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JustDeepIt: Software tool with
graphical and character user
interfaces for deep learning-
based object detection and
segmentation in image analysis

Jianqiang Sun*, Wei Cao and Takehiko Yamanaka

Research Center for Agricultural Information Technology, National Agriculture and Food Research
Organization (NARO), Tsukuba, Japan
Image processing and analysis based on deep learning are becoming

mainstream and increasingly accessible for solving various scientific

problems in diverse fields. However, it requires advanced computer

programming skills and a basic familiarity with character user interfaces

(CUIs). Consequently, programming beginners face a considerable technical

hurdle. Because potential users of image analysis are experimentalists, who

often use graphical user interfaces (GUIs) in their daily work, there is a need to

develop GUI-based easy-to-use deep learning software to support their work.

Here, we introduce JustDeepIt, a software written in Python, to simplify object

detection and instance segmentation using deep learning. JustDeepIt provides

both a GUI and a CUI. It contains various functional modules for model building

and inference, and it is built upon the popular PyTorch, MMDetection, and

Detectron2 libraries. The GUI is implemented using the Python library FastAPI,

simplifying model building for various deep learning approaches for beginners.

As practical examples of JustDeepIt, we prepared four case studies that cover

critical issues in plant science: (1) wheat head detection with Faster R-CNN,

YOLOv3, SSD, and RetinaNet; (2) sugar beet and weed segmentation with Mask

R-CNN; (3) plant segmentation with U2-Net; and (4) leaf segmentation with U2-

Net. The results support the wide applicability of JustDeepIt in plant science

applications. In addition, we believe that JustDeepIt has the potential to be

applied to deep learning-based image analysis in various fields beyond

plant science.

KEYWORDS

Deep learning, image recognition, object detection, instance segmentation, leaf
segmentation, plant segmentation, graphical user interface
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1 Introduction

Over the past decade, remarkable advances have been made

in image analysis based on deep learning in various fields (Jiang

and Li, 2020; Ben Yedder et al., 2021; Liu and Wang, 2021). In

practical applications in plant science field, deep learning for

image analyses has been applied at different scales. For example,

at the field scale, studies such as high-throughput phenotyping

and yield prediction via images captured by drones or

hyperspectral cameras are hot topics (Kamilaris and Prenafeta-

Boldú, 2018; Jiang and Li, 2020). On an individual scale, studies

including species classification, crop disease detection, and weed

detection are well researched (Christin et al., 2019; Hasan et al.,

2021; Liu and Wang, 2021). In addition, at the cell level, studies

such as cell type identification and stomata identification via

microscopic images have been performed (Moen et al., 2019;

Zhu et al., 2021). The increased availability of these techniques in

various fields enhances the importance of the roles they are

expected to play in the future.

Image analysis based on deep learning can be roughly

categorized into three main tasks: object classification, object

detection, and instance segmentation. Object classification

determines the class of an object in an image. Object detection

specifies the types of objects in an image and their locations,

generally through bounding boxes (i.e., rectangular delimiting

areas). Instance segmentation selects a pixel-wise mask for each

object in an image. As images generally contain multiple objects,

object detection and instance segmentation have broader practical

applications than object classification. In addition to instance

segmentation, salient object detection is often used to detect the

primary object in an image at the pixel level (Wang et al., 2017;

Borji et al., 2019). It can also be applied to one-class instance

segmentation for background removal, leaf segmentation, and

root segmentation.

Applying machine learning models to images captured

under conditions different from those of images captured for

model training degrades the inference performance. This is

called the frame problem in machine learning (Ford and

Pylyshyn, 1996). It is impossible to solve this problem without

collecting training images under all conditions. Hence, most

practical applications restrict the usage conditions to ensure that

the frame is not exceeded by limiting the target objects, shooting

conditions, or by other means. In scientific studies, this problem

is addressed through models devised for specific projects instead

of previously developed models.

Python programming language and its libraries PyTorch

(Paszke et al., 2019), MMDetection (Chen et al., 2019), and

Detectron2 (Wu et al., 2019), have facilitated image analysis

using deep learning. However, programming experience and

machine learning expertise are required to implement

complicated neural networks (i.e., deep learning models) for

object detection and instance segmentation tasks.
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Given the required programming skills or machine learning

expertise, the application of deep learning remains challenging

for most beginners. Many experimentalists working full-time on

wet experiments use graphical user interfaces (GUIs) in their

daily work. In contrast, informatics researchers use character user

interfaces (CUIs) because it is easy to perform large-scale

experiments under different parameter combinations owing to

the scalabilities of CUIs. Thus, suitable software should be

supported on GUIs and CUIs to serve various users, making it

advantageous for experimental and informatics researchers to use

the same software and conduct collaborative research.

Nevertheless, most existing open-source GUI-based software

for deep learning-based image analysis only supports

segmentation or is intended for specific purposes. For instance,

RootPainter (Smith et al., 2022) and DeepMIB (Belevich and

Jokitalo, 2021) support biological image segmentation using U-

Net (Ronneberger et al., 2015). ZeroCostDL4Mic (von Chamier

et al., 2021) implements You Only Look Once version 2

(YOLOv2) (Redmon and Farhadi, 2017) and U-Net for object

detection and instance segmentation against microscopy images.

Maize-IAS (Zhou et al., 2021) partially uses a faster region-based

convolutional neural network (Faster R-CNN) (Ren et al., 2017)

for leaf segmentation and leaf counting of maize images captured

under the controlled environment. Moreover, most solutions are

focused on GUIs but neglect CUIs, thus hindering expansion on

the user side. Therefore, there is a high demand for image analysis

software based on deep learning supporting both easy-to-use

GUIs and high-scalability CUIs, to satisfy a diverse user base.

We developed the JustDeepIt software supporting GUI and

CUI to train models and perform inference for object detection,

instance segmentation, and salient object detection. JustDeepIt

can be applied to many biological problems, such as wheat head

detection, plant segmentation, and leaf segmentation. In

addition, it provides an intuitive solution for biologists lacking

programming experience and machine learning expertise,

simplifying implementation compared with conventional

programming schemes.
2 Method

JustDeepIt is implemented using Python and is easy to

interoperate with various Python packages. It provides GUI

and CUI for deep learning-based image analysis, including

object detection, instance segmentation, and salient object

detection (Figure 1). The source code is deposited in GitHub

at https://github.com/biunit/JustDeepIt under an MIT

License. An overview of implementations of the user

interfaces and main functions of JustDeepIt are described in

the following subsections. Detailed documentation, including

installation guides and tutorials, is available on the

project website.
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2.1 Implementation of user interfaces

The GUI of JustDeepIt is implemented using FastAPI

(Ramıŕez, 2018), a straightforward Python library for building

simple web applications. It allows deep learning-based image

analysis tasks with simple mouse and keyboard operations

without writing codes (Figure 1). Upon launching the GUI,

the user is prompted to select an analysis task; after this

selection, the analysis screen is displayed. The analysis screen

has three tabs, Preferences, Training, and Inference. The

Preferences tab allows users to set standard parameters for

training and inference, such as neural network architecture,

class labels (object names targeted for detection or

segmentation), a temporary directory to save the intermediate

and final results, and more. The Training and Inference tabs are

used to train a model by specifying training images and the

corresponding annotations and inferring new images with the

trained model, respectively.

The CUI of JustDeepIt can be used via application

programming interfaces (APIs). The most complicated

procedures (e.g., data registration, model initialization, output

adjustment) are encapsulated into the APIs containing a few

intelligible functions to simplify usage. The three main API

functions are train for training detection or segmentation

models, save for saving the trained model weights, and

inference for detection or segmentation on test images.

Example codes for training object detection models and using

the model for inference are shown in Figure 1. Additional usage

examples (e.g., building a web application) and arguments of

these functions are available on the project website.
2.2 Object detection and
instance segmentation

Object detection and instance segmentation models in

JustDeepIt are internally built based on the MMDetection

(Chen et al., 2019) or Detectron2 (Wu et al., 2019) libraries.

The user can choose MMDetection or Detectron2 as the backend

to build the corresponding models. JustDeepIt supports various

well-known neural network architectures. For object detection,

Faster R-CNN (Ren et al., 2017), YOLOv3 (Redmon and

Farhadi, 2018), Single-Shot Multibox Detector (SSD) (Liu

et al., 2016), and RetinaNet (Lin et al., 2018) are available to

meet different user needs. For instance segmentation, Mask R-

CNN (He et al., 2017) is available. Furthermore, JustDeepIt

allows user-customized neural network architectures to

accommodate users who wish to use architectures that are not

implemented in the software. For example, Faster R-CNN

implemented in JustDeepIt uses VGGNet (Simonyan and

Zisserman, 2015) for feature extraction during the detection

process; the users may want to change VGGNet to other

architectures such as ResNet (He et al., 2015). To accomplish
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this, users can (i) either download already-prepared architecture

configuration files from MMDetection or Detectron2 GitHub

repositories or create their own configuration file from scratch

and then (ii) input the configuration file into JustDeepIt to build

a model for training and inference.

For model training, JustDeepIt requires image annotations

in the Common Objects in Context (COCO) format, which can

be generated using GUI-based free software such as COCO

Annotator (Brooks, 2021) and Computer Vision Annotation

Tool (Boris et al., 2021). After the user specifies the location of

the image dataset and corresponding annotations through the

Training tab of GUI or the training function of CUI, JustDeepIt

uses them to build the related model.

For object detection using the trained model, the user can

specify the trained weights and folder containing the test images

for detection through the Inference tab of GUI or the inference

function of CUI. For GUI usage, the inference results are

automatically saved as images with bounding boxes or contour

lines around the detected objects and a JSON file of the inference

results in COCO format. For CUI usage, the user can specify

whether the inference results should be saved as annotated

images or an annotation file.
2.3 Salient object detection

The module for salient object detection in JustDeepIt is based

on U2-Net (Qin et al., 2020) and written using the PyTorch library.

The GUI and the training and detection functions processing are

similar to those used for object detection.

JustDeepIt requires training images with annotations (either

COCO format annotations or mask images) for model training.

Although the U2-Net implementation for JustDeepIt requires

images of 288 × 288 pixels as the canonical input, images of

various sizes are captured for applications in plant science. Thus,

JustDeepIt provides two approaches for training on images of

various sizes: resizing and random cropping (Figure 2A). Resizing

changes the image resolution to 288 × 288 pixels for training in

U2-Net. This approach is suitable for images containing a few

large target objects. In contrast, random cropping randomly

selects small areas of p × p pixels at random angles from the

original images, where p can be specified according to the

complexity of the intended images and tasks. The images of

p × p pixels are then resized to 288 × 288 pixels for training. This

approach is suitable for images containing many small target

objects and details.

JustDeepIt implements resizing and sliding for salient object

detection (Figure 2B). Resizing changes the scale of the input

images to 288× 288 pixels for detection and then restores the

detection result to the input size. Sliding first crops square areas

of p × p pixels from the top left to the bottom right of the image

step-by-step, where p can be specified by the user. It then resizes

the areas to 288 × 288 pixels to perform salient object detection
frontiersin.org
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in each area. Finally, it merges the processed areas into a single

image. In addition to salient object detection, summarization

functions (e.g., counting the number of objects in the image,

quantifying colors, measuring the area of each object) are

available in JustDeepIt.
3 Results

We prepared four case studies as practical examples of

JustDeepIt and reported the results in this section. Detailed

procedures for these case studies can be found in the

JustDeepIt documentation.
3.1 Wheat head detection

We show an example of JustDeepIt performing object detection

for the wheat head, a prevalent task in plant science. The global

wheat head detection (GWHD) dataset, containing 4700 images of

1024 × 1024 pixels for wheat head detection evaluation (David et al.,

2020), was used in this case study.We randomly selected 80% of the

images in the GWHD dataset for training and used the remaining

20% for validation. We constructed Faster R-CNN, YOLOv3, SSD,

and RetinaNet with MMDetection backend and Faster R-CNN and
Frontiers in Plant Science 05
RetinaNet with Detectron2 backend for training and validation with

the GWHD dataset. To initialize each architecture, we retrieved the

pretraining weights from the GitHub repositories of MMDetection

and Detectron2.

The training was performed for 100 epochs with a batch size

of eight and an initial learning rate of 0.0001. Validation was

performed using the trained architectures against the validation

images, and the mean average precision (mAP) was calculated

from the validation results. Training and validation were

independently repeated five times to mitigate the influence of

randomness. These processes were executed on an Ubuntu 18.04

system equipped with an NVIDIA Tesla V100 SXM2 graphics

processor, an Intel Xeon Gold 6254 processor, and 64 GB

of memory.

For the five training and validation runs, Faster R-CNN

provided a relatively high validation mAP with a relatively slow

training speed, YOLOv3 and SSD provided lower mAP with

faster training speed, and RetinaNet provided intermediate mAP

and training speed (Figure 3A). In addition, the Faster R-CNN

and RetinaNet with MMDetection backend provided slower

training and higher validation mAP than those with the

Detectron2 backend. Hence, different backends and neural

network architectures provided distinct performances and

training speeds, and users should select the appropriate

backend and architecture according to the application.
B

A

FIGURE 2

(A) Training approaches of resizing and random cropping are implemented in JustDeepIt. (B) Inference approaches of resizing and sliding
(corresponding to training using resizing and random cropping, respectively) are implemented in JustDeepIt.
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D

A

FIGURE 3

Results of three case studies. (A) Training time and validation mAP of object detection. (B) Training time and validation mAP of instance
segmentation. (C) The process and analysis result (projected area and color hue) of plant segmentation with time-series plant images.
(D) Processes and sample results of iterative training of U2-Net for leaf segmentation.
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3.2 Sugar beets and weeds segmentation

To represent the case study of instance segmentation with

JustDeepIt, we performed weed and crop (here, sugar beet)

segmentation, which is one of the tasks in high-demand in the

agriculture sector, on the SugarBeets2016 dataset (Chebrolu et al.,

2017). The SugarBeets2016 dataset has 11,552 RGB images

captured under fields and the annotations for sugar beets and

weeds. We randomly selected 5,000 and 1,000 images for training

and validation, respectively. We constructed Mask R-CNN with

MMDetection andDetectron2 backends for training and validation.

We retrieved the pretraining weights from the GitHub repositories

for initializing each architecture, as in subsection 3.1.

Training and validation were performed using the same

parameters, processes, and system devices as in subsection 3.1,

except that the batch size was set to four. The Dice coefficient was

calculated from the validation results. For the five training and

validation runs, Mask R-CNN with Detectron2 backend provided

relatively higher Dice coefficients and faster training speed than

that with MMDetection backend (Figure 3B). As in the case of

object detection, the result was well characterized by the backend.
3.3 Plant segmentation with U2-Net

As a case study of salient object detection with JustDeepIt,

we use the Plant Phenotyping Dataset, a popular benchmark

dataset for plant segmentation (Minervini et al., 2015; Minervini

et al., 2016). The dataset contains 27 images of 3108 × 2324

pixels, and each image contains 24 individual plants. We used

U2-Net implemented in JustDeepIt for plant segmentation. We

randomly selected three images to train U2-Net using the

random cropping approach. The training was performed with

the default parameters in a macOS Big Sur system equipped with

a Quad-Core Intel Core i5 processor (2.3 GHz) and 16 GB of

memory. The training took approximately 6.5 hours with four

processors but without any graphics processor.

Salient object detection was performed using the trained U2-

Net with the sliding approach for the 27 images with default

parameters. Detection took approximately 2.3 hours, as the 27

images (3108 × 2324 pixels) were sliced into 27 × 130 small images

(320 × 320 pixels) by the sliding approach, requiring substantial

processing time. In addition, as the 27 images show time-series

data, we summarized object statistics (e.g., projected area, plant

color) over time (Figure 3C). The result indicates that the areas of

the plants increased, and their colors varied over time.
3.4 Iterative training of U2-Net for
improved leaf segmentation

Extracting salient objects by removing the background may

improve the performance of image analysis and can be applied to
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various image analysis tasks. As another case study for salient object

detection, we trained U2-Net for leaf segmentation on the Pest

Damage Image Dataset (National Agriculture and Food Research

Organization (NARO), 2021). The dataset comprises images of four

crops, including cucumber tagged by disease or pest names,

whereas no annotations of bounding boxes or segmentation are

available. Here, we proposed iterative training to U2-Net using

unannotated images for leaf segmentation for cucumber.

Iterative training proceeded as follows (Figure 3D). In step

1, we used U2-Net trained on the DUTS dataset (Wang et al.,

2017) (0th-trained U2-Net) obtained from the corresponding

GitHub repository (Qin et al., 2021) for leaf segmentation of

cucumber leaf images. In step 2, the images whose nearly

complete area was detected as a salient object (image 3 in

Figure 3D) or without detection (image 4 in Figure 3D) were

discarded. In step 3, we used the remaining images and

detection results (i.e., mask images) to retrain U2-Net. In

step 4, we used the trained U2-Net from step 3 to perform

salient object detection for the cucumber leaf images again.

Then, we repeated steps 2–4 to retrain U2-Net five times,

obtaining the 5th-trained U2-Net, and training was performed

using the CUI for efficiency.

The 0th-trained U2-Net failed to detect leaves in images

containing multiple leaves. In contrast, the 5th-trained U2-Net

successfully detected the main salient leaf in every image

(Figure 3D). Thus, even without annotations, we built a model

for leaf segmentation using existing techniques. General users

can use such approaches via the simple JustDeepIt API to extend

the range of applications.
4 Discussion

The widespread use of deep learning technologies is

gradually contributing to various scientific fields. Thus, it is

vital to support the ease of technology usage for everyone,

regardless of their research backgrounds and programming

skills. As experimental researchers use GUIs and informatics

researchers use CUIs mostly, developing software, which

supports GUIs and CUIs and is not restricted to any specific

tasks, is essential.

In the field of plant sciences, various GUI-based software,

implemented for deep learning-based image analysis, has

been developed. However, most software implementing one

or a few neural network architectures to solve specific

problems and only support GUI (Belevich and Jokitalo,

2021; von Chamier et al., 2021; Smith et al., 2022; Zhou

et al., 2021). In contrast, JustDeepIt was developed to fill these

gaps, enabling various image analysis tasks using deep

learning technologies in a single software. JustDeepIt

implements multiple neural network architectures suitable

for different application scenarios and supports both GUI and

CUI, increasing flexibility according to the task. As shown in
frontiersin.org
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our case studies with JustDeepIt, GUI is ideal for building

models from available data effortlessly, and CUI is suitable for

facilitating the use of a model as an extension (e.g., iterative

training of U2-Net). Furthermore, we believe that by

supporting both GUI and CUI, collaborative research

between experimental and informatics researchers can

proceed more efficiently.

Other than deep learning-based software, scikit-image

(van der Walt et al., 2014), ImageJ (Abràmoff et al., 2004),

and PlantCV (Gehan et al., 2017) are also available for image

processing and are broadly used in many applications (e.g.,

plant detection and leaf segmentation). Scikit-image and

ImageJ require users to set thresholds manually for

multiple color spaces to segment leaf areas. Therefore, if an

image consists of various phenotypes of plants, for example,

plants with green and red leaves due to some stress,

simultaneously segmenting both plants may be challenging.

PlantCV supports building task-specific machine learning

models for instance segmentation. However, it does not

support GUI and requires programming skills. Given these

open-source packages, choosing the appropriate one for a

task or a specific problem is often demanding. JustDeepIt is

expected to address complicated issues and accelerate

research on image analysis when used in combination with

other software.

In plant science and agriculture, fruit detection and plant

segmentation are two high-priority tasks (Arya et al., 2022; Zhou

et al., 2022). This is because these tasks can estimate growth

stages and yields of plants, including crops, and improve plant

environmental robustness (e.g., disease resistance, fruit quality,

and fruit yields) by collaborating with genomic technologies

(e.g., genome-wide association study and expression quantitative

trait locus analysis) (Varshney et al., 2021; Xiao et al., 2022). In

this study, we represented the four case studies covering the two

high-priority tasks with both GUI and CUI of JustDeepIt. The

results support the robustness of JustDeepIt against critical

issues in plant science. In addition, although JustDeepIt was

intended for plant research, it may be applicable for image

analysis in various disciplines beyond plant science.

Furthermore, in a future version, we will continue to update

the software in response to user demand and the

technology flow.
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