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Proper timing of flowering, a phase transition from vegetative to reproductive 

development, is crucial for plant fitness. The floral repressor FLOWERING 

LOCUS C (FLC) is the major determinant of flowering in Arabidopsis thaliana. In 

rapid-cycling A. thaliana accessions, which bloom rapidly, FLC is constitutively 

repressed by autonomous pathway (AP) genes, regardless of photoperiod. 

Diverse AP genes have been identified over the past two decades, and most 

of them repress FLC through histone modifications. However, the detailed 

mechanism underlying such modifications remains unclear. Several recent 

studies have revealed novel mechanisms to control FLC repression in concert 

with histone modifications. This review summarizes the latest advances in 

understanding the novel mechanisms by which AP proteins regulate FLC 

repression, including changes in chromatin architecture, RNA polymerase 

pausing, and liquid–liquid phase separation- and ncRNA-mediated gene 

silencing. Furthermore, we  discuss how each mechanism is coupled with 

histone modifications in FLC chromatin.
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Introduction

Proper timing of flowering, a phase transition from vegetative to reproductive 
development, is crucial for plant survival. Consequently, plants have evolved and developed 
various mechanisms to control flowering time in response to variable environments. Many 
plants in temperate regions have adopted winter-annual flowering traits that require 
prolonged cold winter temperatures for flowering in spring when the environment is 
favorable (Chouard, 1960; Bernier et al., 1993). However, some plants complete their life 
cycle rapidly, either in spring or fall (Weinig and Schmitt, 2004). For example, Arabidopsis 
thaliana accessions are classified into winter-annual and rapid-cycling types based on the 
requirement of long-term winter cold for rapid flowering (Michaels and Amasino, 2000). 
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The underlying genetic difference in flowering traits between the 
two types is the presence or absence of the FLOWERING LOCUS 
C (FLC) and FRIGIDA (FRI) genes (Gazzani et al., 2003). FLC, 
which encodes a MADS-box transcription factor, acts as a potent 
floral repressor which inhibits the transcription of floral 
promoters, including FT (encoding florigen) and SUPPRESSOR 
OF OVEREXPRESSION OF CONSTANS 1 (Lee et  al., 2000; 
Michaels et  al., 2005; Helliwell et  al., 2006). FRI, a coiled-coil 
protein which forms part of a super protein complex, acts as a 
transcriptional activator of FLC (Michaels and Amasino, 1999; 
Choi et al., 2011; Li et al., 2018).

In rapid cyclers, the autonomous floral-promotion pathway 
(AP) induces early flowering by repressing FLC expression 
(Koornneef et  al., 1998; Levy and Dean, 1998). Since 
LUMINIDEPENDENS (LD) was first isolated (Rédei, 1962; Lee 
et al., 1994), several genes, including FCA, FLD, FLK, FPA, FVE, 
and FY, have been cloned as AP genes (Macknight et al., 1997; 
Koornneef et al., 1998; Schomburg et al., 2001; He et al., 2003; 
Quesada et  al., 2003; Simpson et  al., 2003; Lim et  al., 2004; 
Mockler et al., 2004). For the past two decades, researchers have 
investigated the biochemical functions of AP proteins. Reports 
suggest that a subset of AP proteins catalyze the epigenetic changes 
in FLC chromatin. Specifically, FVE and FLD constitute histone 
deacetylation or demethylation complexes, whereby the FLC 
chromatin turns into a repressive state (Liu et al., 2007; Yu et al., 
2016). Additionally, several RNA-binding family proteins, such as 
FPA, FCA, and FY, indirectly repress FLC by mediating the 3′-end 
processing of FLC antisense transcript (Simpson et al., 2003; Liu 
et al., 2007; Hornyik et al., 2010; Liu et al., 2010). However, the 
function of AP proteins has yet to be completely understood.

Emerging evidence suggests that multiple layers of 
transcriptional processes determine transcript level (Gressel et al., 
2019). In addition to well-known processes (e.g., enhancer- and 
histone modification-mediated gene regulation), regulatory 
mechanisms, such as RNA polymerase II (Pol II) pause–release 
control during transcriptional elongation and alternative 
polyadenylation during transcriptional termination, are critical 
gene regulatory processes (Tian and Manley, 2017; Chen et al., 
2018). Notably, recent studies have consistently revealed that AP 
in floral promotion is also involved in such mechanisms. This 
review summarizes the latest findings on the molecular 
mechanisms of AP, including the control of chromatin 
architecture, Pol II pausing, and phase separation with ncRNA-
mediated gene silencing.

Architecture of FLC chromatin and 
AP

The 3D property of chromatin plays a vital role in 
transcriptional regulation (Dileep and Tsai, 2021; Deng et  al., 
2022). Although histone modifications such as methylation and 
acetylation have been the main focus of the studies for 
transcriptional regulation over the past two decades, studies on 

how chromatin architecture, such as chromatin loops, R-loops, 
and DNA topology, controls gene expression have been actively 
conducted in recent years (Kadauke and Blobel, 2009; Kouzine 
et  al., 2014; Al-Hadid and Yang, 2016). Accordingly, the 
AP-mediated repression of FLC has been re-examined based on 
its chromatin architecture.

Chromatin loops, defined as the intergenic or intragenic 
bending of chromatin, are observed genome-wide in Arabidopsis 
(Grob et al., 2013; Feng et al., 2014). The 5′-end region of the 
FLC locus is connected to either the first intron or 3′-end region 
to form chromatin loops (Crevillén et al., 2013; Kim and Sung, 
2017; Li et al., 2018). Importantly, the loop linking the 5′- and 
3′-ends of FLC may contribute to FLC activation, possibly 
through enhancing Pol II recycling (Crevillén et al., 2013; Li 
et al., 2018). A recent study has identified novel AP members, 
the GH1-HMGA family proteins, which are involved in 
regulating this loop (Zhao B. et al., 2021). GH1-HMGA family 
proteins, also known as HIGH MOBILITY GROUP A4, 5 
(HON4, 5), are homologs of human HMGA proteins which bend 
or unwind local chromatin structure (Ozturk et  al., 2014). 
Similar to other AP mutant lines, the honq (gh1-hmga quadruple) 
mutant line exhibits increased FLC expression and delayed 
flowering (Zhao B. et al., 2021). Given that the FLC gene loop in 
the honq mutant line is increased, it has been suggested that the 
disruption of gene looping by GH1-HMGA family proteins may 
repress FLC expression by altering chromatin structures required 
for effective transcription (Figure  1A; Zhao B. et al., 2021). 
However, the causal relationship between the chromatin looping 
and the repression of FLC by GH1-HMGA family proteins 
should be  validated in the future study. In contrast to the 
GH1-HMGA family proteins, the histone variant H3.3 appears 
to stabilize FLC looping by binding at both ends of FLC gene 
(Zhao F. et al., 2021). Importantly, h3.3 knock-down mutants 
(h3.3kd) consistently show reduced FLC looping and decreased 
FLC level (Zhao F. et al., 2021). Therefore, it is likely that the 
opposite effects of GH1-HMGA family proteins and H3.3 for the 
FLC looping may be associated with their antagonistic function 
on FLC expression. BAF60, a component of the Arabidopsis 
SWI/SNF (SWITCH/SUCROSE NON-FERMNETABLE)-type 
ATP-dependent chromatin remodeling complex, also 
participates in FLC repression by affecting FLC gene looping 
(Jégu et al., 2014). It has been shown that the RNA interference 
lines of BAF60 (BAF60 RNAi) display an increased number of 
FLC gene loops and upregulated expression of FLC, thereby 
producing the late-flowering phenotype in long days. This 
finding suggests that BAF60 plays a negative role in loop 
formation. Histone modifications including H3K27me3, 
H3K9Ac, and H2A.Z replacement, are also altered in the BAF60 
RNAi lines; thus, the effect of BAF60 on FLC gene looping may 
be mediated through histone modifications. One caveat is that 
BAF60 is not a typical AP gene because the BAF60 RNAi lines do 
not show delayed flowering in short days. The increased FLC 
level caused by BAF60 RNAi is probably masked by the 
additional targets of BAF60. Therefore, BAF60 may also be an 
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FLC repressor which acts on gene looping. The functional 
interdependency between GH1-HMGA family proteins and 
BAF60 needs further analysis.

R-loops are another type of chromatin architecture which are 
composed of a DNA:RNA hybrid and an associated non-template 
single-stranded DNA (Al-Hadid and Yang, 2016). R-loops play 

important roles in gene expression, genome stability, and 
epigenomic signatures (Gao et al., 2021). FLC chromatin has an 
R-loop around its 3′-end, where the antisense transcript COOLAIR 
is transcribed (Sun et al., 2013; Baxter et al., 2021; Xu et al., 2021b). 
NODULIN HOMEOBOX (NDX) is a potential AP member that 
reportedly stabilizes this R-loop by binding onto the non-template 

A

B

C

FIGURE 1

Control of FLC chromatin architecture by the autonomous pathway. (A) Chromatin loop linking the 5′- and 3′-ends of FLC will likely intensify the  
FLC transcription by promoting Pol II recycling. GH1-HMGA family proteins, HON4 and HON5, disrupt this chromatin looping, and thus reduce FLC 
expression. (B) NDX stabilizes the R-loop at the FLC 3′-end, where the antisense ncRNA, COOLAIR, is transcribed (tangled). This process probably 
enhances the binding of FCA/FY onto COOLAIR and inhibits Pol II progression. FCA/FY, in turn, represses FLC expression by promoting the proximal 
polyadenylation of COOLAIR and resolving the R-loop (detangled). (C) Antagonized function of TOP1α and FLD controlling DNA topology. 
TOP1α enhances FLC transcription potentially by reducing the torsional stress generated by DNA supercoiling. FLD partially counteracts TOP1α activity.
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ssDNA region (Sun et al., 2013). The increased COOLAIR level and 
the reduction of FCA-COOLAIR interaction in the ndx mutant 
suggest that R-loop stabilizing processes likely inhibit further 
transcription of COOLAIR and enhance binding of FCA onto 
COOLAIR (Xu et  al., 2021b). The fca and fy mutants show an 
increased level of R-loops, suggesting that FCA and its binding 
partner, FY, act to resolve the R-loops (Figure 1B). Thus, R-loop 
dynamics, involving the stabilization by NDX and resolution by 
FCA and FY, result in FLC repression. However, the detailed 
mechanism by which R-loops participate in FLC transcription 
warrants further investigation. Furthermore, the loss of m6A 
methyltransferase (mRNA ADENOSINE METHYLASE, MTA) 
increases the level of R-loops, indicating that the N6-
methyladenosine (m6A) modification of RNA is involved in R-loop 
resolution (Xu et al., 2021b). MTA interacts with FCA and is a 
potential AP member, as evidenced by the increased FLC expression 
in the mta mutant line. Moreover, a follow-up study showed that the 
resolution of the R-loop by FCA or FY is required for the proper 
progression of DNA replication fork, suggesting an interplay 
between DNA replication and transcription (Baxter et al., 2021).

AP is also possibly involved in regulating DNA topology. 
During transcription, torsional stress generated by DNA 
supercoiling inhibits proper transcription (Liu and Wang, 1987). 
Thus, the proper release of supercoiling by topoisomerases is 
required for transcriptional activation (French et  al., 2011). 
Consistently, DNA topoisomerase I, TOP1α, in Arabidopsis, which 
binds to FLC chromatin, promotes FLC expression (Gong et al., 
2017). Thus, the modulation of DNA topology by TOP1α 
promotes FLC transcription, possibly through Pol II 
accommodation. In contrast, the AP protein, FLD, counteracts 
TOP1α (Inagaki et al., 2021). FLD acts antagonistically to TOP1α 
for FLC transcription, as evidenced by the partial suppression of 
the late-flowering phenotype of fld in the top1α fld double mutant 
line (Gong et al., 2017). In addition, enhanced Pol II enrichment 
on the FLD-target genes in the fld mutant line is suppressed by 
top1α (Inagaki et  al., 2021). This result suggests that FLD 
antagonizes the function of TOP1α and FLD is involved in the 
control of torsional stress on FLC chromatin (Figure  1C). 
However, the detailed function of FLD needs further elucidation.

FLC repression by 3′-pausing of 
Pol II

During transcription in Drosophila melanogaster, or in 
mammalian cells, Pol II is transiently paused before it enters the 
elongation phase (Adelman and Lis, 2012; Chen et  al., 2018). 
Controlling Pol II pause–release is possibly a core determinant of 
gene expression, considering that successful Pol II release into the 
productive elongation phase is required for the complete 
transcription (Core and Adelman, 2019). In most animal genes, 
Pol II pauses after transcribing short stretches (approximately 
30–50 nts) of RNA from the transcription start site (TSS). Several 
pause-inducing factors, including DRB sensitivity-inducing factor 

(DSIF) and negative elongation factor (NELF), are known to 
stabilize the paused Pol II (Wu et al., 2003; Wu et al., 2005).

In contrast to animals, plants were thought to have different 
types of Pol II pausing, because they lack NELF proteins (Hetzel 
et al., 2016). However, Pol II pausing at the 5′-end is also observed 
in plants, although Pol II is usually stalled near the transcription 
termination site (TTS) of plant genes according to the studies 
using Global Run-On sequencing (GRO-seq) and plant native 
elongating transcript sequencing (plaNET-seq) methods (Hetzel 
et al., 2016; Zhu et al., 2018; Kindgren et al., 2020). FLC appears 
to be  one of the 3′-paused genes, as it shows the typical 
characteristics: it has a relatively long gene length, it expresses 
antisense RNAs, and it is relatively close to its neighbor gene with 
the same orientation (Yu et al., 2019; Inagaki et al., 2021).

Emerging evidence suggests that some AP genes act as pause-
inducing factors which may govern FLC transcription (Figure 2A). 
For example, a recent study has identified novel AP members, 
called BORDER (BDR) family genes (Yu et al., 2021). Similar to 
other AP mutants, the bdr123 triple mutant shows delayed 
flowering with elevated expression of FLC. In general, BDR 
proteins localize at the borders of genes close to their neighbor 
genes (Yu et al., 2019). They are likely to inhibit the progression of 
Pol II over the gene border, thereby preventing Pol II invasion into 
the promoters of downstream genes. However, the impediment of 
Pol II elongation by BDRs may result in decreased transcript 
accumulation. FLC may also be  a target of such an inhibitory 
mechanism; however, further research is warranted for verification. 
Notably, the popular AP protein, FPA, is located at the borders of 
genes, especially at TTS (Yu et  al., 2021). In addition, FPA 
physically interacts with BDR proteins and shares common targets. 
Therefore, it would be  valuable to address whether FPA also 
promotes 3’ Pol II pausing in a similar manner to BDR, especially 
around the FLC locus. In addition, there is still uncertainty around 
whether 3’ Pol II pausing causes FLC gene silencing.

FLD, another major AP component, reportedly modulates Pol 
II pause–release (Inagaki et al., 2021). FLD is enriched at the TSS 
and TTS of genes rather than their gene body. Pol II is stalled 
around the TTS of FLD-targeted genes, and such 3’ Pol II pausing 
is conspicuously reduced in the fld mutant, indicating that FLD 
accelerates Pol II pausing. Since FLD occupies the 3′-end regions 
of FLC (Inagaki et  al., 2021), FLC transcription is potentially 
repressed by FLD-promoted 3’ Pol II pausing. The physical 
interaction between FLD and LD proteins and similar 
transcriptome profiles between the fld and ld mutants suggest that 
FLD and LD cooperatively regulate the transcription (Fang et al., 
2020; Inagaki et al., 2021). While the genome-wide function of 
FLD on 3’ Pol II pausing has been addressed (Inagaki et al., 2021), 
whether FLD also triggers 3’ Pol II pausing on the FLC locus is yet 
to be confirmed.

Accumulating evidence from studies using metazoans suggests 
an interplay between Pol II pausing and chromatin landscape. For 
instance, a rapid release of Pol II facilitates a broad distribution of 
active histone marks over the gene body, which is tightly linked 
with the high expression of the gene (Chen et al., 2015; Tettey et al., 
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2019). In contrast, Polycomb-group (PcG) proteins that catalyze the 
deposition of repressive histone marks preferentially target paused 
promoters (Enderle et al., 2011). Similarly, AP-mediated 3′-pausing 
at FLC may switch the FLC chromatin state inactive, thus 
suppressing FLC transcription. Consistent with this idea, 3’ Pol II 
pausing events triggered by the BDRs and FPA are correlated with 
the removal of H3K4me3 and the deposition of H3K27me3 (Yu 
et  al., 2021). Furthermore, FLD and LD are likely to remove 
H3K4me1 from the gene bodies of their targets, suggesting that the 
AP proteins coordinate transcriptional events with chromatin 
silencing (Fang et al., 2020; Inagaki et al., 2021). Future research 
should explore the mechanism by which Pol II pause–release is 
linked to histone modifications for FLC suppression.

Phase-separated AP proteins- and 
non-coding RNA-mediated gene 
silencing

Non-coding RNAs (ncRNAs) are RNAs that are not translated 
into proteins. They function in transcriptional or post-
transcriptional gene regulation, structural organization of nuclear 
bodies, and genome integrity control (Ponting et al., 2009; Statello 

et  al., 2021). The FLC locus also produces multiple long 
non-coding RNAs, such as COOLAIR, COLDAIR, and 
COLDWRAP (Swiezewski et al., 2009; Heo and Sung, 2011; Kim 
and Sung, 2017), all of which reportedly control dynamic 
alterations of chromatin state in the FLC locus after long-term 
cold exposure (Csorba et al., 2014; Kim and Sung, 2017; Kim et al., 
2017; Zhao Y. et al., 2021). Among these RNAs, COOLAIR, an 
antisense transcript produced from the 3′-end of FLC, has been 
proposed to play a role in the epigenetic control of FLC with the 
help of AP proteins (Whittaker and Dean, 2017; Wu et al., 2020).

Multiple studies suggest that several AP genes, especially those 
encoding RNA-processing factors, control the 3′-end processing of 
COOLAIR (Hornyik et al., 2010; Liu et al., 2010; Marquardt et al., 
2014; Wang et al., 2014). Some RNA-processing factors, such as a 
core spliceosome subunit [PRE-MRNA PROCESSING 8 (PRP8)] 
and a transcriptional elongation factor [CYCLIN-DEPENDENT 
KINASE C;2 (CDKC;2)], have been identified as AP members 
(Marquardt et al., 2014; Wang et al., 2014). The functions of PRP8 
and CDKC;2 in FLC repression are dependent on COOLAIR; prp8 
or cdkc;2 does not upregulate FLC expression any further if the 
COOLAIR promoter is replaced with rbcs3B terminator sequence 
[FLC-TEX in Marquardt et al. (2014) and Wang et al. (2014)]. 
Consistent with this, previous studies reported that PRP8 and 

A

B

FIGURE 2

FLC repression by 3′-pausing, phase-separated AP proteins, and ncRNA. (A) AP proteins, BDR, FPA, and FLD, localizing at the gene borders, trigger 
3’ Pol II pausing. Impediment of Pol II release into the elongation phase may reduce FLC transcript accumulation. (B) AP proteins, including FCA, 
FPA, FY, and RNA-processing factors, are condensed into phase-separated nuclear condensates to promote the proximal polyadenylation of 
COOLAIR. This phase-separated ncRNA-processing machinery transiently interacts with FLD/LD/SDG26, H3K4me1 demethylase complex, thereby 
removing the active histone marks (H3K4me1 and H3K36me3) from FLC chromatin.
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CDKC;2 indirectly affect the expression of FLC by promoting the 
proximal polyadenylation of COOLAIR (Marquardt et al., 2014; 
Wang et al., 2014). The major AP genes, FCA, FPA, and FY, have 
also been proposed to control the processing of COOLAIR. FCA, 
FPA, and FY reportedly favor the usage of proximal poly(A) site in 
COOLAIR (Liu et al., 2010). Considering the epistatic interactions 
between fca, and prp8 or cdkc;2, FCA, and PRP8 or CDKC;2 are 
thought to share the same genetic pathway to antagonize FLC 
expression (Marquardt et al., 2014; Wang et al., 2014).

Such COOLAIR-processing machinery is likely to be condensed 
into phase-separated nuclear bodies, and this process may be a 
mechanism behind FLC repression. FCA is clustered into nuclear 
condensates together with FPA, FY, and the subunits of 
polyadenylation machinery, including cleavage and polyadenylation 
factor 30 (CPSF30), CPSF100, and FH INTERACTING PROTEIN 
1 (FIP1; Fang et al., 2019). FCA is required for the condensation of 
the polyadenylation machinery and directly associates with 
COOLAIR transcripts; thus, it likely concentrates the 
polyadenylation machinery near the COOLAIR to promote the 
usage of the proximal poly(A) site (Fang et al., 2019; Tian et al., 2019; 
Xu et al., 2021b). This condensation is enhanced by the prion-like 
domain (PrLD)-containing protein FLX-LIKE 2 (FLL2), RNA slicer 
ARGONAUTE 1 (AGO1), and m6A writer complex depositing m6A 
onto COOLAIR (Fang et al., 2019; Xu et al., 2021a,b).

The phase-separated COOLAIR-processing complex likely 
controls the FLC chromatin state through FLD. FLD assembles 
into a complex with LD and SET DOMAIN GROUP 26 (SDG26), 
which causes the removal of H3K4me1 deposited at FLC 
chromatin (Fang et al., 2020). This disables SDG8, which binds to 
H3K4me1 and facilitates the enrichment of H3K36me3, thereby 
suppressing FLC transcription (Fang et al., 2020). Recent results 
obtained using cross-linked nuclear immunoprecipitation and 
mass spectrometry (CLNIP-MS) suggest that a transient and 
dynamic interaction occurs between SDG26 and the components 
of the phase-separated poly(A) machinery, such as FCA, FPA, and 
FY (Figure 2B; Fang et al., 2019; Fang et al., 2020). In addition, 
AGO1, which is bound to COOLAIR at a proximal exon-intron 
junction region, also interacts with SDG26 (Xu et  al., 2021a). 
Therefore, the COOLAIR 3′-processing event likely controls the 
FLC chromatin state through the physical interaction between 
components of the COOLAIR polyadenylation condensate and the 
FLD/LD/SDG26 protein complex. Moreover, this phase-separated 
polyadenylation complex, including FCA and FY, may resolve the 
COOLAIR-mediated R-loop at the 3′-end of FLC (Xu et  al., 
2021a,b), as mentioned earlier. Given that this R-loop is also 
closely connected to the histone modifications in other organisms 
(Chédin, 2016), this connection may be a missing link between 
co-transcriptional COOLAIR processing and FLC chromatin 
silencing. However, the causal relationship between COOLAIR-
mediated R-loop processing and FLC chromatin silencing needs 
further verification (Xu et al., 2021b).

Recent studies have inferred that another clade of ncRNAs, 
small RNAs (sRNAs), could be associated with FLC repression. 
For example, AGO1 interacts with sRNA fragments that are 

complementary to COOLAIR (Xu et  al., 2021a). Moreover, 
DICER-LIKE 1 (DCL1) and DCL3, required for sRNA production, 
are likely to suppress FLC independently of the FCA-mediated 
FLC silencing mechanism (Schmitz et al., 2007; Xu et al., 2021a). 
Therefore, a deeper understanding of the role of sRNAs in AP for 
flowering should be a focus in future research.

Conclusion

This review summarizes the latest research progress in the 
autonomous pathway in Arabidopsis. Decades of studies have 
proposed unique mechanisms for FLC regulation, such as control of 
Pol II pause–release mechanism, modulation of chromatin 
architecture, and processing of ncRNA triggered by phase-separated 
machinery. The studies on such mechanisms are still in their infancy 
and heavily dependent on genome-wide transcriptome analyses. 
Thus, a large portion of the current models presented in this review 
has yet to be  validated. Further verification of the proposed 
mechanisms through biochemical, genetic, and molecular work 
would be  valuable to develop a better understanding of AP. In 
addition, this pathway has been closely linked with the epigenetic 
modification of FLC chromatin, particularly in relation to the 
changes in histone methylation patterns in the AP mutants. However, 
the detailed mechanism connecting the regulatory function of AP 
proteins described in this review and the epigenetic silencing of FLC 
remain largely unknown; thus, further studies are required.

The FRI complex strongly activates FLC expression even in 
the presence of AP proteins in winter-annual Arabidopsis 
(Johanson et al., 2000; Choi et al., 2011). This finding suggests that 
the FLC regulatory mechanisms of AP genes are counteracted by 
FRI complex. Therefore, there is a need for further studies 
elucidating the role of the FRI complex in the mechanisms of AP.
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