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of nematode cysts
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The beet cyst nematode Heterodera schachtii is a plant pest responsible

for crop loss on a global scale. Here, we introduce a high-throughput

system based on computer vision that allows quantifying beet cyst nematode

infestation and measuring phenotypic traits of cysts. After recording

microscopic images of soil sample extracts in a standardized setting,

an instance segmentation algorithm serves to detect nematode cysts in

these images. In an evaluation using both ground truth samples with

known cyst numbers and manually annotated images, the computer vision

approach produced accurate nematode cyst counts, as well as accurate

cyst segmentations. Based on such segmentations, cyst features could be

computed that served to reveal phenotypical di�erences between nematode

populations in di�erent soils and in populations observed before and after the

sugar beet planting period. The computer vision approach enables not only fast

and precise cyst counting, but also phenotyping of cyst features under di�erent

conditions, providing the basis for high-throughput applications in agriculture

and plant breeding research. Source code and annotated image data sets are

freely available for scientific use.

KEYWORDS
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1. Introduction

Many nematode species, such as the beet cyst nematode (BCN) Heterodera schachtii,

are parasitic on plants and responsible for losses in crop yield that amount to annual

financial losses of more than 150 billion USD (Singh et al., 2015). Screening of soil

samples for assessing nematode infestation qualitatively and quantitatively is a preventive

measure and an integral part of pest management strategies in agriculture. It is also

routinely performed by state institutions for import-export inspections of plants.

Cyst nematodes persist in the soil over many years as eggs inside a cyst, which is

a protective shell formed by the remains of the former female body. Once a host plant

germinates, juveniles are stimulated to hatch from the eggs and to leave the cyst. Juveniles

move through the soil matrix, penetrate the roots and induce a so-called syncytium in the

root tissue, causing damage to the plant. A female nematode can produce several hundred

eggs. Once the eggs are developed, the female nematode dies and its body wall hardens,

forming a brown, sclerotized cyst.
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The ability to quantify nematode infestation is a prerequisite

for control measures targeted at nematodes, as well as for the

development of nematode-resistant plant breeding lines. For

example, nematode population density may be estimated by cyst

counting: The cysts need to be hand-picked from soil samples

that still contain organic debris, where the amount of debris

depends on the particular sample extraction method (Hallmann

et al., 2020). Manual counting is a time-consuming task,

and counting accuracy is affected by subjective decisions,

the ability to keep up concentration and the experience of

the human counter in separating cysts from other particles.

Hence, only automated counting is suitable for high-throughput

applications.

While the number of nematodes is an important quantitative

measure, phenotypical features, such as size, shape and color

of the cysts, are also relevant: It could be shown that increased

cyst size is an indicator of adaptation of a potato cyst nematode

population to plant resistance (Fournet et al., 2016), suggesting

that the cyst phenotype is relevant for resistance applications.

While other data modalities, e.g., genetic data, may also be

applied to estimating nematode infestation (Bogale et al., 2020),

only image data can be used to characterize the phenotype of a

cyst.

Here, we introduce an automated system based on

computer vision that serves as the basis for extracting

quantitative measures of nematode infestation from soil samples

(Figure 1A). An optical microscopy readout followed by

instance segmentation to detect individual cysts surrounded

by organic debris particles (Figure 1B) enables fast processing

in a high-throughput manner, while also providing access to

phenotypical features. The system relies on a supervised learning

model trained to detect cysts of the nematode Heterodera

schachtii that is primarily parasitic on sugar beets. With

additional training data, the system could be generalized to other

nematode species as well.

We have previously performed nematode cyst instance

segmentation on images that are comparable to the image data

from this paper, being recorded with a preliminary version of

our image recording hardware: Chen et al. (2019) have proposed

a method for cyst instance segmentation that relies on instance

proposals followed by instance classification with a support

vector machine (SVM). The method was designed for small data

sets, where deep learning networks do not perform well due to a

lack of training data. For the large annotated data sets from this

paper, we employ deep learning strategies instead.

Here, we focus on the detection of intact nematode

cysts as they occur in unprocessed soil sample extracts.

Once the cysts are broken up, e.g., through crushing,

the eggs or juvenile nematodes contained therein will be

released. Nematode egg detection has been performed

by Akintayo et al. (2018), Kalwa et al. (2019), and Chen

et al. (2020) have considered juvenile detection. We

plan to include these additional instance segmentation

scenarios into a future version of the high-throughput

phenotyping system.

The nematode egg detection scenario from Akintayo et al.

(2018) is similar to our work in that relatively rare target

objects need to be detected amidst a large number of cluttered

distractor objects. The authors also employ a deep learning

strategy for this detection task. While they consider processed

samples to which fuchsin acid staining has been applied and that

contain crushed cysts, our approach enables high-throughput

applications without the need for physical treatment or for

staining that can interfere with the phenotypical features.

In this work, we introduce a computer vision based system

for high-throughput phenotyping of nematode cysts in extracts

from soil samples. This is a challenging scenario with target

cysts immersed in a large number of distractors, such as

soil particles and plant seeds. For the purpose of model

training and evaluation, we created three image data sets

with annotated segmentation masks or counts of cysts: Cyst-

Segmentation, Cyst-Count and Cyst-Count-Artificial (Section 2).

An extensive evaluation shows that our system is able to detect

and segment nematode cysts with high accuracy (Sections 3.1–

3.3). In addition, we present a use case for cyst phenotyping,

demonstrating how cyst populations can be characterized

morphologically (Section 3.4).

2. Materials and methods

2.1. Sample collection and preparation

Soil samples were taken from fields with a known infestation

history of the beet cyst nematode Heterodera schachtii. Samples

came from different field plots (1.8 × 4.5 m) distributed in a

traditional sugar beet growing area in the Rhineland (Western

Germany) and from an experimental field at the Julius Kühn-

Institute field station in Elsdorf, also situated in the same

growing region (50◦5541.27N; 6◦3375.27 E). The samples were

compiled by mixing and homogenizing soils from 10 different

plots with a comparable population density, either from the

top soil (0–30 cm) or the sub soil (31–60 cm). Using the semi-

automatic soil sampler system NH120 (Nietfeld, Badbergen,

Germany), 12 evenly distributed soil cores were taken from

each plot.

Soil extracts for image acquisition were prepared using a

sieve combination (2 mm and 100 µm). Subsequently, cysts

were extracted from sieve residues by the centrifugation flotation

technique (Viaene et al., 2020) using a high capacity centrifuge

(Avanti J-HC, Beckman Coulter, Brea USA). The centrifugation

speed was set to 3,000 g. Sieve residues were mixed into a

MgSO4 solution (1.26 g/ml) to facilitate buoyancy of the organic

fraction. For each sample, 100 or 300 g of field fresh soil were

processed, resulting in a soil extract containing a number of cysts

ranging from zero to several hundreds (Table 1). After pouring
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FIGURE 1

Computer vision pipeline for instance segmentation of nematode cysts. (A) A high-resolution image is partitioned into tiles that are processed

separately. For each image tile, patches are processed by the neural network to generate cyst and boundary masks. Stitching the tile-level masks

together results in whole-image masks that are further processed to obtain the final instance segmentation (Methods). (B) Microscopical image

of a soil sample extract containing nematode cysts (annotated in green) and organic debris particles. (C) Examples for nematode cysts and

debris particles that resemble the cysts.

the centrifugate into a funnel, cysts along with the remaining

organic fraction were collected on a white filter paper (185 mm,

MN 616 Macherey Nagel, Germany). A second filter paper put

underneath absorbed excess water to avoid reflectance effects on

the sample surface caused by a light source above the sample.

2.2. Image recording

Images of the samples were recorded by JKI (Julius

Kühn Institute) with a PhenoAIxpert HM prototype

(Supplementary Figure S3) provided by LemnaTec GmbH

(Aachen, Germany). It consists of an industrial RGB camera

(resolution: 41, 12 × 3, 008 pixels) combined with a high-

magnification lens system (1× magnification with 0.25× lower

lens). The system is mounted 35 cm above the object and has

a field of view of 35 × 25 mm. Samples are illuminated with

horizontally oriented LEDs (4, 000 K) arranged around the

sample stage. All components are mounted inside an opaque

cabinet that shields them from external light.

In the PhenoAIxpert HM prototype, the sample stage

consists of a sample holder that can be moved manually to

predefined positions, such that the complete surface of the

sample can be imaged in a series of photographs. Image
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TABLE 1 Samples used for cyst count validation.

Dataset Sample Replicates Images Weight Cysts Description

C
ys
t-
C
o
u
n
t

Top-Low-A debris/clean 6 6x(30 + 12) 300 g 635 top soil,

low cyst densityTop-Low-B debris/clean 6 6x(30 + 12) 300 g 1,122

Top-High-A debris/clean 6 6x(30 + 12) 300 g 1,494 top soil,

high cyst densityTop-High-B debris/clean 6 6x(30 + 12) 300 g 1,616

Sub-Low-A debris/clean 6 6x(30 + 12) 300 g 245 sub soil,

low cyst densitySub-Low-B debris/clean 6 6x(30 + 12) 300 g 505

Sub-High-A debris/clean 6 6x(30 + 12) 300 g 1,224 sub soil,

high cyst densitySub-High-B debris/clean 6 6x(30 + 12) 300 g 900

C
ys
t-
C
o
u
n
t-

A
rt
ifi
ci
al

Cyst30-100 6 6× 30 100 g 6× 30
30 cysts with debris

Cyst30-300 6 6× 30 300 g 6× 30

Cyst60-100 6 6× 30 100 g 6× 60
60 cysts with debris

Cyst60-300 6 6× 30 300 g 6× 60

Cyst120-100 6 6× 30 100 g 6× 120
120 cysts with debris

Cyst120-300 6 6× 30 300 g 6× 120

Cyst240-100 6 6× 30 100 g 6× 240
240 cysts with debris

Cyst240-300 6 6× 30 300 g 6× 240

D
eb
ri
s

Debris-Cyst120-100 6 6× 30 100 g 0 debris of Cyst120-100

Debris-Cyst120-300 6 6× 30 300 g 0 debris of Cyst120-300

Debris-Cyst240-100 6 6× 30 100 g 0 debris of Cyst240-100

Debris-Cyst240-300 6 6× 30 300 g 0 debris of Cyst240-300

The Cyst-Count data set contains samples from the top soil (0-30 cm) and from the sub soil (31-60 cm) of the sugar beet field (factor soil_type). Samples A and B were collected after (in

October, 2020) and before (in April, 2021) the sugar beet planting season, respectively (factor time_point). In each case, there are 30 images of samples with debris particles and 12 images

of manually cleaned samples without debris. A manual cyst count serves as the ground truth. For the Cyst-Count-Artificial data, different numbers of hand-picked cysts were added to

cyst-free extracts of soil samples. The cyst-free extracts alone served as an empty control referred to as the Debris data.

acquisition is triggered manually with a control computer. In

the future, the sample stage will be replaced by a motorized

X-Y table, which will then automatically move the sample

to predefined positions and trigger image acquisition in a

synchronized manner.

2.3. Data sets and annotation

In order to validate the cyst detection and segmentation

performance of the automated system, i.e., image recording

followed by the computer vision pipeline, we created three image

data sets and associated evaluation scenarios:

• Cyst-Segmentation: Segmentation scenario. Cyst

boundaries were manually annotated on the images.

The data set consists of 229 images with a total of 6, 331

annotated cysts. We randomly split the data into the

80% training set (183 images containing 4, 937 cysts) and

the 20% test set (46 images containing 1, 394 cysts). The

training set was used for training of all models in this work,

and the test set served for evaluation of segmentation

accuracy (Section 3.3). Considering that cysts surrounded

by debris particles can easily be overlooked, two raters

labeled the data independently with the polygon tool

in the annotation software IMANNO developed by LfB

(publicly available). The two sets of annotations were

then manually merged and validated by a nematologist

(co-author Matthias Daub).

• Cyst-Count (Table 1): Cyst counting scenario. The ground

truth cyst count was obtained through manual counting.

We considered soil samples from two different soil layers

(top soil: 0–30 cm, sub soil: 31–60 cm) with either low

or high cyst density. For each soil type (Top-Low, Top-

High, Sub-Low and Sub-High), we conducted soil sampling

before and after the sugar beet growing season, 6 samples

each time. A total of 48 samples (4 types ×2 timepoints

×6 samples) were collected, processed and recorded with

30 images per sample (the “debris” sample). For each

sample, we furthermanually separated the cysts from debris

particles to obtain the “clean” samples (12 images per

sample). Cyst separation and counting were performed

simultaneously by the professional laboratory staff from

JKI.

• Cyst-Count-Artificial (Table 1): Cyst counting scenario. We

artificially created samples with exact cyst numbers by

adding hand-picked cysts to cyst-free soil extracts. We

controlled the cyst count (30, 60, 120, and 240 cysts) and
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the amount of soil extracts (from 100 to 300 g soil sample),

generating 6 samples for each combination.

2.4. Computer vision pipeline for cyst
segmentation

We employed a deep learning model with a convolutional

neural network (CNN) in a semantic segmentation setting,

performing pixel-level classification of “cyst vs. non-cyst,” as well

as “boundary vs. non-background.”

As the images enclose a large field of view, they had to be

processed patch-wise in a split&stitch manner due to GPU

memory limitations. A semantic segmentation map is simpler

andmore efficient to stitch than the instance label map generated

by detection-based approaches such as Mask-RCNN (He et al.,

2017) and YOLO (Bochkovskiy et al., 2020).

After stitching together the patch-level maps to obtain

the image-level semantic segmentation maps for “cyst” and

“boundary,” we combined them to compute the final image-level

instance segmentation map. For a flowchart of the computer

vision pipeline, see Figure 1A.

Network architecture. The network takes three-channel RGB

images as input. Raw pixel intensities are linearly scaled, such

that every image has zero mean and a standard deviation of one.

As the backbone network, we chose a U-Net (Ronneberger et al.,

2015). In our U-Net implementation, we follow the typical U-

Net architecture, but each convolutional layer is preceded by a

batch normalization layer before activation.

We also experimented with two ResNet (He et al., 2016)

variants (ResNet 50, ResNet 101). ResNet has been proposed for

and trained in an image classification setting. Here, we designed

a segmentation model based on the original ResNet architecture:

First, the fully connected layer and the global average pooling

layer are removed, making the model fully convolutional. Then,

we construct the decoding path with feature maps from the

last convolutional layer of the conv1, conv2, conv3, conv4, and

conv5 block, which have 1/2, 1/4, 1/8, 1/16, and 1/32 of the

original image resolution, respectively. The decoding path starts

from the feature map with the lowest resolution and aggregates

features iteratively by upsampling the lower resolution feature

map and concatenating it with the one from the next resolution

level:

f ′i = Ui(f
∗
i ), i = 1, 2, 3, 4, 5

fi = C(f ∗i , f
′
i+1), i = 1, 2, 3, 4

fout = Uout(f1)

where f ∗i is the feature map extracted from the i-th conv

block of ResNet. Ui and Uout upscale the feature map via a

transposed convolution layer with a 2 × 2 kernel and a 2 × 2

stride. C denotes a channel-wise concatenation of feature maps.

For each concatenation, we keep the feature maps, f ∗i and f ′i+1,

balanced with the same channel number. Therefore, the filter

number of the transposed convolution layer Ui is determined

by the channel number of feature map f ∗i−1.

At the output end of the network, we pass the feature

map fout to two independent convolutional layers, which are

responsible for cyst and boundary recognition, respectively:

Scyst = σ ( convcyst(fout) ),

Sboundary = σ ( convboundary(fout) )

Both convolutional layers, convcyst and convboundary, use a

single 1 × 1 convolutional kernel, and the outputs are activated

with a sigmoid function σ (x) = 1/(1+ exp(−x)).

Model training. We trained the model on the images from the

training set of the Cyst-Segmentation data and then applied it to

the test set, as well as to the other data sets from the counting

scenarios (Table 1) that served as additional test sets.

For model training, we split the original images into

512 × 512 patches. Patches with less than 500 cyst pixels were

ignored. We randomly selected 10% of the extracted patches for

validation. The rest training patches were augmented: In order to

not interfere with phenotypical features, such shape and color,

only random rotation, random Gaussian blur (σ = 3) and

random gamma transformation (γ ∈ [0.5, 2]) were performed.

The model was trained with the standard binary cross-

entropy loss ce(p1, p2) = −p2 log(p1) − (1 − p2) log(1 − p1),

both for cyst prediction and for boundary prediction:

Loss = CE(Scyst , C)+ CE(Sboundary, B)

The function CE computes the mean value of ce applied

element-wise to every pixel. C and B are the binary maps for

“cyst” and “boundary,” respectively. To obtain the boundarymap

B, we performed a morphological dilation and erosion on the

label map, using a disk-shaped structuring element of radius 2.

The difference between the dilated and eroded label map was

taken as the boundary training map.

We trained the models for about 550 k iterations with the

batch size of 4, using the RMSprop optimizer (Hinton et al.,

2014) with a gradient decay of 0.9. The learning rate was 0.0001

initially and decreased exponentially to 90% of its previous

value every 10, 000 steps. During training, we saved the best

model based on the validation metric AJI (Kumar et al., 2017).

Model building and training was performed with Tensorflow

(version 2.6).

Split&stitch processing. We employed a split&stitch strategy in

order to be able to process images encompassing a large field of

view. After splitting an image into patches, we computed score

maps for “cyst” and “boundary” for each patch using the trained

CNN model. Then, score maps at the patch level were stitched

together to obtain the score map at the image level.
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1. Splitting and patch processing: An image was split into

overlapping patches of size 512×512 (256 pixels overlapped).

Each patch was processed separately by the trained CNN

model, obtaining a cyst score map and a boundary score map.

2. Stitching: Patch predictions were stitched back to the original

positions in the image. In the region of overlap, we averaged

over the cyst scores from different patches, whereas for the

boundary score, we took the maximum. This was motivated

by the fact that the boundary is the more vulnerable structure

and that successful separation of adjacent cysts relies on a

continuous boundary segment between them. For stitching,

we also removed the outermost 64 pixels that contain more

erroneous predictions due to partial visibility of cysts.

Instance segmentation. Finally, we obtained an instance

segmentation from the image-level semantic segmentation.

1. Instance separation: We employed a threshold of 0.5 to

distinguish cyst pixels from background pixels in the cyst

map. In the same way, boundary pixels were obtained

from the score map. By excluding cyst pixels that were

also boundary pixels, cyst instances could be separated

spatially. Instances on the binary, thresholded map were

then uniquely labeled by connected components labeling

(8-neighbor connection).

2. Post-processing: Cyst pixels not assigned to any cyst

instance were merged to the closest one. Furthermore, noisy

predictions were removed based on a safe minimal size (500

pixels).

2.5. Evaluation metrics

For the fully annotated data set Cyst-Segmentation, we

matched each predicted object to the ground truth object with

the largest intersection over union (IoU). Using a certain IoU

threshold, a match can be considered as a success (threshold

exceeded) or a fail. The successful matches define the True

Positives (TP), while predicted objects that have no successful

match are False Positives (FP), and ground truth objects without

successful matches are False Negatives (FN). Accumulating these

values through images of the whole data set, a precision metric

(P) can be defined as:

PIoU =
TPIoU

TPIoU + FPIoU + FNIoU
.

By sweeping over a range of IoU thresholds, an average

precision under different levels of matching rigor can be

computed as an overall metric, taking into account the effect of

segmentation accuracy:

AP =
1

|IoU|

∑

IoU

TPIoU

TPIoU + FPIoU + FNIoU
,

where the threshold values range from 0.5 to 0.95 with a step

size of 0.05 in this work. Furthermore, we computed the positive

predictive value (PPV) to quantify detection accuracy, and the

False Negative Rate (FNR) to measure how many objects were

missed:

PPVIoU =
TPIoU

TPIoU + FPIoU
,

FNRIoU =
FNIoU

TPIoU + FNIoU
.

We also report the Average PPV (APPV) and the Average

FNR (AFNR) over different IoU matching thresholds. As

a further measure for segmentation quality, we used the

Aggregated Jaccard Index (AJI) (Kumar et al., 2017). Compared

to Jarccard Index, AJI accumulates the intersection and union

area between ground truth objects and their best matched

prediction objects. Thus, AJI not only measures the accuracy

of segmentation, but also indirectly reflects the quality of object

separation.

3. Results and discussion

3.1. Evaluation of cyst counting
performance on manually annotated
images (Cyst-Count)

In the Cyst-Count scenario, we compared manually

annotated and automatically computed cyst counts for a variety

of soil sample types. Samples came from two different soil layers

(top soil: 0–30 cm, sub soil: 31–60 cm) and had either low

or high cyst density (Section 2.3). For all combinations of

these categories (Top-Low, Top-High, Sub-Low and Sub-High),

we considered samples with cysts and organic debris particles

(“debris”), as well as clean samples (“clean”) where the cysts had

been manually separated from the debris particles.

Across all soil sample types, manual cysts counts were

similar to automatic cyst counts, both for the “debris” and for

the “clean” case (Figure 2A). Pearson correlation coefficients for

the correlation between manual and automatic count were high,

0.981 for “clean” and 0.975 for “debris” (Figure 2B), showing that

the relative amount of cysts could be estimated reliably with the

automatic method.

The samples contained between about 50 and about 300

cysts. Fitting a linear regression model to the manual (x) vs.

automatic (y) cyst count results revealed a small y offset of only

≈ +3 for the automatic cyst count on the clean samples, while

the y offset was ≈ +22 for the debris samples (Figure 2B).

Hence, also the absolute count predictions were highly accurate

on the clean samples, while we observed a slight overestimation

of the counts on the debris samples.
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FIGURE 2

The computer vision pipeline produces accurate cyst counts: Comparison with manual counts. (A) Data set Cyst-Count (Table 1): Manual and

automatic cyst count on samples with debris particles, as well as automatic count on clean samples without debris for di�erent types of soil

samples. N = 6 samples per bar. (B) Data set Cyst-Count: Manual count vs. automatic count on samples with debris and on clean samples.

N = 2× 4× 6 samples. (C) Data set Cyst-Count-Artificial: Automatic count on samples with 30/60/120/240 cysts transferred to cyst-free

extracts from 100g and 300g soil samples, respectively. The correct cyst numbers are marked by dotted lines. (D) Data set Debris: Automatic

count on the control samples without cysts, i.e., the number of False Positives (FP). N = 12 samples per box plot. Mean FP count (100 g sample):

13.42± 3.62. Mean FP count (300g sample): 23.75± 6.11. (E) Data set Cyst-Count-Artificial: Estimated number of False Negatives (#FN). We

computed #FN = #P−#TP, where #P is the correct cyst count and #TP = #cyst_detections - #FP, using the FP estimate from the Debris

data in d). Mean FN count (120 cysts): 15.25± 7.03. Mean FN count (240 cysts): 29.16± 4.81.

3.2. Evaluation of cyst counting
performance on data with an exact
ground truth (Cyst-Count-Artificial)

The manually annotated ground truth for Cyst-Count may

still be affected by False Positive (FP) detections, as debris

particles can resemble the cysts (Figure 1C). For the Cyst-

Count-Artificial data set (Table 1), we could obtain an exact

ground truth by adding 30/60/120/240 cysts to cyst-free soil

sample extracts weighing 100 or 300 g, respectively. The latter

also served as empty control samples to estimate the number

of FPs.

True and predicted cyst numbers were in good agreement

for the samples with higher cyst numbers (Figure 2C), although

we observed a two-fold overestimation of the cyst count for the

30 cysts/300 g sample, i.e., the sample with the smallest number

of cysts and a large amount of debris particles.

Sample weight had an influence on the count: The automatic

count for the 300 g samples with cysts was consistently higher

(12.33± 1.94) than for the 100 g samples with the same number

of cysts (Figure 2C). On the empty controls without cysts, on

average 13.42 ± 3.62 FP cysts were detected for the 100

g samples, and 23.75 ± 6.11 FP cysts for the 300 g samples

(Figure 2D). The latter is also consistent with the+21.56 y-offset
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in Figure 2B that corresponds to an overestimation of the same

magnitude for the 300g samples from the Cyst-Count data with

its image-based manual counts.

The number of FPs was dependent on sample weight, as the

higher amount of debris particles in the heavier samples caused

more FP detections, but it was not dependent on the number

of cysts (Figure 2D). Conversely, the number of False Negatives

(FNs) showed no clear dependence on sample weight, but it was

dependent on the number of cysts in the sample, with higher cyst

numbers leading to more FNs (Figure 2E).

The observed number of FP detections was approximately

constant for samples of a given weight, and it was low compared

to the typical number of hundreds of cysts in a sample: Only

for the artificially small test sample with 30 cysts, the average

amount of 23.75 FPs on the 300 g samples did cause a substantial

overestimation of the true cyst count. For larger numbers of

cysts, the constant offset due to FP detections became less

and less relevant, such that true and observed count were

approximately equal already for the 120 cysts sample. For the

largest sample with 240 cysts, the FN dependence on the number

of cysts even led to a slight underestimation of the true cyst

count (Figure 2C). Hence, for small cyst numbers close to zero,

the error is dominated by the constant FP offset, whereas for

large cyst numbers the FP offset is negligible and only the linear

increase in FNs is relevant.

In summary, the automatic counting procedure achieved

an approximately constant miss rate across a range of cyst

numbers, as indicated by the high count correlation in Figure 2B,

and a FP rate that depended on the sample weight and that

was approximately constant given the weight, as indicated

by the empty sample analysis in Figure 2D. For all but very

small cyst numbers per sample, the automatic count yielded

accurate results.

3.3. Evaluation of segmentation accuracy
with a manually annotated ground truth
(Cyst-Segmentation)

We next evaluated the accuracy of the nematode cyst

segmentations. For the Cyst-Segmentation scenario, the 46 test

images with in total (according to the ground truth) 1,394 cysts

immersed in debris particles had to be segmented. The manually

segmented ground truth was provided by a nematologist, while

the automatic segmentation was performed with the computer

vision pipeline that relies on the U-Net as a backbone network

(Methods). For comparison, we also employed two alternative

network architectures, ResNet50 and ResNet101 (Methods).

Due to the variable number of cysts per image, we chose

an evaluation setting based on cumulative scores, i.e., all cysts

from all images were pooled. We compute the False Negative

Rate (FNR, 1 - recall) and Positive Predictive Value (PPV) at

IoU thresholds τ = 0.5, . . . , 1.0 for each of the three network

architectures (Figure 3A).

The same trend could be observed for all three network

architectures (Figure 3A): For IoU thresholds up to τ = 0.8,

the FNR, that measures the amount of missed cysts, remained

constantly at about 0.2, indicating that approximately 20% of the

cysts were missed and that 80% could be segmented with such a

good IoU. For higher τ , the FNR increased, but was still about

0.5 for τ = 0.9, i.e., half of the cysts could be segmented with a

very high IoU of 0.9.

The Positive Predictive Value (PPV, precision), that

measures the amount of all true positives among all true and false

positives, exhibited the opposite trend, being constantly high

above 0.8 up to τ ≈ 0.8 and decreasing for higher τ , crossing

the FNR line at τ ≈ 0.9.

While the results were similar for all network architectures,

the U-Net had slightly, but consistently, lower FNRs (and

slightly higher PPVs) for τ up to about 0.9.

In Figure 3B, we report FNR and PPV for selected IoU

thresholds, as well as a number of aggregated metrics, such as

Average Precision (AP), that summarize segmentation accuracy

across several IoU thresholds (Methods). For all of these

evaluationmetrics, the three architectural variants performed on

a similarly high level.

In summary, we observed only minor performance

differences for the alternative networks, indicating that network

architecture is not a critical part in the computer vision pipeline

as long as a reasonable choice is made. Overall, the computer

vision pipeline with the default backbone network yielded

accurate instance segmentations with about 80% of the cysts

being segmented with a good IoU of about 0.8 or higher.

For qualitative results, see the segmentation examples with

annotated IoU scores in Figure 3C.

3.4. Phenotyping nematode cysts

Finally, we employed the high-throughput-system to

provide a use case for cyst phenotyping. We generated

segmentation masks for all the cysts that were detected on the

Cyst-Count data (clean version without debris particles) and

then computed two morphological features, cyst size (in pixels)

and length-width ratio, to describe the phenotype of a cyst. The

Cyst-Count data (Table 1) consists of samples taken before and

after the sugar beet planting season (factor time_point with levels

“before season” and “after season”). The samples were extracted

either from “top soil” or from “sub soil” (factor soil_type). As

we observed no interaction between the factors time_point and

soil_type (Supplementary Figure S1), we could pool the samples

from both time points for the analysis of the soil type and

vice versa.
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FIGURE 3

The computer vision pipeline produces accurate cyst segmentations: Comparison with a manually segmented ground truth. Data set:

Cyst-Segmentation. (A) Positive Predictive Value (PPV) and False Negative Rate (FNR) for a range of Intersection over Union (IoU) thresholds. (B)

Segmentation quality measures (Methods) for the computer vision pipeline with a U-Net backbone and for two architectural variants (ResNet50

and ResNet101 backbone): Aggregated Jaccard Index (AJI), Average Precision (AP), PPV at di�erent IoU thresholds, Average PPV (APPV), FNR at

di�erent IoU thresholds, Average FNR (AFNR). (C) Qualitative examples for cyst segmentation masks (U-Net). Red lines mark the ground truth

boundaries. Selected instance masks are annotated with IoU scores.

3.4.1. Phenotypical feature distributions are
significantly di�erent between cyst populations
on images without debris

Inspecting the feature distributions, we discovered clearly

visible differences between the cyst populations from before

and after the planting season (Figures 4A,B). The differences

between the populations were significant: Based on the

Anderson-Darling k-sample test (Scholz and Stephens, 1987) (R-

package kSamples), the null hypothesis that the two populations

come from the same distribution could be rejected, in separate

tests, both in terms of size (T.AD = 145.6, p = 1.218 × 10−61)

and in terms of the length-width ratio (T.AD = 154.3, p =

2.621× 10−65; Note that we report p-values without adjustment

for multiple testing).

The feature distribution for cyst size was flatter for the “after

season” samples than for the “before season” samples, with less

small and more large cysts in the samples that were taken after

the planting season (Figure 4A). The average size of cysts after

the planting season (≈ 3, 215 pixels) was about 18% higher than

the average size before the season (≈ 2, 730 pixels). The “after

season” distribution for the length-width ratio as a feature was

shifted toward smaller ratios compared to the “before season”

distribution (Figure 4B), suggesting a generally more circular

shape for the cysts extracted later during the year, although the

effect was small in absolute numbers (average ratio before: 1.70,

after: 1.58).

For the cyst populations extracted from different soil types,

the feature distributions appeared more similar (Figures 4C,D).

The average cyst size in sub soil (≈ 3, 074) was slightly larger

than in top soil (≈ 2, 908), while the average length-width ratio

was ≈ 1.64 in both cases. The difference between the feature

distributions was only significant for cyst size (Anderson-

Darling T.AD = 7.864, p = 0.0003168), but not for the

length-width ratio (T.AD = −0.8610, p = 0.9009).
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FIGURE 4

Image-based phenotyping reveals that nematode populations have characteristic phenotypical features. The features “cyst size” (area in pixels)

and “length-width ratio” were derived directly from the cyst segmentation masks. Feature distributions show the relative amount of cysts that

have a certain feature value. Dashed lines mark the means of the distributions. Data set: Cyst-Count (clean version without debris; cp.

Supplementary Figure S2 for the version with debris particles). (A,B) Nematode cyst populations split by factor time_point: sampled “before

season” (April) vs. “after season” (October). (C,D) Nematode cyst populations split by factor soil_type: sampled from “top soil” (0–30 cm) vs. “sub

soil” (31–60 cm).

3.4.2. Phenotypical feature distributions are
significantly di�erent between cyst populations
on images with debris

The above results on the Cyst-Count data (clean version

without debris) show how even subtle phenotypical differences

become visible in a population level quantitative analysis that

is greatly facilitated by an automatic phenotyping system that

can annotate large image data sets in a consistent manner. We

conducted the population-level study on the cleaned data set in

order to explicitly analyze the biological effects, unaffected by FP

detections due to debris particles.

We then repeated the same analysis for the Cyst-Count data

with debris particles (Supplementary Figures S2A–D).While the

debris data was noisier, which in part obscured the differences

between the distributions, the same trends could be confirmed:

There were significant differences with respect to both size

(Anderson-Darling T.AD = 13.15, p = 2.870 × 10−6)

and length-width ratio (T.AD = 13.86, p = 1.451 ×

10−6) between the populations from before and after the

planting season (Supplementary Figures S2A,B). Regarding soil

type (Supplementary Figures S2C,D), a small difference between

the size distributions for top and sub soil could still be observed,

but it was no longer significant (T.AD = 1.915, p = 0.05229),

while the difference between the length-width ratio distributions

remained non-significant (T.AD = −0.7982, p = 0.8554),

exactly as for the data without debris particles.

3.4.3. Manually and automatically computed
phenotypical feature distributions are not
significantly di�erent

Finally, we also verified that the feature distributions

based on automatic segmentations were sufficiently similar

to the feature distributions based on manual segmentations

(Supplementary Figures S2E,F). The analysis was performed on

the Cyst-Segmentation data (test set) with a ground truth of 1394

manually annotated cyst masks (1, 287 automatically detected

cyst masks).

Both average size (manual: ≈ 2, 223, automatic: ≈ 2, 226)

and average length-width ratio (manual: ≈ 1.76, automatic:

≈ 1.73) were similar for the manually and the automatically

segmented cysts. The size difference of only about three pixels

is negligible for cyst sizes of several thousand pixels, while the

0.03 difference in length-width ratio amounts to 25% of the

0.12 length-width ratio difference observed in Figure 4B for cyst

populations from before and after the planting season. Based on

Anderson-Darling k-sample tests, the size distributions for the

manual and the automatic segmentation were not significantly
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different (T.AD = −0.5909, p = 0.6953), as well as the

length-width distributions (T.AD = 1.076, p = 0.1158).

We conclude that the differences between automatic and

manual segmentations that exist on the single-cyst level (cp.

Figure 3) are of minor importance on the population-level, and

that both the size and the length-width ratio distribution can be

estimated reliably based on automatic segmentations with the

computer vision pipeline.

4. Conclusions

We have introduced a high-throughput phenotyping system

for nematode cysts in extracts from soil samples (Methods).

At the core of the automated system lies a computer vision

pipeline that achieves robust and accurate instance segmentation

of nematode cysts in cluttered object collections with many

remaining debris particles that often resemble the cysts in terms

of shape and color (Figures 1B,C).

We have validated the automated system on a large number

of images of soil sample extracts from different soils, comparing

its results both to manual cyst counts and to manually annotated

cyst segmentation masks (Results and Discussion). Manual

and automatic cyst counts were highly correlated (Figure 2B;

Pearson correlation coefficient > 0.97), and about 80% of the

automatic cyst segmentations achieved IoU scores of 0.8 or

higher (Figure 3A).

The large number of debris particles in the soil sample

extracts did cause FP cyst detections. Based on an exact ground

truth in the form of artificial soil samples, we could establish that

the amount of FPs does not depend on the true number of cysts,

but only on the sample weight, i.e., FP detections cause a count

offset that is approximately constant (for a given sample weight)

and that is only relevant for very small cyst numbers (Figure 2D).

Inaccuracies on a cyst-level had no influence on

the population-level phenotypical statistics: The feature

distributions for automatically segmented cysts were not

significantly different from those of manually segmented cysts

(Supplementary Figures S2E,F).

Cyst size and length-width ratio are simple phenotypical

features that can be computed from segmentation masks, and

we have used them as a proof of concept for automatic

characterization of the differences between nematode cyst

populations in samples taken before and after the sugar beet

planting season, as well as in samples taken from top and from

sub soil. Further research is required to determine whether the

observed differences between these cyst populations generalize

to soils from other locations.

To date, large-scale phenotypical studies on huge, multi-

national data sets are infeasible in practice due to intra-rater

variability for the manual segmentations and the amount of

work involved, and due to differences in experimental setups.

With an automated high-throughput phenotyping system, as

we have presented it in this work, it becomes possible to

conduct large-scale analyses of soil samples from around the

world in a reproducible way with a standardized setup and with

standardized image analysis routines.

Already cyst size is a morphological feature of high relevance

for monitoring nematode resistance (Fournet et al., 2016).

Future work will be focused on developing larger phenotypical

feature sets based on shape, color and texture of the cysts. The

high-throughput system facilitates processing of large data sets

from screening studies, enabling phenotypical characterization

of nematode cysts under different environmental conditions, in

soils from different locations, or in a resistance situation in the

face of nematode-resistant plants.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary materials, further

inquiries can be directed to the corresponding author. Source

code and evaluation data sets are available online for non-

commercial use: https://github.com/looooongChen/PNS-Cyst.

The annotation software IMANNO is also publicly available:

https://github.com/looooongChen/IMANNO.

Author contributions

MD, H-GL, MJ, LC, MS, and DM planned research. LC

developed machine learning models. MD collected soil samples,

designed the sample preparation procedure, and created the

annotated evaluation data. H-GL and MJ developed the optical

recording setup and recorded images. MS and LC analyzed

data and wrote the manuscript with contributions from the

co-authors. All authors reviewed the final manuscript.

Funding

This study received funding from the Germany Ministry

of Education and Research (031B0474). The funder was not

involved in the study design, collection, analysis, interpretation

of data, the writing of this article or the decision to submit it for

publication.

Conflict of interest

Authors LC, MS, and DM are employed by RWTH Aachen

University, Aachen, Germany. Author MD is employed by

the Federal Research Center for Cultivated Plants (Julius
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