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A novel small open reading
frame gene, IbEGF, enhances
drought tolerance in transgenic
sweet potato

Yuanyuan Zhou, Hong Zhai, Shihan Xing, Zihao Wei,
Shaozhen He, Huan Zhang, Shaopei Gao,
Ning Zhao and Qingchang Liu*

Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/
Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization,
Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing,
China
Small open reading frames (sORFs) can encode functional polypeptides or act

as cis-translational regulators in stress responses in eukaryotes. Their number

and potential importance have only recently become clear in plants. In this

study, we identified a novel sORF gene in sweet potato, IbEGF, which encoded

the 83-amino acid polypeptide containing an EGF_CA domain. The expression

of IbEGF was induced by PEG6000, H2O2, abscisic acid (ABA), methyl-

jasmonate (MeJA) and brassinosteroid (BR). The IbEGF protein was localized

to the nucleus and cell membrane. Under drought stress, overexpression of

IbEGF enhanced drought tolerance, promoted the accumulation of ABA, MeJA,

BR and proline and upregulated the genes encoding superoxide dismutase

(SOD), catalase (CAT) and peroxidase (POD) in transgenic sweet potato. The

IbEGF protein was found to interact with IbCOP9-5a, a regulator in the

phytohormone signalling pathways. These results suggest that IbEGF

interacting with IbCOP9-5a enhances drought tolerance by regulating

phytohormone signalling pathways, increasing proline accumulation and

further activating reactive oxygen species (ROS) scavenging system in

transgenic sweet potato.
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Introduction

Drought stress is the most complex and devastating factor of

abiotic stresses and seriously affects the productivity of

agricultural crops in the world (Shinozaki and Yamaguchi-

Shinozaki, 2007; Ceccarelli et al., 2010; Zhu, 2016; Peterson

et al., 2021). Improving the drought tolerance of agricultural

crops has become important for the sake of world food security

(Zhu, 2016). The plant hormones, such as abscisic acid (ABA),

jasmonic acid (JA), brassinosteroid (BR), ethylene (ETH) and

salicylic acid (SA) play important roles in the response of plants

to drought stress (Fujita et al., 2005; Vargas et al., 2014; Jin et al.,

2016; Xu et al., 2017). The biochemical and genetic studies have

revealed that peptides are new signalling molecules in plants

(Pearce et al., 2001; Ryan and Pearce, 2001; Lindsey et al., 2002;

Ryan et al., 2002). Until the initial discovery of the 18-amino

acid (aa) polypeptide defense hormone system in tomato leaves

in 1991, polypeptides are thought to be a new class of plant

hormones (Pearce et al., 1991).

Small open reading frames (sORFs), which encode

polypeptides of less than 100 aa in eukaryotes and 50 aa in

prokaryotes, have been historically excluded from genome

annotation (Basrai et al., 1997; Frith et al., 2006; Hanada et al.,

2013). However, recent studies have revealed thousands of

translated sORFs in genomes spanning evolutionary space

(Khitun et al., 2019). These sORFs can code for functional

polypeptides or act as cis-translational regulators, including

stress proteins, energy metabolism-related proteins, mating

pheromones, hormones, transcriptional regulators, nucleases,

transporters etc. (Basrai et al., 1997; Kastenmayer et al., 2006;

Khitun et al., 2019; Kim et al., 2021).

The first systematic investigation of sORFs function was

conducted in yeast. It was showed that 299 sORFs existed in the

yeast genome, representing approximately 5% of the annotated

ORFs, and 22 of them was required for haploid growth, growth

in the presence of DNA damage and replication-arrest agents,

growth at high temperature or growth in the presence of a

nonfermentable carbon source (Kastenmayer et al., 2006). More

than 7000 sORFs have been identified in Arabidopsis, and 3241

of them likely belong to novel coding genes in the Arabidopsis

genome (Hanada et al., 2007).

A number of specific polypeptides encoded by sORFs have

been identified in plants. In tomato, rapid alkalinization factor

(RALF), which is a 5-kDa ubiquitous polypeptide, arrested root

growth and development (Pearce et al., 2001). The 23-aa peptide

AtPep1 increased root development and enhanced resistance to

Pythium irregulare in transgenic Arabidopsis (Huffaker et al.,

2006; Poncini et al., 2017). In rice, the plants overexpressing

OsDT11 encoding an 88-aa peptide displayed reduced water loss

and stomatal density and enhanced drought tolerance (Li et al.,

2017) . The CLAVATA3/EMBRYO-SURROUNDING

REGION-RELATED 25 (CLE25) peptide modulated stomatal

control in Arabidopsis (Takahashi et al., 2018). The small
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peptide OsDSSR1 (Oryza sativa L. drought and salt stress

response-1) enhanced drought tolerance in transgenic rice

(Cui et al., 2018). A C-terminal peptide fragment (AtPep3)

increased sal t to lerance in transgenic Arabidopsis

(Nakaminami et al., 2018). The CLAVATA3/EMBRYO

SURROUNDING REGION (CLE) peptides are important

ligands that have roles in regulating cell proliferation and

differentiation in plant shoots, roots and other tissues (Li et al.,

2019; Song et al., 2021). In Arabidopsis, CLE9 induced stomatal

closure and enhanced drought tolerance (Zhang et al., 2019).

PttCLE47 from Populus promoted cambial development and

secondary xylem formation in hybrid aspen (Kucukoglu et al.,

2020). The phytosulfokine (PSK) peptide regulated drought-

induced flower drop in tomato (Reichardt et al., 2020).

Epidermal growth factor (EGF) is a short peptide with an

important role in the migration and proliferation of cells

(Cohen, 1983; Plata-Salaman, 1991; Ren et al., 2018). The

calcium-binding EGF-like domain (EGF_CA domain) is a

sequence of about 40 aa and it is present in numerous

extracellular proteins and membrane-bound proteins (Rao

et al., 1995). Some cell surface receptors have numerous EGF

modules in tandem, and a subset of EGF modules bind one

calcium ion (Ca2+) for the biosynthesis of biologically active

proteins (Stenflo et al., 2000). The cysteine-rich epidermal

patterning factor (EPF) and EPF-like (EPFL) regulate stomatal

patterning in Arabidopsis (Hara et al., 2007; Jewaria et al., 2013;

Zeng et al., 2020). The epidermal growth factor receptors

(EGFR/ErbB) are membrane-anchored tyrosine kinases with a

critical role in cell growth and development (Pascarelli et al.,

2021). However, the EGF protein family with EGF_CA domain

have not been functionally characterized in plants.

Sweetpotato, Ipomoea batatas (L.) Lam., is an important

food crop worldwide and its productivity is seriously affected by

drought stress (Zhu et al., 2022). Up to now, sORFs have not

been identified in sweet potato. In this study, a novel gene coding

for the 83-aa polypeptide, IbEGF, was cloned from sweet potato.

The EGF protein contained an EGF_CA domain. Functional

analysis showed that IbEGF enhanced drought tolerance in

transgenic sweet potato. The underlying mechanism of this

gene in drought tolerance of sweet potato was also analyzed.
Materials and methods

Plant materials

Sweetpotato line Xushu55-2 with drought tolerance was

used for isolation and expression analysis of the IbEGF gene.

Sweetpotato cv. Lizixiang was employed to characterize the

function of IbEGF. The subcellular localization, bimolecular

fluorescence complementation (BiFC) assay and co-

immunoprecipitation (co-IP) assay of IbEGF were conducted

using Nicotiana benthamiana.
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Cloning ands analysis of IbEGF and
its promoter

Total RNA from the in vitro-grown Xushu55-2 plants was

extracted using the Trozol Up Kit (ET111, Transgen, Beijing,

China). The first-strand cDNA was transcribed from the total

RNA with the PrimeScript™ RT reagent Kit with gDNA Eraser

(PR047A, Takara, Beijing, China). The open-reading frame

(ORF) of IbEGF was amplified from the first-strand DNA

using the homologous cloning method and the expressed

sequence tag (EST) database of Xushu55-2 (Zhu et al., 2018).

Amino acid sequence alignment was analyzed using DNAMAN

V6 software. The phylogenetic tree was constructed with MEGA

7.0 software with 1000 bootstrap replicates. The molecular

weight and theoretical isoelectric point (pI) of IbEGF were

calculated with ProtParam tool (https://web.expasy.org/

protparam/).

Genomic DNA of the in vitro-grown Xushu55-2 plants was

extracted using the cetyltrimethylammonium bromide (CTAB)

method (Rogers and Bendich, 1985) for obtaining the genomic

sequence and promoter sequence of IbEGF with the homologous

cloning method (Supplementary Table S1). The exon-intron and

cis-acting regulatory elements in its promoter were analyzed

using the Spign tool (http://www.ncbi.nlm.nih.gov/sutils/spign/

splign.cgi) and PlantCARE (http://bioinformatics.psb.ugent.be/

webtools/plantcare/html/), respectively.
Expression analysis

The transcript levels of IbEGF in leaf, stem and root tissues

of the 4-week-old in vitro-grown plants and leaf, stem, hair root,

pencil root and storage root tissues of the 80-day-old field-grown

plants of Xushu55-2 were analyzed with quantitative real-time

PCR (qRT-PCR) (Zhou et al., 2020). Furthermore, the 4-week-

old in vitro-grown Xushu55-2 plants were stressed in Hoagland

solution with H2O (control), 30% PEG6000, 100 mM H2O2, 100

mM ABA, 100 mM MeJA and 100 nM BR, respectively, and

sampled at 0, 1, 3, 6, 12 and 24 h after stresses for analyzing the

expression of IbEGF. Ibactin (AY905538) was used to normalize

the expression levels in sweet potato (Liu et al., 2014). All the

specific primers are showed in Supplementary Table S1.
Subcellular localization

Using primers IbEGF-OS-F/R (Supplementary Table S1),

the ORF of IbEGF without stop codon was amplified, and then

inserted into pSuper1300 vector to produce green fluorescent

protein (GFP) fusion construct pSuper1300-IbEGF. The fusion

construct was transformed into the Agrobacterium tumefaciens

strain EHA105, and then infiltrated N. benthamiana leaves. The

empty pSuper1300 vector was used as a control. After 48 h of
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infiltration, the fluorescence signal was observed under

excitation wavelength 488 nm using a laser scanning confocal

microscope (Olympus, Tokyo, Japan). Meanwhile, the

pSuper1300-IbEGF and pSuper1300 vectors were transferred

into maize protoplasts, respectively. The empty pSuper1300

vector was used as a control. After 16 h of growth, the

fluorescence signal was observed under a laser scanning

confocal microscope.
Transactivation activity assay

The full-length of IbEGF was constructed to the yeast

expression vector pGBKT7. pGBKT7-IbEGF, pGBKT7-53

(positive control) and pGBKT7 (negative control) were

separately transferred into the yeast strain Y2H Gold by the

PEG/LiAc method. The transformed yeast strains were

cultured on synthetic defined (SD) plates without tryptophan

(SD/-trp) for 3 days and then cultured on SD plates containing

5-bromo-4-chioro-3-indoxyl-a-galactopyranoside (X-a-gal)
but lacking tryptophan and histidine (SD/-Trp/-His/X-a-gal)
for 3 days.
Regeneration of the transgenic sweet
potato plants

The overexpression vector pSuper1300-IbEGF was

introduced into the A. tumefaciens stain EHA105.

Embryogenic suspension cultures of sweet potato cv. Lizixiang

were prepared as described by Liu et al. (2001). The

transformation and plant regeneration were performed as

previously described (Liu et al., 2014). The identification of the

transgenic plants was conducted by PCR with specific primers

(Supplementary Table S1). The expression levels of IbEGF in the

in vitro-grown transgenic and wild type (WT) plants were

analyzed using specific primers designed in the non-conserved

domain (Supplementary Table S1). The transgenic plants were

transferred to pots with soil, vermiculite and humus (1:1:1, v/v/

v) in a greenhouse and further to a field for evaluating their

drought tolerance.
Drought tolerance assay

The in vitro-grown transgenic and WT plants were cultured

on Murashige and Skoog (MS) medium with or without

(control) 20% PEG6000 at 27 ± 1°C under 13 h of daylight at

54 mM m–2 s–1. After 4 weeks, the root length and fresh weight

were measured (Ren et al., 2020). Furthermore, the 25-cm-long

cuttings from the field-grown transgenic and WT plants were

treated in Hoagland solution for 4 weeks (control) or in

Hoagland solution with 20% PEG6000 for 2 weeks followed by
frontiersin.org
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2 weeks of Hoagland solution in a greenhouse (Ren et al., 2020).

The root number and fresh weight were measured.

For further evaluation of drought tolerance, the 25-cm-long

cuttings from the field-grown transgenic and WT plants were

planted in transplanting boxes with soil, vermiculite and humus

(1:1:1, v/v/v) in a greenhouse. After 2 weeks of treatment with

Hoagland solution, they were subjected to continuous drought

stress for 8 weeks and the plants irrigated with Hoagland

solution for 8 weeks were used as a control.
Stomatal aperture assay

The leaves from greenhouse-grown transgenic and WT

plants were treated in stomatal opening solution containing 50

mM KCl, 10 mMMES-KOH and 10 mM CaCl2 (pH 6.1) for 3 h

and then incubated in stomatal opening solution with 20 mM
ABA for 2 h. Randomly selected 80 stomata were measured

using a fluorescence microscope (Revolve, Echo, USA).
Measurement of leaf water loss rate

The leaves from greenhouse-grown transgenic andWT plants

were placed at the room temperature. These leaves were weighed

hourly (0 h-8 h) for calculating the rate of leaf water loss.
Analyses of components and gene
expression in response to drought stress

The leaves of the transgenic and WT plants subjected to

drought stress for 4 weeks in transplanting boxes were used

to analyze the components and gene expression in response to

drought stress. The ABA, MeJA and BR contents were analyzed

with indirect enzyme linked immune sorbent assay (ELISA) kit

(Suzhou Comin Biotechnology Co., Ltd., China). The proline,

malondialdehyde (MDA) and H2O2 contents and superoxide

dismutase (SOD) activity were measured with Assay Kit (Suzhou

CominBiotechnologyCo., Ltd.,China).The expression levelsof the

constitutive photomorphogenesis 9-5a (COP9-5a) gene, a

regulator in the phytohormone signalling pathways, and genes

encoding SOD, catalase (CAT), and peroxidase (POD) of reactive

oxygen species (ROS) scavenging system were analyzed with qRT-

PCR (Supplementary Table S1) according to the method of Liu

et al. (2014).
Yeast two-hybrid assay

After the transactivation activity assay, the IbEGF without

transactivation activity domain was used as the bait to transform

Y2H Gold for screening for the sweet potato yeast two-hybrid
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library following Yeast Protocols Handbook (Clontech). The co-

transformed yeast strain was plated onto SD/-Ade/-His/-Leu/-

Trp medium containing 3 mM 3-aminotriazole (3-AT) to screen

for potential interaction proteins. pGBKT7-53 and pGADT7-T

were co-transformed into Y2H Gold as positive control.
BiFC Assay

The coding sequence (CDS) of IbEGF was ligated into

pSPYNE-35S vector with the N-terminus of yellow fluorescent

protein (nYFP) and the interacted protein gene was constructed

into pSPYCE-35S vector with the C-terminus of YFP (cYFP). The

two vectors were separately transformed intoA. Tumefaciens strain

GV3101, and subsequently coinjected intoN. benthamiana leaves.

After 2 days, the YFP signals were observed (Zhou et al., 2020).
Co-IP assay

TheMyc-IbEGFand IbCOP9-5a-GFPvectorswere transiently
expressed in N. benthamiana leaves. Total proteins were extracted

from the leaves with extraction buffer, mixed with Myc magnetic

beads (P2118, Beyotime) and then incubated at 4°C for 4 h (Zhang

et al., 2020). The agarose was washed at least five times with

extraction buffer and boiled in 5× SDS loading buffer for 15 min

to separate the proteins from the agarose beads. The proteins were

detected using polyclonal anti-Myc (1:10000, BE2011, EASYBIO)

and anti-GFP antibodies (1:10000, BE2002, EASYBIO).
Statistical analysis

All experiments were done for three biological replicates.

Data were presented as the mean ± SE and analyzed using

Student’s t-test (two-tailed analysis). Significance levels at P <

0.05 and P < 0.01 were denoted by ∗ and ∗∗, respectively.
Results

Cloning and sequence analysis of IbEGF
and its promoter

The novel IbEGF gene was isolated from sweet potato line

Xushu55-2. The 252-bp CDS sequence of IbEGF encoded a

polypeptide of 83 aa with a molecular weight of 8.68 kDa and a

predicted pI of 10.54. IbEGF consisted of one single exon. The EGF

protein containedanEGF_CAdomain (SupplementaryFigureS1A).

This protein showed high sequence identity with EGF proteins from

Trema orientale (PON94549.1, 65.06%), Actinidia chiensis var.

chinensis (PSS20878.1, 63.10%), Morus natabilis (EXB37025.1,

61.90%), Manihot esculenta (OAY53736.1, 60.92%), Theobroma
frontiersin.org
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cacao (EOY30817.1, 60.00%) andNicotiana attenuate (OIT39415.1,

57.47%) (Supplementary Figure S1B). The 1591-bp promoter region

of IbEGF contained several phytohormone or stress-responsive cis-

acting regulatory elements, including AuxRE, ABRE, ARE, and LTR

(Supplementary Figure S2).
Expression analysis of IbEGF in
sweet potato

To study the potential function of IbEGF in sweet potato, its

expression in different tissues and treatments of Xushu55-2 was

analyzed with qRT-PCR. In the in vitro-grown Xushu55-2

plants, the root tissue showed the highest expression level of

IbEGF (Supplementary Figure S3A). For the field-grown

Xushu55-2 plants, the expression level of IbEGF was highest in

the stem tissue (Supplementary Figure S3B). The expression of

IbEGF peaked at 12 h (4.90-, 1.30-, 3.44- and 20.86-fold,

respectively) after PEG6000, H2O2, ABA and BR treatments

and at 24 h (2.63-fold) after MeJA treatment (Figure 1). These

results suggest that IbEGF might be involved in drought, H2O2,

ABA, MeJA and BR response pathways.
Subcellular localization

Confocal images taken from the leaf epidermal cells of N.

benthamiana and the maize protoplasts exhibited that IbEGF-

GFP fluorescence was observed in the nucleus and cell
Frontiers in Plant Science 05
membrane (Figure 2). These results indicated that IbEGF was

localized to the nucleus and cell membrane.
Transactivation activity

All the yeast cells harbouring pGBKT7-IbEGF, pGBKT7-53

(positive control) or pGBKT7 (negative control) grew well on the

SD/-Trpmedium(Supplementary Figure S4A).The yeast cellswith

pGBKT7-IbEGF andnegative control did not grow, but the positive

control yeast cells showed good growth on medium with X-a-Gal
(SD/-Trp/-His/X) (Supplementary Figure S4B). These results

demonstrated that IbEGF had no transactivation activity.
Regeneration of the transgenic sweet
potato plants

Cell aggregates of Lizixiang (Supplementary Figure S5A)

cocultivated with EHA 105 carrying pSuper1300-IbEGF were

cultured on the selective MS medium with 2.0 mg L-1 2,4-

dichlorophenoxyacetic acid (2,4-D), 100 mg L-1 carbenicillin

(Carb) and 10 mg L-1 hygromycin (Hyg). After 4 weeks, the 16

Hyg-resistant embryogenic calluses were obtained from the

cocultivated 530 cell aggregates (Supplementary Figure S5B). These

Hyg-resistant embryogenic calluses were transferred toMSmedium

with 1.0 mg L-1 ABA and 100 mg L-1 Carb, and after 4 weeks of

transfer, they formed plantlets (Supplementary Figures S5C, D).

Forty-four of 95 regenerated plants were proved to be transgenic by
FIGURE 1

Expression analysis of IbEGF in in vitro-grown Xushu55-2 plants after different time points (h) in response to H2O (control), 30% PEG6000, 100
mM H2O2,100 mM ABA, 100 mM MeJA and 100 nM BR, respectively. The expression level of IbEGF in the plant sampled at 0 h was set to 1. The
data are presented as the means ± SEs (n = 3). ** indicates a significant difference from that of the untreated control (0 h) at P<0.01 according
to Student’s t-test.
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PCR analysis, named L1, L2, …, L44, respectively (Supplementary

Figure S5E). qRT-PCR analysis revealed that the expression level of

IbEGF was significantly increased in most of the transgenic plants

compared with that of WT (Supplementary Figure S5F). These

transgenic plants were transplanted to pots and showed a survival

rate of 100% in a greenhouse (Supplementary Figure S5G).
Enhanced drought tolerance

The three transgenic sweet potato plants, L9, L13 and L26,

with the higher expression level of IbEGF, were selected to test
Frontiers in Plant Science 06
their drought tolerance. Under 20% PEG6000 treatment, the

transgenic plants exhibited significantly better growth and

rooting, and their fresh weight (FW) was significantly

increased compared with WT (Figures 3A–C). No difference

in growth was observed between the transgenic plants and WT

under normal conditions (Figures 3A–C).

To further evaluate drought tolerance, the cuttings from

field-grown L9, L13, L26 and WT plants were incubated in

Hoagland solution with/without 20% PEG6000. As shown in

Figures 4A–C, no difference in growth between the transgenic

plants and WT was observed in Hoagland solution without

PEG6000. However, the growth and rooting of the transgenic
B

A

FIGURE 2

Subcellular localization of IbEGF in tobacco leaf hypodermal cells (A) and maize protoplasts (B). Confocal scanning microscopy images showing
the localization of IbEGF-GFP to nucleus and cell membrane. The empty pSuper1300 vector (35S:GFP) was used as a control. Bars = 20 mm.
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plants were significantly better than those of WT in Hoagland

solution with PEG6000. Furthermore, the cuttings of the

transgenic plants grown in a transplanting box formed new

leaves and roots, while WT turned brown to death after drought

treatment (Figure 5A). Based on these results, the transgenic

sweet potato plants exhibited enhanced drought resistance.
Underlying mechanism of IbEGF in
drought tolerance

To investigate the underlying mechanism of IbEGF in drought

tolerance, the components related to drought tolerance were

measured. The results showed that the ABA, MeJA, BR and

proline contents and SOD activity of the transgenic plants were

significantly increased, while their MDA and H2O2 contents were

significantly decreased compared with those of WT under

drought stress (Figures 5B–H). Further analysis indicated that

the expression of IbCOP9-5a, IbSOD, IbCAT and IbPOD was

upregulated in the transgenic plants (Figures 5I–M). The

transgenic sweet potato plants exhibited reduced ABA-induced

stomatal apertures (Figures 6A, B) and reduced leaf water loss rate

compared with WT (Figure 6C). Furthermore, Y2H assays

showed that IbCOP9-5a was the potential interacting protein

with IbEGF (Figure 7A). To further investigate interactions

between IbEGF and IbCOP9-5a in plants, BiFC and co-IP

assays were performed. The YFP signals were observed in the

nucleus of N. benthamiana leaf hypodermal cells (Figures 7B, C).

In a co-IP assay, Myc-IbEGF was co-precipitated by anti-Myc

antibody using total proteins extracted from N. benthamiana
Frontiers in Plant Science 07
leaves co-expressing IbCOP9-5a-GFP and Myc-IbEGF, but not

using total proteins extracted from control leaves expressing

IbCOP9-5a-GFP alone (Figure 7C). All the results indicated

that IbEGF interacted with IbCOP9-5a.
Discussion

IbEGF enhances drought tolerance

The sORF-encoded polypeptides play crucial roles in plant

defense, growth and development, ferti l ization and

environmental stresses including drought, salt, mechanical

wounding, pathogen infection and nutrient imbalance

(Lindsey et al., 2002; Ryan et al., 2002; Matsuzaki et al., 2010;

Nakaminami et al., 2018; Takahashi et al., 2018; Chen et al.,

2020). OsDT11 and OsDSSR1 in rice and CLE25 and CLE9 in

Arabidopsis positively regulate responses to drought stress (Li

et al., 2017; Cui et al., 2018; Takahashi et al., 2018; Zhang et al.,

2019). However, the functions of the EGF protein family with

EGF_CA domain in plants are still unclear.

In the present study, the IbEGF gene was isolated from sweet

potato. Its ORF encoded a polypeptide of 83 aa (Supplementary

Figure S1). This is the first reported sORF with the EGF_CA

domain in sweet potato. The expression of IbEGF was

significantly upregulated under PEG stress (Figure 1). Its

overexpression significantly enhanced drought tolerance of the

transgenic sweet potato plants (Figures 3–5). It is thought that

IbEGF is a novel sORF gene involved in drought tolerance of

sweet potato.
B

C

A

FIGURE 3

Responses of in vitro-grown transgenic sweet potato plants and WT cultured on MS medium without (control) or with 20% PEG6000 for 4
weeks. (A) Phenotypes. (B) Root length. (C) Fresh weight. The data are presented as the mean ± SEs (n = 3). * and ** indicate significant
differences from that of WT at P<0.05 and P<0.01, respectively, according to Student’s t-test.
frontiersin.org

https://doi.org/10.3389/fpls.2022.965069
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2022.965069
IbEGF positively regulates ABA, JA and
BR signalling pathways

Drought causes oxidative stress and metabolic and osmotic

damage and inhibits plant growth (Fàbregas and Fernie, 2019).

Plants evolve complex regulatory hormonal signalling networks for

adapting to drought conditions (Miller et al., 2010). Drought triggers

the accumulation of ABA, JA and BR in plant tissues, which leads to

drought tolerance (Rohwer and Erwin, 2008; Daszkowska-Golec,

2016; Zhou et al., 2020). ABA emerges as a crucial regulator of the

drought response (Li et al., 2021). JA plays an important role as a

signal molecule that induces tolerance mechanisms under drought

stress (Rohwer and Erwin, 2008). BR regulates adaptations to cope

with drought stress (Planas-Riverola et al., 2019).
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As a new class of plant hormones, the sORF-encoded

polypeptides play an essential role in responses to changes in the

environments by modulating other plant hormones (Ryan and

Pearce, 2001; Chen et al., 2020; Maurel et al., 2021). It was reported

that OsDT11 in rice and CLE25 and CLE9 in Arabidopsis reduced

stomatal density or aperture and enhanced drought tolerance by

ABA signalling (Li et al., 2017; Takahashi et al., 2018; Zhang et al.,

2019). There was crosstalk between peptide hormone BoPep4 and

ABA signalling pathways under salinity stress (Wang et al., 2022a).

The serine rich endogenous peptide (SCOOP) increased defense

against a generalist herbivore by modulating the JA pathway in

Arabidopsis (Stahl et al., 2022).

COP9 signalosome is a highly conserved transcriptional

regulator (Chamovitz, 2009; Jin et al., 2014). Several findings
B C

A

FIGURE 4

Responses of transgenic sweet potato plants and WT treated in Hoagland solution for 4 weeks (control) or in Hoagland solution with 20% PEG6000 for
2 weeks followed by 2 weeks of Hoagland solution. (A) Phenotypes. (B) Root number. (C) Fresh weight. * and ** indicate significant differences from
that of WT at P<0.05 and P<0.01, respectively, according to Student’s t-test.
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have showed that COP9 signalosome regulates plant response to

abiotic stresses such as oxidative stress, salt stress and high-

temperature stress through the ABA, JA, gibberellic acid (GA),

auxin and ROS signalling pathways (Nahlik et al., 2010; Singh
Frontiers in Plant Science 09
and Chamovitz, 2019; Wang et al., 2022b). COP9-5a (CNS5A) is

an essential player in the regulation of plant development and

stress (Singh et al., 2021). In Arabidopsis, CSN5A regulated seed

germination and salt tolerance by ABA signalling (Jin et al.,
B C D E

F G H I

J K L M

A

FIGURE 5

Responses of transgenic sweet potato plants and WT grown in transplanting boxes to drought stress. (A) Phenotypes of plants irrigated with Hoagland
solution for 8 weeks (control) or stressed by an 8-week-long drought treatment. (B–H) ABA content, MeJA content, BR content, proline content, MDA
content, SOD activity, and H2O2 content in the leaves of plants after 4 weeks of treatment, respectively. (I–M) Transcript levels of IbEGF, IbCOP9-5a,
IbSOD, IbCAT, and IbPOD in the leaves of plants after 4 weeks of treatment, respectively. The transcript levels of the genes in WT under normal
treatment were set to 1. * and ** indicate significant differences from that of WT at P<0.05 and P<0.01, respectively, according to Student’s t-test.
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B

C

A

FIGURE 6

Stomatal aperture and leaf water loss rate of transgenic sweet potato plants and WT. (A, B) Stomatal aperture of greenhouse-grown plants
under normal condition (-ABA) and treated with 20 mM ABA for 2 h. Bar = 5 mm. Data are presented as the means ± SD (n = 80). ** indicates
significant difference from that of WT at P<0.01, according to Student’s t-test. (C) Leaf water loss rate of greenhouse-grown plants.
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FIGURE 7

In vivo interaction between IbEGF and IbCOP9-5a. (A) IbEGF/IbCOP9-5a interaction in Y2H Gold cells by Y2H assay. (B) IbEGF/IbCOP9-5a
interaction in the tobacco nucleus by BiFC assay. The yellow fluorescent protein (YFP) signals were predominantly localized in the nucleus.
Bars = 20 mm. (C) IbEGF/IbCOP9-5a interaction by the co-IP assay. Total proteins from N. benthamiana leaf cells expressing Myc-IbEGF and
IbCOP9-5a-GFP were extracted and incubated with anti-Myc magnetic beads. Proteins before (input) and after IP were detected with anti-Myc
and anti-GFP antibodies.
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FIGURE 8

Proposed working model of IbEGF in the transgenic sweet potato plants to drought stress.
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2018; Zhou et al., 2021). IbGATA24 interacting with IbCOP9-5a
positively regulated drought and salt resistance by ABA and ROS

signalling in transgenic Arabidopsis (Zhu et al., 2022).

Our results showed that the IbEGF gene was upregulated

after treatments of ABA, MeJA and BR, respectively (Figure 1).

The IbEGF-overexpressing sweet potato plants exhibited better

growth and more accumulation of ABA, MeJA and BR under

drought stress (Figures 3–5). Further analysis indicated that the

expression level of IbCOP9-5a was increased in the transgenic

sweet potato plants under drought stress (Figure 5). Y2H, BiFC

and co-IP assays demonstrated that IbEGF interacted with

COP9-5a (Figures 7). Our previous study indicated that

IbCOP9-5a is a positive regulator of the response to drought

stress and the IbCOP9-5a-overexpressing Arabidopsis plants

exhibited significantly enhanced drought tolerance (Zhu et al.,

2022). Therefore, it is thought that IbEGF with the help of

COP9-5a could positively regulate the ABA, JA and BR

signalling pathways under drought stress, which results in

enhanced drought tolerance (Figure 8).
IbEGF Positively Modulates Proline
Accumulation and ROS-Scavenging System

The overproduction of ROS in plants causes damage to

proteins, lipids, carbohydrates and DNA under drought, salinity

and heat stresses (Gill and Tuteja, 2010; Choudhury et al., 2017;

Waszczak et al., 2018). More proline accumulation can protect

plants from drought stress and ROS damage (Phang et al., 2010;

Liu et al., 2014; Adamipour et al., 2020). In rice, OsDSSR1 was

induced by drought, salinity, ABA and H2O2 treatments and its

overexpression enhanced drought tolerance by increasing the

accumulation of free proline and soluble sugars and further

promoting OsSodCc2 and OscAPX expression and SOD and

ascorbate peroxidase (APX) activities (Cui et al., 2018).

In our study, overexpression of IbEGF increased the proline

content and SOD activity and reduced the H2O2 level in

transgenic sweet potato under drought stress (Figure 5).

IbSOD, IbCAT and IbPOD were also upregulated (Figure 5). It

is suggested that overexpression of IbEGF enhances drought

tolerance by positively modulating proline accumulation and

ROS-scavenging system in transgenic sweet potato (Figure 8).

Based on all the above results, we propose that IbEGF interacting

with IbCOP9-5a positively regulates the hormone signalling

pathways and proline biosynthesis and further activates the ROS

scavenging system, which lead to enhanced drought tolerance in

transgenic sweet potato (Figure 8).
Conclusion

Anovel sORFgene, IbEGF, was isolatedandcharacterized from

sweetpotato. Its overexpression in sweet potato enhanced tolerance
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todrought stress, increased contents ofABA,MeJA,BRandproline

and activity of SOD, decreased levels of MDA and H2O2 and

upregulated expression of IbCOP9-5a, IbSOD, IbCAT and IbPOD.

It is suggested that IbEGF interacting with IbCOP9-5a enhances

drought tolerance by positively regulating the hormone signalling

pathways, increasing proline accumulation and further activating

the ROS scavenging system in transgenic sweet potato.
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