclusion

This study focused on litchi images collected under natural
conditions. According to the growth characteristics of litchi, an
object detection method and application software for estimating
litchi yield in orchards were proposed and implemented. In this
study, litchi images were first acquired, and the corresponding
dataset was established. After that, ShuffleNetv2 was used as
the backbone network of the improved model, and the CBAM
module and a higher pixel model input size were introduced to
improve the precision of the model. On this basis, the improved
network structure was optimized to speed up the detection
speed. Finally, the performance of the improved model was
verified by training and comparative experiments. The main
conclusions are as follows:

(1) This study used the improved model to detect litchi fruits
on the test set and performed ablation experiments. The
mAP of the improved model on the test set is 92.4%.
Compared with the original YOLOv5s model, the mAP
of the improved model presents a 3.5% improvement and
62.77% compression in model size. At the same time, the
experimental results in different maturity stages, lighting
conditions, occlusion methods, and density levels show
better precision and robustness.

(2) Compared with other object detection models, the
improved model has the highest mAP result. Regarding
model size, the model specification of the improved
YOLOv5s algorithm is much lower than that of other
conventional algorithms, only 5.1MB. Meanwhile, the
method in this paper is significantly more efficient in
detecting speed than the MobileNetv3-YOLOv4 model and
SSD model. Comparative experimental data show that the
improved model achieved superior recognition accuracy
and speed performance.

(3) A mobile application for litchi counting and yield
estimation was developed based on the improved model,
which realized the convenient and quick access to
litchi yield information through the mobile phone. The
correlation coefficient R2 between the application test
and the actual results is 0.9879, which again shows the
model’s accuracy in yield estimation. It can further provide
technical support for the visual recognition of litchi
harvesting robots in smart orchards.
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