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In China, citrus Huanglongbing (HLB) disease is caused by the Candidatus

Liberibacter asiaticus bacterium, which is carried by the Asian citrus psyllid

Diaphorina citri Kuwayama. It was hypothesized that the epidemic of the HLB

may related with the rate of bacterium presence in the insect vector and

bacterium content in plant tissues, as well as the phyllosphere microbe

communities changes. This study systematically analyzed the presence or

absence of Ca. L. asiaticus in citrus tree leaves and in the insect vector D.

citri over a 6-year period using real-time PCR. In addition, changes in the

number of bacteria carried byD. citri over 12 months were quantified, as well as

the relationship between the proportion of D. citri carrying Ca. L. asiaticus and

the proportion of plants infected with Ca. L. asiaticus were analyzed. Results

showed that the proportion of D. citri carrying bacteria was stable and relatively

low from January to September. The bacteria in citrus leaves relatively low in

spring and summer, then peaked in December. The proportion of D. citri

carrying bacteria gradually declined from 2014 to 2019. The proportion of D.

citri carrying Ca. L. asiaticus showed a significant positive correlation with the

proportion of diseased citrus. The phyllosphere bacterial and fungal

communities on the healthy citrus leaf were significantly different with the

disease leaf in April and December. Pathogenic invasions change the citrus

phyllosphere microbial community structure. It could be summarized that
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citrus Huanglongbing correlated with incidence of Diaphorina citri carrying

Candidatus Liberibacter asiaticus and citrus phyllosphere microbiome.
KEYWORDS

citrus huanglongbing, Candidatus Liberibacter asiaticus, Diaphorina citri,
phyllosphere microbiome, pathogen detection and monitoring
Highlights
(1) We monitored citrus Huanglongbing (HLB) for 6 years

to obtain enough samples and accumulate long-term

continuous data to analyze the spread and prevalence of

Huanglongbing in Zhejiang Province, China.

(2) The number of pathogenic bacteria in citrus leaves and

the rate of insect vector Diaphorina citri carrying

bacterium was lowest in spring and highest in

December.

(3) Phyllosphere microorganisms of citrus are correlated

with HLB.
Introduction

Citrus Huanglongbing (HLB) disease has been reported over

50 countries around the world, which causes serious damage to

the citrus industry (Faghihi et al., 2009; Gottwald, 2010; Lopes

et al., 2010). HLB is caused by a group of bacteria called

Candidatus Liberibacter that inhabit in the phloem of citrus

trees. Three species of HLB-causing bacterium have been

reported: Candidatus Liberibacter africanus, Candidatus

Liberibacter asiaticus and Candidatus Liberibacter americanus.

The bacteria can infect different tissues of host plant once

invading, and then affect plant growth and development, such

as causing metabolism disorders, leaves yellowing, fruits

deformity, and roots rot (Pustika et al., 2008; Koh et al., 2012;

Etxeberria et al., 2009; Johnson et al., 2014). Infected citrus trees

will be significantly shortened profitable lifetimes and lower

yields (Gottwald, 2010).

In plant pathological systems, many parasites infect plants

and increase their prevalence by host vectors. HLB is transmitted

by insect vectors feeding on the phloem of citrus foliage. The

HLB causing by africanus species is transmitted by the African

citrus psyllid Trioza erytreae. Meanwhile, the HLB causing by

the asiaticus and americanus species is transmitted by the Asian

citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae)

(Grafton-Cardwell et al., 2013). Studies have shown that HLB

disease in China is caused by Ca. L. asiaticus, which is associated
02
with the vector D. citri (Hall et al., 2013). Suitable growth area of

the bacteria and the insect hosts has been expanded with the

rising winter temperatures in recent decades due to global

warming (Wang et al., 2020). Bacteria are acquired by D. citri

when they feed on the infected plant, after that, bacteria will

proliferate in D. citri and maintain throughout the life history of

the adult psyllid (Aubert and Quilici, 1984; Tabachnick, 2015;

Luo et al., 2016). Citrus HLB is optimal and limitted by

temperature conditions (Narouei-Khandan et al., 2015).

However, there is still no long-term quantitative monitoring of

bacterial content levels in different hosts, and lack of

understanding of this aspect.

The population dynamics of insects are closely related to the

growth rhythm, desirable food intake and nutritional quality of

host plants (Wallner, 1987). The phenological characteristics of

host plants will affect the growth of insects, leading to genetic

variation among insect individuals and genetic differentiation

among insect populations (Knolhoff and Heckel, 2014).

Although tremendous progress has been made in

understanding the ecological and evolutionary underpinnings

of the Liberibacter disease pyramid, little is known about the

quantitative relationship between these factors in the pyramid.

The phyllosphere (aboveground part of terrestrial plants) is

an important niche of the plant, inhabited by diverse microbes

which are collectively called the phyllosphere microbiome

(Vorholt, 2012). The phyllosphere microorganisms could

influence host plant by affecting nutrient acquisition,

promoting host stress tolerance, altering plant hormones, and

mediating plant pathogen interactions (Stone et al., 2018). The

phyllosphere microbiomes were found to differ between infected

and uninfected citrus leaves by melanose pathogen, and part of

the phyllosphere microbiome shift could positively affect plant

performance against pathogen invasion (Li et al., 2022).

In this study, we hypothesizes that the epidemic of the HLB

may related with the rate of bacterium presence in the insect

vectors and bacterium content in plant tissues, as well as the

phyllosphere microbe communities. Citrus unshiu orchards in

different regions of Zhejiang and Hunan Province were

systematically analyzed to determine the level of threat from

HLB disease (Figure 1). The number of D. citri carrying Ca. L.

asiaticus over time was quantified. The phyllosphere

microbiomes of healthy citrus leaves and HLB diseased leaves
frontiersin.org
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were investigated in April and December to understand

the correlation among phyllosphere microbial community

structure, HLB disease and seasonal effects. The aim of this

study is to determine the influence of the bacteria carrier rate of

D. citri in citrus orchards at different growth stages, in order to

provide a theoretical basis for future exploring the ecological

regulation and comprehensive control of D. citri and Ca.

L. asiaticus.
Materials and methods

Orchards location and sample collection

For monitoring the D. citri carring Ca. L. asiaticus over a six-

year period from 2014 to 2019, random sites from locations in

different counties in the south of Zhejiang Province were chosen

for sample collecting (Figure 1, Table 1).

All the C. unshiu trees monitored were over 12 years old and

at the high yield stage. In each site, 60 psyllids were collected

from one C. unshiu tree and stored into an individual 1.5-ml

tubes, then frozen at –20°C for the future tests. DNA was

extracted from 30 psyllids randomly selected from the 60

psyllids (the other 30 psyllids were stored for backup) and

processed to detect and quantify Ca. L. asiaticus.

For monitoring the rate of D. citri and C. unshiu leaves

carring Ca. L. asiaticus changes during the year, An orchards in

Yueqing (Zhejiang Province), in which the disease incidence rate
Frontiers in Plant Science 03
were over 90.0%, were sampled by using five-point sampling of

the orchards, once a month for 12 months from May 2015 to

April 2016. Five leaf samples were also collected from the same

point where the insects collected to determine the bacterial

content in the midvein. Approximately 45–70 insects were

collected around the 20th day of each month. Thirty insects of

each month were processed to determine the presence of

the bacterium.

To determine the rate of D. citri carring Ca. L. asiaticus in

orchard with different disease incidence, psyllids were also

collected by using five-point sampling of the orchards in the

early August from 22 orchards in Huangyan, Yueqing, Wenling

and Yuhuan (Zhejiang Province) in 2019 (Table 2).

Ten healthy and HLB leaves were collected by using five-

point sampling within an area of 600 m2 for phyllosphere

microbiome study at each sampling point in April (Spring)

and December (Autumn), respectively, in Yongzhou (Hunan

Province) in 2018. Ten leaf samples of each sampling point were

mixed put into a sterile bag and refrigerated at -80°C. Every

sterile bag contained 10 leaves which were cut into tiny pieces

and the samples mixed into 4 treatments which are healthy Apirl

(SK), diseased Apirl (SB), healthy December (AB) and diseased

December (AK), before subsequent processing. The

phyllosphere microorganisms were collected following the

procedures of Xie et al. (2015). The microbes were filtered by

a 0.22 mm filter microfiltration membrane using the air pump

filtration, and then the samples were stored at -80°C for

subsequent DNA extraction.
B

C

A

FIGURE 1

Illustration of the major citrus growing areas (orange and blue), HLB happened areas (orange) adapted from Dala-Paula et al. (2018) and Liu
et al. (2012) (A), and the sampling areas in Zhejiang (B) and Hunan (C) province.
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Detection and quantification of Ca.
L. asiaticus

The insects or leaves were crushed with a glass rod, and DNA

was extracted using the CTAB extraction method. 400µL

prechilled buffer (100 mmol/L Tris-HCl, 10 mmol/L EDTA, 700

mmol/L NaCl, pH 8.0) was added into the crushed powder, then

added 500µL 65°C preheated buffer (2% CTAB, 50mmol/L Tris-

HCl, 10 mmol/L EDTA, 800 mmol/L NaCl, pH 8.0). Samples were

mixed and incubated at 65°C for 120 min, during which mixing

the samples by inverting the tubes gently per 20 min. After that,

add 450µL chloroform and mix by inverting the tubes and

centrifuge 2 minutes at 12000r, the aqueous phase (above the

white interface layer) to a clean microtube (then discard the rest),

add 1 mL RNase (DNase-free) and incubate for 30 min at 37°C.

Add 0.6 mL of isopropanol (2/3 of the recovered volume). Gently

invert the microtube to be sure mixing is complete. Leave to

precipitate for overnight at room temperature to precipitated the

DNA, spin 15 min at 12000r at 4°C to pellet the DNA, remove the

supernatant carefully, then wash the pellet once or twice with cold

EtOH, spin 15 min at max speed, 4°C, remove supernatant and

dry the pellet by leaving tube open, resuspend pellet in sterile

H2O, store at -20°C (Winnepenninckx et al., 1993). The

bacterium was quantified using RT-qPCR, The primers pair: 5’-

CAAGG AAAGA GCGTA GAA-3’ and 5’-CCTCA AGATC

GGGTA AAG-3’ were used. The PCR is carried by 25mL system

with 2mL DNA and 0.3 mmol/L primers and 1X PCR master mix,

on the iCycler™(Bio rad, USA) marchin with the program of 94°

C, 5 minute, 40 cycles of 95°C, 5 second, 59°C, 15 second, and 72°

C, 45 second, ended with 72°C, 7 minute. A standard curve was

prepared and calculated using T vectors with DNA fragments of

the target bacterial gene (382 bp) insertion. Copy numbers of T
Frontiers in Plant Science 04
vectors were diluted to obtain copy numbers of 10, 102, 103, 104,

105, 106 for a standard curve. The standard linear regression (Y=a

+bX) of the log concentration of the target DNA copies(Y) versus

the mean Ct value(X) were obtained (Li et al., 2008).
DNA extraction, PCR amplification
and pyrosequencing for
phyllosphere microbiome

The total DNA was extracted from phyllosphere samples

according to the manufacturer’s protocol using the MP

FastDNA® SPIN Kit for soil (MP Biochemicals, Solon, OH,

USA). The PCR amplification were performed following Luo

et al. (2019). The bacterial and fungi forward and reverse

primers with a unique 12 nt barcode were included as the

modification in the study, respectively. The bacterial and fungal

ITS regions were amplified as previously described by Kong et al.

(2019). PCR products were purified with an E.Z.N.A. ® Gel

Extraction Kit, pooled in equimolar amounts using Qubit (CA,

USA). And mixed PCR products were sequenced (2×250 bp) on

an Illumina MiSeq platform by ANNOROAD Gene Technology

Co., Ltd. (Beijing, China) according to standard protocols.

Raw sequence data reads were processed with an in-house

pipeline (http://mem.rcees.ac.cn:8080). In brief, a separate sample

was generated according to a series of 12-bp barcodes and primers,

and allowing for one mismatch. Paired-end reads (overlap > 30 bp)

were combined by the FLASH program (Magoc & Salzberg, 2011).

The combined sequences (Quality Score < 20) were filtered by Btrim

program (Kong, 2011). Then the sequences with either an ambiguous

base or the sequence length less than 200 bp were discarded. The

UPARSE algorithms were used to detect and remove chimera
TABLE 1 Proportion of Diaphorina citri carrying Candidatus Liberibacter asiaticus bacteria in orchards in southern counties in Zhejiang Province
from 2014 to 2019.

Years locations and No.of Samples took No.of Samples detected with HLB

2014 Cangnan (10), Ruian (10), Ouhai (10),
Yongjia (10), Yueqing (10), Longquan (10),
Yunhe (10), Qingtian(20), Songyang(10),
Liandu (10), Yuhuan (10),Wenling(10),
Luqiao (10), Jiaojiang (10), Linhai (10),
Shanmeng (10), Xianju (10), Ninghai (10),
Xiangshan (10), Yongkang (20)

Cangnan (6), Ruian (7), Ouhai (3),
Yongjia (3), Yueqing (6), Longquan (4),
Yunhe (5), Qingtian (4), Songyang (9),
Liandu (8), Yuhuan (10), Wenling (4),
Luqiao (4), Jiaojiang (4), Linhai (1),
Shanmeng (3), Xianju (0), Ninghai (3),
Xiangshan (1), Yongkang (4)

2015 Wenling (30), Liandu (30), Ninghai (12),
Huangyan (10)

Wenling (13), Liandu (11), Ninghai (0),
Huangyan (3)

2016 Yuhuang (20), Wenling (20), Luqiao (30),
Jiaojiang (30), Linhai (10), Shanmeng (14)

Yuhuang (10), Wenling (10), Luqiao (10),
Jiaojiang (10), Linhai (10), Shanmeng (10),

2017 Yongjia (24), Yueqing (60), Wenling (30),
Liandu (30)

Yongjia (3), Yueqing (18), Wenling (10),
Liandu(10)

2018 Ruian (30), Longwan (40), Yueqing (40),
Wenling (10), Linhai (10)

Ruian (6) Longwan (10), Yueqing (10),
Wenling (0), Linhai (8)

2019 Taishun (30), Wenling (20), Ruian (15)
Longwan (63), Yueqing (61), Cangnan (97),
Huangyan (17), Liandu (13), Qingtian (31)

Taishun (3), Wenling (15), Ruian (4)
Longwan (34), Yueqing (7), Cangnan (23),
Huangyan (1), Liandu (0), Qingtian (3)
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sequences (Edgar, 2013). Low abundance OTUs (≤ 1 count) were

eliminated from the OTU table. The microbial representative

sequences for each OTU were assigned to taxonomic groups using

the RDP Classifier database (Silva database 132 version) and UNITE

database (Version 12.01.2017) (Abarenkov et al., 2010). The data

were resampled randomly with the lowest sequence number (17,590

for bacteria and 27,286 sequences for fungi). The resampled OTU

table was used for the subsequent analysis. In this study, all the

microbial raw sequences were deposited in the SRA database short-

read archive PRJNA844183.
Statistical analysis

To plot the curve to fit the relationship between D. citri

bacterial infection rate and the HLB incidence, the linear mixed

model uses the lmer function performed in the “nlme” package,

and all statistical analyses were performed in the R3.2.5 (R Core

Team, 2016). The Chao1 and Inv_Simpson index were used to

assess the difference of a diversity indices between healthy and

diseased citrus phyllosphere samples. The weighted principal

coordinate analysis (PCoA) based on UniFrac matrix and

nonparametric permutational multivariate (PERMANOVA)

based on Bray Curtis were used to assess the difference of
Frontiers in Plant Science 05
microbial community structure between healthy and disease

phyllosphere samples (Anderson, 2001; Caporaso et al., 2010).
Results

Quantitative detection of bacteria in the
insect vector D. citri

In total, 1037 insect samples were collected from different sites

in the south of Zhejiang Province over a six year-period from 2014

to 2019. Of these samples, the presence of the bacterium was

detected in 319 D. citri samples using RT-qPCR (Table 1). Copy

numbers of the bacterium gene per nanogram of DNA ranged

from approximately 104 to 109 (Figure 2), however, 104–106 copy

numbers of the bacterium gene were detected in the majority of

samples. Approximately 104 copy numbers of the bacterium gene

per nanogram of DNA were found in 47 samples, 105 in 81

samples, and 106 in 98 samples. The copy number of the bacterium

gene per nanogram of DNA was 85.6% in 105–106. However, only

eight samples were found with more than 109 copy numbers of the

bacterium gene per nanogram of DNA. These samples were

collected from orchards located in the counties of Jiaojiang (2),

Wenling (1), and Yuhuang (3) in 2014 and Wenling (2) in 2015.
TABLE 2 To study the relationship between the proportion of diseased plants and the proportion of D. citri carrying the bacterium, 22 different
orchards located in Huangyan, Yuhuan, Wenling,and Yueqing were investigated.

tag Location Samled
time

Investigated
trees

% of deseased
trees

Tested
insects

The number of
tested insects carrying

bacterium

% oftested insects carrying
bacterium

1 Huangyan Aug-05 300 0 200 13 6.5

2 Huangyan Aug-05 300 0 200 7 3.5

3 Huangyan Aug-02 300 23.1 200 28 14

4 Huangyan Aug-02 300 12.3 200 11 5.5

5 Huangyan Aug-02 300 11.67 200 13 6.5

6 Huangyan Aug-05 300 0 200 7 3.5

7 Huangyan Aug-04 300 7 200 26 13

8 Huangyan Aug-04 300 12.9 200 26 13

9 Huangyan Aug-04 300 13.1 200 20 10

10 Huangyan Aug-04 300 7 200 27 13.5

11 Huangyan Aug-04 300 12.9 200 28 14

12 Huangyan Aug-04 300 13.1 200 20 10

13 Yueqing Aug-04 300 49.2 200 34 17

14 Yueqing Aug-04 300 67 200 60 30

15 Yueqing Aug-04 300 91.7 200 85 42.5

16 Yueqing Aug-04 300 98.5 200 134 67

17 Yueqing Aug-04 300 98 200 134 67

18 Wenling Aug-04 300 64.8 200 74 37

19 Wenling Aug-04 300 76.9 200 32 16

20 Yuhuan Aug-02 200 100 200 156 78

21 Yuhuan Aug-02 200 3.2 200 6 3

22 Yuhuan Aug-02 300 1.5 200 3 1.5
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Although D. citri carrying bacteria were found in orchards in all

counties, some D. citri samples lacked bacteria (Table 1).
Proportion of D. citri carrying the
Ca. L. asiaticus bacterium over a
six-year period

Among the 1037 samples, the proportion of D. citri carrying

Ca. L. asiaticus decreased and finally stabilized over time. In 2014,

D. citri were found at 220 sites and, D. citri were found to be

carrying the bacterium in 92 sites accounting for 41.8% of these

sites. In 2015, D. citri were found at 82 sites and D. citri were

found to be carrying the bacterium in 27 sites accounting for

32.9% these sites. By 2016, 2017, 2018, and 2019, D. citri were

found at 114, 144, 130, and 347 sites but D. citri were only found

to be carrying the bacterium at 30.7% (35), 28.5% (41), 26.2% (34)

and 25.9% (90) of these sites, respectively (Figure 3, Table 1).
Changes in the proportion of D. citri
carrying the bacterium throughout
the year

Analysis of D. citri collected from a diseased orchards in

Yueqing revealed that more than 30% of D. citri were carrying
Frontiers in Plant Science 06
Ca. L. asiaticus throughout the year (Figure 4B). The proportion

of D. citri carrying Ca. L. asiaticus gradually decreased from

January to March and was stable and relatively low from May–

September, then gradually increased and peaked in December

(Figure 4B). The content of Ca. L. asiaticus in the citrus leaves

was greatest in December. The content of Ca. L. asiaticus in the

citrus leaves was relatively low in the fall and spring (close to

30% in May, June, September, and March). In spring and

summer (February, April, May, June, and August), the

bacterial content of citrus leaves was lowest, but reaching a

high peak in December (Figure 4A).
Relationship between the proportion of
diseased plants and the proportion of
D. citri carrying the bacterium

In total, 6600 Citrus. unshiu plants were investigated in 22

different orchards located in Huangyan, Yuhuan, Wenling,

and Yueqing (Table 2). Based on investigations of 300 trees

at each location, the proportion of diseased trees ranged from 0–

98.5% (Table 2). Two hundred insects were collected at each

location and were tested by RT-qPCR to determine the presence

or absence of the bacterium. The proportion of diseased trees

and the proportion of D. citri carrying the bacterium showed a

significant positive correlation, and the number of plants showing
FIGURE 2

The detected amount of Candidatus Liberibacter asiaticus bacterium DNA by qPCR.
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symptoms of HLB increased as the proportion of D. citri carrying

the bacterium increased (R2 = 0.93, P<0.01, Figure 5).
The phyllosphere microbiomes differ
between healthy and HLB citrus in April
and December

A total of 1626061 and 913399 high-quality sequences for

bacteria and fungi were obtained after quality control of the original

data using high-throughput sequencing technology. There were

17,590-184,257 for bacterial sequences and 27286-80816 for fungal

sequences of each sample. Inv_Simpson index and Chao1 were

used to evaluate a diversity of phyllosphere microorganisms with

different treatments. The bacterial a diversity and the fungal a
diversity in healthy leaves were significantly higher than that in

diseased leaves in spring. But in autumn, there was no significant

difference in a diversity of microbial communities between healthy

and diseased citrus leaves (Figure 6).

PERMANOVA and pCoA based on bray_cuits distance

matrix were used to analyze phyllosphere microbial differences

among different leaf group samples. The pCoA results showed
Frontiers in Plant Science 07
that bacterial and fungal sampled in the phyllosphere healthy

and diseased citrus leaves at the same time, could be completely

separated (SBB and SKB, ABB and AKB). The phyllosphere

bacterial and fungal samples in healthy and diseased citrus leaves

at two time points were compared respectively, and there were

also significant differences between SBB and ABB, and SKB and

AKB groups (Figure 7). The results of dissimilarity analysis also

showed that there was a significant difference in the phyllosphere

microorganisms between healthy and diseased citrus leaves

sampled in the same time and between healthy and diseased

citrus leaves in different seasons (Table S1).
The changes in bacteria and fungi OTUs
by HLB pathogen invasion

In order to further study the phyllosphere microbial

population structure of healthy and diseased leaf samples, the

OTUs that were common and unique among these groups were

analyzed and were plotted as a Venn plot (Figure 8). A total of

702 bacterial OTUs and 896 fungal OTUs were obtained.

According to the results of Venn diagram, 124 (bacteria) and
FIGURE 3

Proportion of Diaphorina citri carrying the pathogen Candidatus Liberibacter asiaticus between 2014 and 2019.
frontiersin.org

https://doi.org/10.3389/fpls.2022.964193
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2022.964193
109 (fungi) common OTUs were found in the phyllosphere

samples of different treatments (Figure 8A). There were 269

common bacterial OTUs found in ABB group and AKB group,

while 67 and 93 unique OTUs were found respectively in the two

groups. And 206 common bacterial OTUs were found in SBB

group and SKB group, while 65 and 193 unique OTUs were

found in the two groups respectively. Besides, there were 163 and

515 common fungal OTUs found between ABF and AKF, SBF

and SKF group (Figure 8B). 27 and 85 unique OTUs were found

in ABF and AKF group, while 176 and 78 unique OTUs were

found in SBB and SKB group, respectively.
Discussion

Citrus HLB has become the most important quarantine disease

in citrus-producing areas all over the world (Abdullah et al., 2009;
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Martinez et al., 2009; Bové, 2014; Puttamuk et al., 2014; da Graça

et al., 2015). Once infected, the quite few of options to prevent the

disease from spreading further, one of which is to cut off symptomatic

branches. Since the development of the citrus industry and the scale

of the expansion of citrus in world trade in recent years, clarifying the

mechanism of the spread ofCa. L. asiaticus to find an effective control

method for HLB is urgently required.

Ca. L. asiaticus has a long incubation period, therefore,

infected citrus plants do not show symptoms of HLB during the

early stages. In order to distinguish diseased plants from healthy

plants, the RT-qPCRmethod is usually used to detect whether Ca.

L. asiaticus bacteria are present (Fujikawa et al., 2013). In this

study, Ca. L. asiaticus and the insect vector D. citri were detected

from almost all southern citrus-producing regions of Zhejiang.

This confirmed previous reports that HLB is an aggressive disease

in citrus plantations and that it is widely distributed and spreading

rapidly in Zhejiang Province (Zhou, 2020).
B

A

FIGURE 4

Proportion of. Monthly changes in Candidatus Liberibacter asiaticus bacterial content in citrus leaves over the course of a year (A), and monthly
changes in proportion of Diaphorina citri carrying the Candidatus Liberibacter asiaticus bacterium over the course of a year (B).
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The dynamic of insect population is closely related to the

growth rhythm and desirable food intake of insects, as well as

the nutritional quality of host plants (Wallner, 1987). In addition,

the phenological characteristics of host plants will also affect the

growth of insects, leading to genetic variation among insect

individuals and genetic differentiation among insect

populations (Knolhoff and Heckel, 2014). Although

tremendous progress has been made in understanding the

ecological and evolutionary underpinnings of the Liberibacter

disease pyramid, little is known about the quantitative

relationship between these factors in the pyramid. By

dynamically monitoring the bacterial content in the midvein of

diseased leaves over the course of a year, we observed that values

in December were more than 100 times higher than they were

from March to May. This may be that citrus trees are cold-

tolerant and evergreen, therefore, still lush in the fall, which

significantly increasing the life span of D. citri (George et al.,

2020). In addition, whether host plants can develop shoots in

early spring and over the whole winter will affect the diapause of

the insect population, which could exert a high selection pressure
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on the insect population to adapt to this extended host resource,

and lead to species differentiation (Danks, 2013; Joyce et al.,

2016). Furthermore, the chemoreceptors of insect are essential for

the recognition and perception of plant secondary metabolites.

Plant-eating insects can become conditioned to the host’s

secondary metabolites and chemical constituents, which leads

to change in insect behavior and drive host-associated

differentiation (Powell et al., 2006; Medina et al., 2014).

Moreover, the main rainy season in this area is from March to

May. This long period of rain scours the bacterial communities

on citrus trees, decreasing the number of bacteria on the leaves.

From the beginning of July, the quantity of bacteria on leaves

gradually increases. Ca. L. asiaticus can stand with high

temperatures (Hoffman et al., 2013; Lopes et al., 2013). Our

analyses showed thatD. citri carried more bacteria in January and

December than at other times, indicating that D. citri also has a

certain level of cold tolerance. The D. citri life span is generally

from spring to winter, by which time bacteria have fully

proliferated in its body and, hence, the December insects were

found to carry the most bacteria. In addition, large numbers of D.
FIGURE 5

Correlation between the proportion of citrus plants with symptoms of HLB and the proportion of Diaphorina citri carrying the bacterium
Candidatus Liberibacter asiaticus.
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citri with bacterium were attracted to very few shoots in

December. The abundance of D. citri on citrus shoots was

highest in August and October, which is when their feeding

and reproduction peaks. The rate of bacterial transmittance and

population density also increased which may be related to the

biotic factors that influence D. citri populations such as

temperature and food. Although temperature is the main factor

affecting the growth and development of insect, humidity has

little effect on its survival and growth (Shang et al., 2013). D. citri

carry a low level of bacteria in spring, which may be affected by

climate and the bacterial content of the host tissue.

We found that the spread of HLB in Zhejiang Province was

limited from 2014 to 2019. In 2014, D. citri-carrying bacteria

were found at 41.8% of sites. By 2015, the level had dropped to

32.9% and by 2019 the level had dropped even further to 25.9%.

This phenomenon may be related to the removal of diseased

plants to control HLB. D. citri has a poor ability to fly long

distances (Sakamaki, 2005). Long-range flight is made up of

multiple short-range flights and relies on short-range wind

diffusion. As a result, citrus HLB epidemics are dependent on

sources of the pathogens and movement of the insect vectors.

The removal of diseased plants therefore has a significant effect

on controlling the spread of HLB (Abdullah et al., 2009;

Bové, 2014).
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Based on our observations, we showed a significant

relationship between the plant infection rate and the

proportion of D. citri carrying the bacterium (Figure 5). Our

analysis showed that high levels of HLB disease in orchards

correlate with high frequencies of D. citri-carrying bacteria. Coy

and Stelinski (2015) found that infection levels of Ca. L. asiaticus

in D. citri populations across Florida (USA) ranged from 37.5%

to 100%, which was similar to the diverse infection levels found

in different orchards in this study. Lee et al. (2015) have

described a transmission mechanism that explains the high

numbers of Ca. L. asiaticus-positive psyllids in retail

environments based on an infection experiment. In retail

environments, there are ample opportunities for each newly

arriving the newly developed cluster of young leaves of healthy

plant to be colonized by resident infected-psyllids, only after 15

days of being inoculated by Ca. L. asiaticus, the plants are

infectious and transmit the pathogens to the next generation

of psyllids. In this study of naturally infected orchards, we

conclude that there is a relationship between the proportion

of D. citri carrying the bacterium and the incidence of HLB

disease. This correlation might due to that the physiological

and biochemical characteristics of plants that have been

infected with Ca. L. asiaticus may affect the behavior and

performance of D. citri on susceptible plants. In addition,
B

A

FIGURE 6

The a diversity indices of bacteria (A) and fungi (B) SBB, phyllosphere bacterial samples of spring disease leaves; SKB, phyllosphere bacterial samples of
spring healthy leaves; ABB, phyllosphere bacterial samples of autumn disease leaves; AKB, phyllosphere bacterial samples of autumn healthy leaves; SBF,
phyllosphere fungal samples of spring disease leaves; SKF, phyllosphere fungal samples of spring healthy leaves; ABF, phyllosphere fungal samples of
autumn disease leaves; AKF, phyllosphere fungal samples of autumn healthy leaves. *P < 0.05, ***P < 0.001.
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B

A

FIGURE 7

The pCoA of bacteria (A) and fungi (B) based on bray_cuits distance. SBB, phyllosphere bacterial samples of spring disease leaves; SKB,
phyllosphere bacterial samples of spring healthy leaves; ABB, phyllosphere bacterial samples of autumn disease leaves; AKB, phyllosphere
bacterial samples of autumn healthy leaves; SBF, phyllosphere fungal samples of spring disease leaves; SKF, phyllosphere fungal samples of
spring healthy leaves; ABF, phyllosphere fungal samples of autumn disease leaves; AKF, phyllosphere fungal samples of autumn healthy leaves.
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plant defense responses induced by the bacterial infection

may indirectly affect D. citri by increasing the attractiveness

of infected plants. Ca. L. asiaticus can also indirectly affect

the adaptability of D. citri, which also affects the epidemic of

citrus HLB. Host plant changes promote the genetic variation

of insect adaptability and affects the genetic diversity and

genetic structure of the insect population (Feder, 1995; Medina

et al., 2014). D. citri infected with Ca. L. asiaticus bacteria
Frontiers in Plant Science 12
spend more time feeding and show higher levels of fecundity

than bacteria-free D. citri (Duan et al., 2009; Cen et al.,

2012). Ca. L. asiaticus bacteria obtain nutrients and energy

for their own invasion and proliferation by regulating the

metabolic activities of substances in D. citri (Duan et al.,

2009). These studies also indicated it must be correlation

between the D. citri carrying with Ca. L. asiaticus and HLB

disease incidence.
B

A

FIGURE 8

The analysis of united and shared OTU of bacteria (A) and fungi (B). SBB, phyllosphere bacterial samples of spring disease leaves; SKB,
phyllosphere bacterial samples of spring healthy leaves; ABB, phyllosphere bacterial samples of autumn disease leaves; AKB, phyllosphere
bacterial samples of autumn healthy leaves; SBF, phyllosphere fungal samples of spring disease leaves; SKF, phyllosphere fungal samples of
spring healthy leaves; ABF, phyllosphere fungal samples of autumn disease leaves; AKF, phyllosphere fungal samples of autumn healthy leaves.
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Controlling D. citri is the premise and foundation for

preventing citrus HLB (Manjunath et al., 2008). At present,

disease control strategies mainly involve chemical, physical, or

biological methods of control. D. citri has a strong reproductive

ability. Although chemical control has an obvious control effect

on these insects (Boina et al., 2011), it is impossible to eliminate

the insects completely, and chemical control can lead to

resistance and enhance the reproductive ability of the insects.

In addition, chemical control methods cause serious pollution

and chemical residues can accumulate in the environment. As a

result, the development of accurate and efficient pesticides to

control D. citri has become a focus of research (Qureshi and

Stansly, 2010). In this study, the proportion of the insect

population carrying the bacterium changed over the course of

the year, peaking in winter. Even though the insect population

may be small, the application of pesticides could still be

important to reduce the potential risk of Ca. L. asiaticus

infection. Hybridization of resistant varieties using molecular

biology and molecular breeding is another strategy for HLB

control. No HLB symptoms were found in transgenic plants

after grafting them with HLB-infected plants (Dutt et al., 2008).

However, in the main citrus-producing industrial belt,

controlling D. citri has been the main focus, and diseased

plants have been destroyed by digging out and removing

diseased trees (Wang and Trivedi, 2013), as well as high-

density planting and shoot control to reduce D. citri feeding,

strengthening field and orchard cultivation and management,

and enhancing plant disease resistance, which can control citrus

HLB to a great extent. Our observation of a reduction in disease

levels in Zhejiang Province of China indicate that the application

of these methods has had a significant effect on reducing the

HLB disease epidemic. The phyllosphere (aboveground part of

terrestrial plants) is an important niche of the plant, inhabited by

diverse microbes which are collectively called the phyllosphere

microbiome (Vorholt, 2012). The phyllosphere microorganisms

could influence host plant by affecting nutrient acquisition,

promoting host stress tolerance, altering plant hormones, and

mediating plant pathogen interactions (Stone et al., 2018). The

phyllosphere microbiomes were found to differ between infected

and uninfected citrus leaves by melanose pathogen, and part of

the phyllosphere microbiome shift could positively affect plant

performance against pathogen invasion (Li et al., 2022).

Our analysis showed that there were significant differences

among different healthy citrus leaves and HLB diseased leaves in

April and December (Figure 7). The finding was consistent with

Li et al. (2022), which also reported the changes of microbe

community of citrus phyllosphere due to the invasion of fungal

pathogen Diaporthe citri. HLB has been found to cause

decreased relative abundance and/or expression activity of

rhizoplane-enriched taxonomic and functional properties,

hence collectively resulting in impaired plant host-microbiome

interactions (Zhang et al., 2017). Our data showed that the effect
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of HLB may also apply on phyllosphere. It indicated that, in the

early stage of citrus HLB, diversity of phyllosphere

microorganisms is not only affected by the disease, but also

regulated by seasonal factors. In spring, phyllosphere

microorganisms showed a reverse trend of changes at bacteria

and fungi in response to pathogenic invasion. The Venn results

indicated that the OTUs number of diseased phyllosphere

bacteria taxa were lower than Apirl citrus, but higher in

December leaves phyllosphere fungal samples in both diseased

and healthy leaves (Figure 8). The number of bacteria decreases,

and fungi increases in the presence of pathogenic bacteria, which

indicates that microbial communities exhibit ubiquitous taxa

with specia l funct ions selected during pathogenic

bacteria invasion.
Conclusions

Through the long-term observation of citrus HLB, we

conclude that there is a significant positive correlation between

the level of citrus HLB in an orchard and proportion of Ca. L.

asiaticus-carrying D. citri. The outbreak and spread of HLB in

Zhejiang Province are declining. The number of bacteria in citrus

leaves and the rate of D. citri carrying bacterium varies with

seasonal factor. The phyllosphere bacterial and fungal

communities were significantly different between healthy and

disease phyllosphere in April and December. Pathogenic

invasions change the citrus phyllosphere microbial

community structure.
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