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Growth-regulating factors (GRFs) play crucial roles in plant growth and

stress response. To date, there have been no reports of the analysis and

identification of the GRF transcription factor family in alfalfa. In this study, we

identified 27 GRF family members from alfalfa (Medicago sativa L.) “Xinjiang

Daye”, and analyzed their physicochemical properties. Based on phylogenetic

analysis, these MsGRFs were divided into five subgroups, each with a similar

gene structure and conserved motifs. MsGRFs genes are distributed on 23

chromosomes, and all contain QLQ and WRC conserved domains. The

results of the collinearity analysis showed that all MsGRFs are involved in

gene duplication, including multiple whole-genome duplication or segmental

duplication and a set of tandem duplication, indicating that large-scale

duplication is important for the expansion of the GRF family in alfalfa. Several

hormone-related and stress-related cis-acting elements have been found in

the promoter regions of MsGRFs. Some MsGRFs were highly expressed in

young leaves and stems, and their expression decreased during development.

In addition, the leaf size of different varieties was found to vary, and MsGRF1

to 4, MsGRF18 to 20, and MsGRF22 to 23 were differentially expressed in large

and small leaf alfalfa varieties, suggesting that they are critical in the regulation

of leaf size. The results of this study can benefit further exploration of the

regulatory functions of MsGRFs in growth and development, and can identify

candidate genes that control leaf size development.
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Introduction

Growth-regulating factors (GRFs) are plant-specific
transcription factors (TFs), that regulate plant growth and
development (Kim et al., 2003; Kim and Lee, 2006; Baucher
et al., 2013; Omidbakhshfard et al., 2015). The first GRF,
named OsGRF1, was discovered 15 years ago in deep-water rice
(Oryza sativa). OsGRF1 was identified as the gene responding
to gibberellin and differentially expressed in the internode
meristems of deep-water rice (van der Knaap et al., 2000).
GRFs have two conserved domains: QLQ (Gln-Q, Leu-L,
Gln-Q) and WRC (Trp-W, Arg-R, Cys-C), in the N-terminal
region. The QLQ domain contains sites for interaction with
GRF-interacting factors (GIFs) (Kim and Kende, 2004), while
the WRC domain contains a DNA-binding motif and a nuclear
localization signal (Choi et al., 2004). The QLQ domains are
more conservative than the WRC domains (van der Knaap
et al., 2000). All eukaryotes contain QLQ; however, WRC is a
plant-specific domain. In the C-terminal region of GRFs, the
types and number of amino acid residues vary greatly; thus, the
similarity within the family is low. Owing to the diversity of
C-terminal domains, GRF proteins have functional diversity.
In addition, the length of the C-terminal region determines
the protein size.

Initial studies suggested that GRFs only play a role in
leaf and stem development. However, recent studies have
discovered that GRFs not only regulate flowering, seed, and root
development, but also regulate plant longevity and participate
in abiotic stress response (Hewezi et al., 2012; Kim et al., 2012;
Liang et al., 2013; Debernardi et al., 2014; Liu et al., 2014).
In Arabidopsis thaliana, GRF-overexpressed plants have larger
leaves than wild-type plants, while the leaves of grf mutant plant
are smaller than wild-type plant (Kim et al., 2003). AtGRF1, 2,
and 3 control leaf size by regulating cell expansion (Kim et al.,
2003), while AtGRF1, 2, 3, 4, 5, and 9 control leaf development
through cell proliferation (Horiguchi et al., 2005; Kim and Lee,
2006; Arvidsson et al., 2011; Debernardi et al., 2014). grf1/2/3/4
quadruple mutant plants lack shoot apical meristems (Kim
and Lee, 2006). GRF genes are weakly expressed in mature
tissues, but are highly expressed in young tissues, such as seeds,
shoots, and young leaves (Liang et al., 2013). GRF genes encode
transcription factors that bind to sequence-specific DNA, which
interacts with the transcriptional cofactor GRF-INTERACTING
FACTOR (GIF) to form functional transcriptional complexes
that regulate cell proliferation to control leaf size (Kim et al.,
2003, 2022; Kim and Kende, 2004; Horiguchi et al., 2005; Lee
et al., 2009; Wang et al., 2011; Debernardi et al., 2014; Lee
and Kim, 2014; Lu et al., 2020). GRF is negatively regulated
by microRNA (miR396), and its expression is suppressed by
miR396 after transcription (Wang et al., 2011; Baucher et al.,
2013; Debernardi et al., 2014; Liu et al., 2014, 2021; Li et al.,
2019; Szczygiel-Sommer and Gaj, 2019; Liebsch and Palatnik,
2020; Beltramino et al., 2021; Lu et al., 2021; Pegler et al., 2021;

Kim et al., 2022). GRF/GIF has a universal growth-promoting
effect on inflorescences and flower organs of several species.
The miR396-GRF/GIF module is involved in the separation
of cotyledons and flower organs (Lee et al., 2018), as well as
multiple processes of flower organ growth and reproductive
development (Nagai et al., 2001; Hewezi et al., 2012; Kim et al.,
2012; Baucher et al., 2013). In addition, loss of GRF and GIF
function usually leads to varying degrees of sterility in plants,
flower organ fusion, and disturbances in the number of flower
organs (Wu et al., 2014; Zan et al., 2020). Some GRFs also
play an important role in abiotic stress response, including cold
and salt stress (Kim et al., 2012; Khatun et al., 2017; Wallace
et al., 2017; Shang et al., 2018; Li et al., 2019, 2021; Cao et al.,
2020; Pegler et al., 2021). In soybean, the transcription of all
GRFs was affected by shading. Under shade stress, almost all
expressions of GRFs are significantly downregulated to varying
degrees (Chen et al., 2019).

The identification and function of the GRF gene family has
been studied in a variety of plants, including Arabidopsis (9)
(Kim et al., 2003), soybean (22) (Chen et al., 2019), rice (12)
(Choi et al., 2004), apple (16) (Zheng et al., 2018), mulberry
(10) (Rukmangada et al., 2018), wheat (8) (Zan et al., 2020), and
foxtail millet (Chen and Ge, 2022). However, studies on the GRF
gene family in alfalfa are limited. As a widely used forage, alfalfa
is a popular feed for livestock and poultry owing to its high yield,
good forage quality, and rich nutrition. Leaves and stems, as
the main harvest organ, are limiting factors for the yield and
quality of alfalfa. Therefore, it is essential to study the control
mechanism of leaf size during leaf development to cultivate and
select germplasm resources of alfalfa with high quality.

Results

Identification of MsGRFs

In this study, we identified 27 MsGRFs in the alfalfa
genome using hmmscan and verified them with Pfam1 and
Conserved Domain Database (CDD) for the presence of
QLQ and WRC domains. According to their chromosomal
position, they were named MsGRF1- MsGRF27 (Table 1).
The coding sequence (CDS) length of MsGRFs varied slightly
from 754◦bp to 1,932 bp. The shortest GRF proteins were
MsGRF20 and MsGRF21, which contained 251 amino acids,
whereas the longest, MsGRF1, 2, and 4, had 643 amino
acids. Concurrently, the physicochemical properties of MsGRF
proteins were predicted. The theoretical molecular weight
(MW) of MsGRFs ranged between 28,577.5 Da (MsGRF20
and MsGRF21) and 69,891.83 Da (MsGRF1, MsGRF2, and
MsGRF4), and the isoelectric point (pI) ranged from 6.71 to

1 http://pfam.xfam.org
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TABLE 1 Characterization of the MsGRF family in alfalfa.

Name Gene ID Chromosome CDS (bp) Length (aa) MW (Da) pI

MsGRF1 MS.gene24503.t1 chr1.1 1932 643 69891.83 8.16

MsGRF2 MS.gene00530.t1 chr1.2 1932 643 69965.86 7.33

MsGRF3 MS.gene051667.t1 chr1.3 1920 639 69281.96 7.33

MsGRF4 MS.gene66485.t1 chr1.4 1932 643 69983.90 7.33

MsGRF5 MS.gene025207.t1 chr2.2 1098 365 41732.92 8.61

MsGRF6 MS.gene64421.t1 chr2.4 1140 379 43460.96 8.61

MsGRF7 MS.gene06847.t1 chr3.1 1683 560 60646.77 7.81

MsGRF8 MS.gene057219.t1 chr3.2 1683 560 60581.66 7.81

MsGRF9 MS.gene06630.t1 chr3.3 1668 555 60197.41 8.24

MsGRF10 MS.gene013521.t1 chr3.4 1716 571 61910.21 8.24

MsGRF11 MS.gene53920.t1 chr4.2 963 320 35120.67 6.71

MsGRF12 MS.gene025012.t1 chr4.3 1014 337 37053.76 6.83

MsGRF13 MS.gene63415.t1 chr4.4 963 320 35120.67 6.71

MsGRF14 MS.gene72850.t1 chr5.1 993 330 37144.42 9.03

MsGRF15 MS.gene001120.t1 chr5.2 999 332 37327.66 8.97

MsGRF16 MS.gene028055.t1 chr5.3 999 332 37327.66 8.97

MsGRF17 MS.gene070101.t1 chr5.4 996 331 37246.55 8.97

MsGRF18 MS.gene020536.t1 chr7.2 1155 384 42583.27 8.86

MsGRF19 MS.gene007262.t1 chr7.4 1056 351 38775.17 9.00

MsGRF20 MS.gene24648.t1 chr7.4 754 251 28577.5 10.18

MsGRF21 MS.gene007264.t1 chr7.4 754 251 28577.5 10.18

MsGRF22 MS.gene007261.t1 chr7.4 1155 384 42592.28 8.86

MsGRF23 MS.gene051361.t1 chr7.4 813 270 30396.03 9.13

MsGRF24 MS.gene26508.t1 chr8.1 1110 369 42137.21 7.29

MsGRF25 MS.gene051816.t1 chr8.2 1110 369 42137.21 7.29

MsGRF26 MS.gene012219.t1 chr8.3 1110 369 42137.21 7.29

MsGRF27 MS.gene24830.t1 chr8.4 1110 369 42137.21 7.29

10.18. MsGRF proteins are rich in basic amino acids, with
92.59% of MsGRFs proteins having an isoelectric point greater
than 7 (Table 1).

Phylogenetic analysis of MsGRFs

To clearly demonstrate evolutionary relationships, we
constructed a phylogenetic tree with protein sequences of 27
GRFs from alfalfa, 22 GRFs from soybean, and 9 GRFs from
Arabidopsis using by MEGA 64 with the Neighbor-Joining
(NJ) method. 58 GRFs were divided into six subgroups (I–
VI) (Figure 1). Subgroup I contained only one gene, AtGRF9,
and subgroups II–VI contained 8, 10, 12, 13, and 14 GRFs,
respectively. Twenty-seven MsGRFs were assigned to subgroups
II-VI: MsGRFs 8-10 with AtGRF7-8 and GmGRF4-5 were
assigned into subgroup II; MsGRFs 1- 4 belonged to subgroup
III with AtGRF1-2, GmGRF18-19, and GmGRF21-22; MsGRFs
18-23 comprised subgroup IV along with AtGRF3-4, GmGRF3,
9, 12, and 20; subgroup V only contained MsGRFs11-17 and
GmGRF (1 to 2, 8, 10, and 13) proteins; MsGRFs 5, 6, and 24-27

formed subgroup VI with AtGRF 5- 6, GmGRF6, 7, and 14-17.
As the functions of many Arabidopsis GRFs have been studied,
the function of MsGRF clustered with the GRFs from soybean
and Arabidopsis can be inferred from previous research. From
the phylogenetic tree, it can be concluded that MsGRFs are
more closely related to GmGRFs than to AtGRFs, which may
be because both soybean and alfalfa are legumes.

Sequence and structural analysis of
MsGRFs

Gene sequences of MsGRFs showed that the conserved
QLQ and WRC domains existed in the N-terminal region
of all MsGRFs (Supplementary Figure 1). To further study
gene structure and evolutionary relationships, a phylogenetic
tree was constructed using the protein sequences of MsGRFs,
and their gene structure and motif characteristics were
analyzed (Figures 2A–C). The homology of the MsGRF genes
was relatively high and the motif distribution was similar,
particularly in the same subgroup. Ten conserved motifs were
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FIGURE 1

Phylogenetic analysis of growth-regulating factors (GRFs) from Medicago sativa L. (Ms), Glycine max (Gm) and Arabidopsis thaliana (At). MEGA
7.0 software was employed to construct a neighbor-joining phylogenetic tree with 1,000 bootstrap replications. Subgroups are highlighted with
different colors.

identified using the MEME online program and renamed motifs
1–10 (Supplementary Table 1). All MsGRFs contained different
numbers of motifs, ranging from 3 to 10. All MsGRFs had
motif 1 and motif 2, annotated by NCBI CDD2 as WRC
and QLQ, respectively, which are GRF-specific domains. Four
members of subgroup III (MsGRF1, MsGRF2, MsGRF3, and
MsGRF4) contained all ten motifs (Figures 1, 2B). Two MsGRFs
(MsGRF20 and MsGRF21) contained the least number of motifs.
All MsGRFs contained motif 6, however, the distribution on the
genes differed (Figure 2B).

Exon–intron structures clearly showed that the MsGRFs
contained two to four introns (Figure 2C). In all, 18 of the 27
MsGRFs contained three introns; five MsGRFs (MsGRF1, 2, 4,
19, and 23) contained four introns; four genes (MsGRF14, 15, 16,
and 17) contained two introns. Genes that were closely related in

2 https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi

the phylogenetic tree had approximately the same distribution
area of exons and introns. The members of each subgroup in
the phylogenetic tree were similar in size and contained similar
genetic structures (Figures 1, 2C). All the members of each
subgroup contained the same number and similar length of
exons. The length of each MsGRF differed depending on the
length of the intron. The length of the CDS of MsGRF23 was
only 813◦bp, while its full length genomic DNA was the longest.
In general, motif distribution and gene structure indicate the
evolutionary relationship between MsGRFs.

Gene duplication and collinearity
analysis

All MsGRFs were unevenly distributed on 23 chromosomes
of alfalfa (Figure 3), and were not identified on the nine other
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FIGURE 2

Analysis on phylogenetic relationships, motifs, and gene structure of growth-regulating factor genes from Medicago sativa. (A) Phylogenetic
tree of 27 MsGRFs in alfalfa. (B) Conserved motif arrangements of MsGRFs. The motifs are indicated in different colored boxes with different
numbers. Motifs 1 and 2 represent WRC and QLQ domains, respectively. (C) Exon-intron organizations of MsGRFs. Blue boxes indicate exons;
black lines indicate introns.

chromosomes of alfalfa (2n = 4x = 32). Chromosome 7.4
(chr7.4) contains five MsGRF genes. Only one MsGRF gene
was found on chr1.1, chr1.2, chr1.3, chr1.4, chr2.2, chr2.4,
chr3.1, chr3.2, chr3.3, chr3.4, chr4.2, chr4.3, chr4.4, chr5.1,
chr5.2, chr5.3, chr5.4, chr7.2, chr8.1, chr8.2, chr8.3, and chr8.4.
For chromosomes 1, 3, 5, and 8, each allele chromosome
had one MsGRF gene, whereas on chromosomes 2 and 7,
only allele chromosomes x.2 and x.4 had MsGRF genes. On
chromosome 4, only allele chromosome 4.1 had no MsGRF
gene. On chromosome 6, the MsGRF gene has not yet been
identified in each chromosome allele.

Gene duplication is considered as one of the primary
driving forces in the evolution of genomes and genetic systems.
To study the gene duplication relationship of the alfalfa
GRF family, collinearity analysis of MsGRFs was performed
using Tbtools (Figure 4). All MsGRFs are involved in the
duplication process, including tandem duplication, whole-
genome duplication (WGD) or segment duplication. MsGRF19-
MsGRF23 is a set of tandem duplications located on chr7.4.
Other duplicated gene pairs are genome-wide duplication or
segment duplications. The non-synonymous substitution rates
(Ka) and synonymous substitution rates (Ks) for each duplicated

gene pair were calculated (Supplementary Table 2). The Ka/Ks
values of all gene pairs were less than 1, indicating that the
MsGRF gene family is subject to purifying selection.

Cis-acting elements analysis of
MsGRFs

The online cis-element database PlantCARE was used
to analyze the promoter sequences (upstream 2,000 bp) of
MsGRFs. Conserved core elements TATA-box and enhancement
elements CAAT-box in the promoter sequences were observed,
which conformed to the basic structural characteristics of
eukaryotic gene promoters. The promoter sequence also
contained many elements related to hormonal and abiotic
stress responses (Figure 5). Hormone-responsive elements
include jasmonic acid-responsive elements (CGTCA-motif
and TGACG-motif), salicylic acid cis-acting element (TCA-
element), gibberellin-responsive elements (GARE motif, P-box
and TATC-box), abscisic acid-responsive elements (ABRE),
and auxin-responsive elements (AuxRR-core, TGA-element).
Abiotic stress response elements include the anaerobic inducible
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FIGURE 3

The distribution of MsGRFs on alfalfa chromosomes. The green bars represent each chromosome, and the black lines label the position of each
MsGRF gene.

element (ARE), disease resistance and stress response element
(TC-rich repeats), low temperature responsive cis-acting
element (LTR), and MYB binding site involved in drought-
inducibility (MBS). In addition, we found certain unique cis-
acting elements in the promoter sequence: CAT-box (cis-acting
regulatory element related to meristem expression), MSA-like
(cis-acting element involved in cell cycle regulation), and HD-
Zip 1 (element involved in differentiation of the palisade
mesophyll cells). Each MsGRF contains at least one hormone-
related cis-element and one stress-related cis-acting element,
however, the types vary.

Expression analysis of MsGRFs in
different developmental stages

To analyze the expression of MsGRFs at different
developmental stages of stems and leaves, the expression
levels of 27 genes at different growth and developmental
stages were verified by qRT-PCR, and the results were
visualized as heatmaps (Figures 6A,B and Supplementary

Table 3). Each stem internode, from the apex to base
of the stem, is used as a developmental stage, labeled
as S1 to S8. The first leaf that has not fully unfolded is
regarded as the first stage of leaf development (L1), and
is then divided into L1 to S4 according to leaf position
(Supplementary Figure 2).

The expression of MsGRFs in stems is shown in the
Figure 6A. According to the expression patterns at different
developmental stages of the stem, most of the GRF family
genes were weakly expressed. Compared with other MsGRF
genes, the expression levels of MsGRF1 to 4 were significantly
higher. These four genes were most strongly expressed in the
S1 stage, followed by the S2 stage, and weakly expressed in
the stems at other developmental stages. The qRT-PCR results
in column chart showed clearly that the expression levels of
these four MsGRFs decreased dramatically from the first period,
increased a little in the S5 period, and then decreased gradually
(Figure 6C). Overall, the expression of the four MsGRFs
gradually decreased during stem growth and development. In
conclusion, it is speculated that MsGRFs1-4 plays an important
role in regulating stem development.
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FIGURE 4

Synteny analysis of MsGRFs genes in alfalfa. Red lines indicate the replicated MsGRFs gene pairs in alfalfa.

In the expression profile of leaves (Figure 6B), MsGRFs
can be clustered into six clades, denoted by A-F. The MsGRF
genes of cluster F were negligibly expressed. Cluster D and
E expression was weak, but the expression level of cluster E
increased slightly at the L3 and L4 stage. In contrast, cluster A
was strongly expressed in leaves, especially at the L1 stage. The
expression levels of clusters B and C were higher in the early
stages of leaf development, and differed significantly from those
in the other stages (Figure 6B). The expression of MsGRFs1-6
was the strongest in the L1 stage, fluctuated in the L2, L3, and
L4 stages, and showed a downward trend in general, revealed by
qRT-PCR analysis in column chart (Figure 6D). The expression
of MsGRFs18 to 23 reached the summit at the L1 stage, and then
decreased significantly during leaf development (Figure 6D). In

summary, the expression of MsGRFs was high in the early stages
of leaf development and weak in mature leaves. These results
indicate that MsGRF1-6 and MsGRF18-23 play important roles
in the leaf development.

Identification of large and small leaf
alfalfa varieties and growth-regulating
factor gene expression analysis

To analyze GRF function on leaf development, the small
leaf, and large leaf alfalfa varieties was investigated. The leaves
of “Xinjiang Daye” were larger than those of the “Nei 1 × Nei
2” varieties (Figure 7A). To clarify whether the development of
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FIGURE 5

The cis-acting element contained in the 2 kb promoter sequence of the MsGRF gene. Different cis-elements are indicated by different colored
rectangles and placed in the matching position on the promoter.

alfalfa leaf size was regulated by cell proliferation or expansion,
the number of lower epidermal cells of the L4 stage leaves from
the two varieties under a microscope and the average cell area
of a single epidermal cell was investigated (Figures 7A,B). The
average area of a single lower epidermal cell in “Xinjiang Daye”
is larger than “Nei 1 × Nei 2” (Figure 7C). The average cell
number of a single leaf in “Xinjiang Daye” is much higher
than that in “Nei 1 × Nei 2” (Figure 7D). These results
implied that leaf size is regulated by both cell proliferation
and expansion. According to the expression of MsGRFs at
different developmental stages of leaves (Figure 6D), we selected
MsGRFs with high expression at L1 stage for qRT-PCR analysis
to verify their expression in large leaves (“Xinjiang Daye”) and
small leaves (“Nei 1 × Nei 2”) alfalfa varieties. The selected
MsGRFs were highly expressed in these two varieties, but they
had differences in the expression levels. It was found that the
expression levels ofMsGRF1 to 4,MsGRF18 to 20, andMsGRF22

to 23 were much higher in “Xinjiang Daye” than that in “Nei
1× Nei 2” (Figure 8).

Discussion

The GRF family, as a class of plant-specific transcription
factors, plays an important role in plant growth and
development (Kim et al., 2003; Kim and Lee, 2006; Baucher
et al., 2013; Omidbakhshfard et al., 2015). The GRF gene family
has been identified and studied in many species, but has not
been reported in alfalfa. Existing studies have confirmed that the
GRF family can regulate the development of roots, stems, leaves,
flowers, and fruits, the maintenance of shoot apical meristems,
regulate plant longevity and respond to abiotic stresses (van
der Knaap et al., 2000; Kim et al., 2003; Kim and Kende, 2004;
Horiguchi et al., 2005; Kim and Lee, 2006; Marcotrigiano,
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FIGURE 6

Expression profiling of MsGRFs. (A) Expression profiles of MsGRFs at different developmental stages of stem internodes. Each stem internode
starting from the apex is used as a developmental stage, labeled as Stem-1 to 8. (B) Expression profiles of MsGRFs at different developmental
stages of leaves clustered into A to F six clades. L1 to L4 indicates the leaf development according to leaf position, and the first leaf that has not
fully unfolded is regarded as the first stage of leaf development (L1). (C,D) qRT-PCR quantification of gene expression levels of selected MsGRF
genes from (A,B) displayed in a column chart. The different letters (a, b, c, etc.) indicate the significant difference at P < 0.05 by Student’s t-test
analysis.
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FIGURE 7

Leaf morphology and lower epidermal cells observed under microscope. (A) Morphological observation of large (X, “Xinjiang Daye”) and small
(N, “Nei 1 × Nei 2”) leaves. Scale bar, 1 cm. (B) Epidermal cells of large (X, “Xinjiang Daye”) and small (N, “Nei 1 × Nei 2”) leaves under microscope.
Scale bar, 50 µm. (C) The average area of a single epidermal cell in the leaf of “Xinjiang Daye” and “Nei 1 × Nei 2”. (D) Estimates of the average
total cells number in a single leaf of “Xinjiang Daye” and “Nei 1 × Nei 2”. The letters (a, b) indicate the significant difference at P < 0.05 by
Student’s t-test. The L4 stage leaves were used for the observation.

2010; Wang et al., 2011; Hewezi et al., 2012; Baucher et al.,
2013; Debernardi et al., 2014; Lee and Kim, 2014; Wu et al.,
2014; Tao et al., 2016; Beltramino et al., 2018; Lee et al., 2018;
Lockhart, 2018; Zhang D. et al., 2018; Lu et al., 2020; Kim et al.,
2022). In Arabidopsis, GRF genes regulate leaf size via cell
proliferation and expansion (Kim et al., 2003; Kim and Kende,
2004; Horiguchi et al., 2005; Wang et al., 2011; Debernardi
et al., 2014; Beltramino et al., 2018; Shimano et al., 2018). The
leaves are the main site of photosynthesis (Tsukaya, 2014), and
the main harvesting organ in alfalfa. Therefore, it is essential
to study the regulatory mechanisms of the GRF gene family in
the development of alfalfa leaf size. In this study, we performed
bioinformatic analysis of 27 GRF gene family members

FIGURE 8

Quantification of the expression levels of selected MsGRFs in
the leaves of X, “Xinjiang Daye” and N, “Nei 1 × Nei 2” using
qRT-PCR. Vertical bars indicate standard deviation. The asterisk
(*) indicates the significant difference at P < 0.05 by Student’s
t-test.

identified in alfalfa variety “Xinjiang Daye”, and predicted the
physicochemical properties and cis-acting elements of MsGRFs.
To clarify the evolutionary relationship of the GRF gene family,
a phylogenetic tree was constructed and its gene structure and
motif distribution were studied. The replication relationship
between genes was analyzed using chromosomal location and
collinearity analysis. The expression patterns of MsGRFs at
different growth and developmental stages of the leaves and
stems were quantitatively analyzed by qRT-PCR.

The GRF family contains QLQ and WRC conserved
domains at the N-terminus, and the WRC region contains
DNA-binding motifs and nuclear localization signal regions,
which can combine with the cis-acting regions of downstream
genes to regulate the expression of such genes (Kim and
Kende, 2004). The QLQ domain can combine with GIF
to form a transcriptional activator and play a regulatory
role (Choi et al., 2004). These 27 genes were verified to
contain QLQ and WRC domains (Supplementary Figure 1);
therefore, they were finally identified as GRF family members.
The protein lengths of MsGRFs ranged from 251 to 643
amino acids. Subsequently, the physicochemical properties of
the MsGRFs were predicted, including isoelectric point and
molecular weight. The theoretical MW of MsGRFs was between
28,577.5 Da and 69,891.83 Da, and the isoelectric point (pI) was
between 6.71 and 10.18 (Table 1).

Phylogenetic analysis showed that 27 MsGRFs were divided
into six subgroups according to their phylogenetic relationships
(Figure 1). AtGRF1, 2, 3 have been shown to regulate leaf size
through cell proliferation and expansion (Kim et al., 2003; Kim
and Kende, 2004; Horiguchi et al., 2005; Hewezi et al., 2012;
Beltramino et al., 2018), therefore, the function of MsGRFs in
the same subgroup can be inferred according to clustering in the
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evolutionary tree, which provides a foundation for future studies
on the mechanism of GRFs that control leaf size development.
The gene structure and motif distribution were consistent with
the phylogenetic results, which confirmed the phylogenetic
relationship among MsGRF genes (Figure 2). Members of the
same subgroup contain similar gene structures and conserved
motifs. Studies have shown that most genes in the GRF family
contain three introns (Wang et al., 2014; Shang et al., 2018;
Zhang J. et al., 2018), which is consistent with our results of gene
structure analysis (Figure 2C).

Gene duplication is considered to be one of the primary
driving forces in the evolution of genomes and genetic
systems. Tandem duplication events and large-segment
duplication events are considered the main reasons for
the expansion of gene families in the genome (Levasseur
and Pontarotti, 2011). MsGRFs were distributed on 23
chromosomes, and no GRF family members were identified
in any of the copies of chr 6.1–6.4 (Figure 3). According to
sequence alignment, the sequences of the MsGRFs on each
chromosomal copy were highly homologous. The results of
the collinearity analysis showed that the MsGRF gene family
was expanded by large segment duplication. The MsGRFs in
alfalfa were involved in gene duplication events (Figure 4).
Chromosome 7.4 contains five genes identified as tandem
repeats of MsGRFs, which are arranged in neighboring
positions, and form a gene cluster with similar sequences.
In other species, such as soybean, wheat, and foxtail millet,
duplication events of the GRF gene family have also been
demonstrated, (Chen et al., 2019; Zan et al., 2020; Chen
and Ge, 2022). The Ka/Ks of all replicating gene pairs was
less than 1 (Supplementary Table 2), and most of the non-
synonymous substitutions were harmful, indicating that
the environmental selection pressure during the evolution
process was negative, and the MsGRF genes were selected
for purification.

Cis-acting elements are DNA sequences that exist upstream
of a gene and participate in the regulation its expression.
They do not encode any protein but only provide a binding
site for action (Hernandez-Garcia and Finer, 2014). In this
study, we predicted that cis-acting elements located 2,000 bp
upstream of the promoter using PlantCARE (Figure 5). The
promoter sequences of MsGRFs contain hormone-related cis-
acting elements and stress-related cis-acting elements, among
which ARE is the most widely distributed, followed by ABRE.
In addition, only MsGRF6 contained HD-Zip 1 (an element
involved in differentiation of the palisade mesophyll cells), and
MsGRF12 contained CAT-box (cis-acting regulatory element
related to meristem expression) and MSA-like (cis-acting
element involved in cell cycle regulation) element. Each MsGRF
contained abiotic stress-related cis-acting elements, indicating
that these genes responded to different stresses. Based on
these results, candidate genes are provided for studies related
to abiotic stress.

The expression of MsGRFs in various tissues plays an
important role in growth and development. It has been
demonstrated in previous studies that the GRF gene family
is strongly expressed in young tissues and weakly expressed
in mature tissues (Zhang et al., 2008; Khatun et al., 2017;
Zheng et al., 2018; Zhou et al., 2018; Zan et al., 2020;
Tang et al., 2021). In this study, the expression patterns of
the MsGRF family were similar in leaves and stems, with
high expression in young stems and leaves, which decreased
with growth and development (Figure 7). MsGRFs1-4 were
significantly expressed in leaves and stems, indicating that
these genes play an important role in regulating their growth
and development. By observing the lower epidermal cells of
different sizes of leaves from different varieties, we found that
the size of alfalfa leaves was controlled by cell proliferation
and expansion (Figure 7). The expression of several MsGRF
genes was significantly different in large and small leaf alfalfa
varieties, such as MsGRF1 to 4, MsGRF18 to 20, and MsGRF22
to 23 (Figure 8), which may be related to the regulation
of leaf size. As the main site of photosynthesis, the leaves
are also the main harvesting organs of alfalfa. Studying the
control mechanism of leaf size is crucial to understanding
the ecology and increasing production of alfalfa (Liu et al.,
2012, 2021). According to the expression of MsGRF genes in
different developing leaves, many candidate genes have been
identified, and the key genes controlling leaf size need to be
further investigated.

Conclusion

In this study, 27 GRF family members in alfalfa were
identified and their basic characteristics and functions were
subjected to preliminarily analysis. QLQ and WRC are two
domains unique to the GRF gene family that helped us identify
MsGRFs in alfalfa. To study the evolutionary relationships
between GRFs, a phylogenetic tree was constructed and divided
into six subgroups. Members of the same subgroup have similar
gene structures and motif distributions. In alfalfa, there are
23 chromosomes with GRF family genes, among which chr7.4
contains five genes and the other chromosomes only contain
one gene. All MsGRFs are involved in gene duplication events
including tandem duplication, whole-genome duplication, and
segment duplication. The results of the collinear analysis showed
that gene duplication facilitated the expansion of MsGRFs. The
upstream regions of the promoters of MsGRFs all contain one or
more hormone or stress-related cis-acting elements. MsGRF1-
4 were strongly expressed in young stems and leaves, whereas
MsGRF5, 6 and MsGRF18-23 were only highly expressed in
young leaves and not in stem. The expression of MsGRF1-
4, MsGRF18-20, and MsGRF22-23 were significantly different
in large and small leaf alfalfa varieties. In conclusion, these
results lay a foundation for us to further study the function
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and regulatory mechanism of the alfalfa GRF gene family in leaf
development and screen the key genes for controlling leaf size.

Materials and methods

Identification of MsGRFs

The “Xinjiang Daye” genome used in this article is
publicly available in the NCBI database under project
PRJNA540215, and the genome assembly files are available
at https://figshare.com/projects/whole_genome_sequencing_
and_assembly_of_Medicago_sativa/66380 (Chen et al., 2020).
Alfalfa protein sequences and genome annotations were
downloaded from the Alfalfa Breeder’s Toolbox.3 Transcription
factor prediction and blast analysis were performed using
Majorbio Cloud Platform.4 Analysis of transcription factors
was performed using hmmscan with parameter E-value ≤ 1e−5

(Lozano et al., 2015). Finally, sequences were verified with
Pfam(see text footnote 1) and CDD.5 The genes containing
the WRC and QLQ domains were considered to be MsGRFs.
The ExPASy proteomics server6 was used to predict the
physicochemical properties of each MsGRF protein, including
the molecular weight (MW) and theoretical isoelectric point
(pI) (Wilkins et al., 1999).

Sequence and phylogenetic analysis

Full-length amino acid sequences of GRF in alfalfa were
aligned using MEGA 7.0 (Kumar et al., 2016). Conserved
motifs for predicted MsGRFs protein sequences were identified
using the MEME online program7 with default settings, except
that the motif number was set as 10 (Bailey et al., 2009).
Gene structure and motif distribution were visualized using the
TBtools software (Chen et al., 2018). Nine Arabidopsis GRF
sequences from The Arabidopsis Information Resource (TAIR)8

and 22 GRF sequences of soybean from Phytozome v139 were
used to construct a phylogenetic tree (Supplementary Table 5).
MEGA 7.0 was used to construct phylogenetic trees using the
neighbor-joining method with Poisson model, pairwise deletion,
and 1,000 bootstrap replications (Kumar et al., 2016). The
cis-acting elements in the 2,000 bp upstream sequences of
the promoter of MsGRFs were predicted using PlantCARE10

3 https://www.alfalfatoolbox.org/

4 www.majorbio.com

5 https://www.ncbi.nlm.nih.gov/cdd

6 https://web.expasy.org/protparam/

7 http://meme-suite.org/tools/meme

8 http://www.arabidopsis.org

9 https://phytozome-next.jgi.doe.gov

10 http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

(Lescot et al., 2002), and TBtools was used to visualize the
cis-acting elements.

Chromosome distribution, gene
duplication, and collinearity analysis

The chromosomal location of the alfalfa GRF gene
was obtained from the genome assembly files,11 and the
chromosomal distribution was mapped using TBtools.
Collinearity analysis of 27 MsGRFs gene was performed
using TBtools software to detect gene duplication events.
Based on the results of the collinearity analysis, calculation of
non-synonymous (Ka) and synonymous (Ks) substitutions for
each pair of duplicated genes were made using TBtools. The
ratio of Ka/Ks was used to do the analysis of selection pressure.

Quantitative real-time polymerase
chain reaction analysis

To investigate the expression patterns of MsGRFs, total
RNA from different tissues were used for qRT-PCR (Schmittgen
and Livak, 2008). Total RNA was extracted using the Takara
MiniBEST Plant RNA Extraction Kit (Takara Bio Inc., Kusatsu,
Japan), and the RNAs were reverse transcribed into cDNAs
using HiScript III R© RT SuperMix for qRT-PCR (+ gDNA wiper)
(Vazyme Biotech Co., Ltd., Nanjing, China). ChamQ SYBR
Color qRT-PCR MasterMix (Vazyme Biotech Co., Ltd., Nanjing,
China) was used for qRT-PCR, and the MsUBC Q-2F gene was
used as a reference gene, each of which had three technical
replicates. Beacon Designer 7.9 was used to design real-time
quantitative primers, and the sequences of the primers used for
qRT-PCR was listed in Supplementary Table 4.

Plant material and growth condition

In this experiment, we used cultivated “Xinjiang Daye”
and “Nei 1 × Nei 2” alfalfa as plant material. The alfalfa
seeds were placed in a petri dish containing H2O and then
placed in a germination bag. After seven days, the germinated
seedlings were transferred to 1/2 Hoagland’s nutrient solution
for growth and cultivation, during which the nutrient solution
was changed every 3 days. Plants were placed in an artificial
climate incubator with a 16-hour photoperiod, day and night
temperature of 25◦C/22◦C, and relative humidity of 60–70%.
The plant materials used for the morphological observation

11 https://figshare.com/projects/whole_genome_sequencing_and
_assembly_of_Medicago_sativa/66380
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were “Nei 1 × Nei 2” and “Xinjiang Daye” alfalfa cultivated in
the same environment.

To analyze the expression patterns in different growth
stages, the leaves and stems of 30-day-old alfalfa were selected.
The leaves were divided into four developmental stages (L1, L2,
L3, and L4), and the stems of the same plant were divided into
eight developmental stages (S1 to S8) according to the order of
stem nodes from the apex to base (Supplementary Figure 2). All
samples were immediately frozen in liquid nitrogen and stored
at−80◦ until use.
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SUPPLEMENTARY FIGURE 1

Protein sequence alignment of 27 MsGRFs and conserved
domains of QLQ and WRC.

SUPPLEMENTARY FIGURE 2

Different developmental stages of stems and leaves in alfalfa. L1
represents the first leaf that is not fully expanded, then L2, L3, and L4 are
defined according to leaf position. From top to bottom in the stem,
each stem node is used as a developmental stage, represented by S1–8.
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