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This study demonstrates a method to select wavelength-specific spectral 

resolutions to optimize a line-scan hyperspectral imaging method for its 

intended use, which in this case was visible/near-infrared imaging-based 

multiple-waveband detection of apple bruises. Many earlier studies have 

explored important aspects of developing apple bruise detection systems, 

such as key wavelengths and image processing algorithms. Despite 

the endeavors of many, development of a real-time bruise detection 

system is not yet a simple task. To overcome these problems, this study 

investigated selection of optimal wavelength-specific spectral resolutions 

for detecting bruises on apples by using hyperspectral line-scan imaging 

with the Random Track function for non-contiguous partial readout, with 

two experimental parts. The first part identified key-wavelengths and the 

optimal number of key-wavelengths to use for detecting low-, medium-, 

and high-impact bruises on apples. These parameters were determined 

by principal component analysis (PCA) and sequential forward selection 

(SFS) with four classification methods. The second part determined the 

optimal spectral resolution for each of the key-wavelengths by selecting 

and evaluating 21 combinations of exposure time and key-wavelength 

bandwidths, and then selecting the best combination based on the bruise 

detection accuracies achieved by each classification method. Each of 

the four classification methods was found to have a different optimized 

resolution for high accuracy bruise detection, and the optimized resolutions 

also allowed for use of shorter exposure times. The results of this work 

can be  used to help develop multispectral imaging systems that provide 
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rapid, cost-effective post-harvest processing to identify bruised apples on 

commercial processing lines.
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Introduction

Bruises on apples have a significant impact on the quality of 
the fruit. In addition to introducing unpleasant sensory attributes 
and causing nutrient loss, bruises reduce customer preference and 
discourage repeat purchases, which can lead to substantial 
economic losses (Xing et al., 2007; ElMasry et al., 2008; Huang 
et al., 2015; Zhu et al., 2016). Hence, bruise detection is a crucial 
procedure during packaging and transport. Hyperspectral visible 
and near-infrared (VIS–NIR) imaging, which can simultaneously 
assess both chemical and physical properties of food materials, has 
played an increasingly important role in nondestructive 
classification technology over the past two decades and many 
published studies have reported on the application of VIS–NIR 
hyperspectral imaging for detecting bruises on apples. Six- and 
four-waveband combinations with principal component analysis 
(PCA) and/chemometric methods were suggested for detecting 
bruises on Jonagold and Golden Delicious apples (Xing et al., 
2005, 2007; Xing and De Baerdemaeker, 2005). ElMasry et al. 
(2008) reported three NIR wavelengths to be effective for detecting 
bruises on McIntosh apples. Furthermore, the classification of 
apple bruising time using VIS–NIR hyperspectral image was also 
investigated (Zhang and Li, 2018; Pan et  al., 2019). With the 
development of machine learning methods and improved 
computer hardware, more and more studies have been conducted 
using elaborate imaging algorithms for bruise detection. Che et al. 
(2018) reported a method for pixel-based extraction of apple 
bruise regions coupled with random forest, Tan et  al. (2018) 
categorized four degrees of bruising with 92.5% accuracy by using 
support vector machine (SVM) based on grid search parameter 
optimization, and Zhu and Li (2019) detected and visualized slight 
bruises on apples with 92.9% accuracy using classification by 
extreme learning machine method (ELM). Keresztes et al. (2016, 
2017) applied partial least-squares discriminant analysis (PLS-DA) 
with shortwave infrared hyperspectral imaging to overcome glare 
problems during apple image processing to detect bruises.

Most of these studies ultimately aimed to build rapid screening 
systems. However, even though the fundamental requirements 
have been studied, such as identifying key wavelengths, developing 
image processing algorithms, and selecting light sources, the 
application and development phase to implement rapid screening 
using multispectral imaging is not trivial. Actual application of the 
previous knowledge to implement real-time rapid screening 
systems requires additional research. Thus, this study specifically 
aims to determine optimal bandwidths of spectral images used for 
a given specific application to improve image acquisition time and 

accuracy of classification algorithms, and specifically for 
optimizing multispectral real-time implementation—critical to 
effective imaging-based apple bruise detection but also relevant to 
other applications.

The main challenge faced by many researchers stems from the 
pixel-readout rates of the conventional charge-coupled device 
(CCD) sensor, which are not fast enough for use in real-time-
based systems (Yoon et al., 2011). Although hyperspectral VIS–
NIR line-scan cameras predominantly utilize silicon-based CCD 
sensors for providing high-quality spectral images, electron-
multiplying CCD (EMCCD) sensors have been developed to 
overcome the problem regarding read-out rate. The EMCCD 
capacity for non-contiguous partial readout implies that only a 
few specific wavelength lines in a frame could be chosen by the 
user for a fast frame rate as well as for reduction of the image data 
volume, rather than reading out the entirety of data across all 
wavelength lines detected. Therefore, when using EMCCD 
sensors, this function, called random-track (RT) mode, is essential 
to developing a rapid multispectral line-scan system for use on 
commercial processing lines (Kim et al., 2003, 2005, 2007; Baek 
et al., 2019). In addition to enabling hyperspectral operation as a 
multispectral imaging device, RT mode can choose the region of 
interest (ROI) in the spectral direction for each waveband selected. 
Thus, the ROIs in the spectral direction have the effect of a binning 
method, which provides several advantages for developing a rapid 
screening system. The main benefit is reducing the data size per 
line-scan image in ordinary computer memory, leading to a 
greater number of lines scanned per second (Greensill and Walsh, 
2000; Lu, 2003). Moreover, the effects of binning include 
smoothing of the spectra as a spectral pretreatment and correcting 
of small peak shifts, both of which help prevent spurious 
correlations with signal noise (Kim et al., 2008, 2011; Anderson 
et al., 2011).

For applying RT mode, the size of the ROI in the spectral 
direction should be  optimized since it influences the spectral 
resolution of the waveband images and the dynamic data range of 
the analog-to-digital (A/D) converter. These two factors are 
crucial when analyzing spectrum data and making a detection 
model as well as when developing a rapid sorting system. The wide 
dynamic data range provides a more detailed description of the 
target in the image, and using appropriate spectral resolution can 
prevent information overload and drive a fast response by allowing 
more light to reach the image sensor effectively. So far, there has 
been little discussion about the spectral resolution and dynamic 
data range of the A/D digitizer as dependent on the size of the ROI 
in the spectral direction (Greensill and Walsh, 2000; 
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Kim et al., 2011), although the use of filters (Kodak Wratten 82C 
gelatin filters) to attenuate the CCD response level at specific 
wavelengths for acquiring quasi-optimized wavelength-dependent 
system throughput and for using a greater portion of the 14-bit 
dynamic range of the A/D digitizer at multiple wavelengths has 
been reported (Kim et al., 2011).

The primary aim of this study is to explore the optimized 
spectrum resolution in the spectral direction by RT mode of the 
VIS–NIR hyperspectral camera for detecting bruises on apples. To 
be specific, this study focus on: (1) the selection of key-waveband 
images for detecting apple bruises by using PCA and sequential 
forward selection (SFS); (2) the optimization of the size of the ROI 
in the spectral direction based on key-waveband images; and (3) 
the investigation of the ROI size in the spectral direction with 
SVM and discriminant analysis for creating an efficient model and 
a rapid multispectral line-scan imaging system for the real-time 
processing operation. Thereby, this paper systematically shows 
that multi-band line-scan imaging systems can be optimized for 
their intended application.

Materials and methods

Preparation of apples

“Golden Delicious” apples were purchased from a local market 
in two separate batches, each in advance of one of the two planned 
experiments (key-waveband selection and optimization of spectral 
resolution) needed to create the apple bruise detection model. For 
the first experiment, 120 apples manually selected for their lack of 
any apparent surface defects were carefully packed into trays to 
prevent bruising during transportation from market to laboratory. 
The apples were divided into four groups of 30 each, for use in 
three levels of physical impact testing along with one control 
group of unbruised apples (high, medium, low, and sound), and 
each apple was labeled for identification. For the second 
experiment, a total of 24 apples was purchased and divided into 
four groups of six apples each, again for high-, medium-, and 
low-impact bruising groups and one unbruised control group.

Bruising procedure

Figure 1 illustrates the equipment for developing bruises on 
apples. A 67 g steel ball was mounted onto the steel rod that was 
68 cm in length and 663 g in weight. The other end of the steel rod 
was mounted onto a pivot. Thus, the ball and rod act as a simple 
pendulum that can be used to create apple bruises by physical 
impact. Such devices have been used for generating bruises in 
apples in previous studies (Xing et al., 2006; Opara et al., 2007). 
After an apple was placed in a sample holder, the pendulum was 
released, accelerated under the influence of gravity, and impacted 
at the apple’s equator. Three different levels (1.11, 0.66 and 0.33 J) 
of impact energy were utilized to induce high-, medium-, and 

low-impact bruises. The corresponding three initial angles for the 
pendulum were 50, 38, and 27 degrees, respectively. The impact 
energy E (in J) was calculated by Equation 1 (Zhu et al., 2016). 
After subjecting each apple to one impact, the impact area on the 
apple surface was marked using a sticker for subsequent reference 
when evaluating detection results, and the apples were stored at 
room temperature (22°C) for the 24-h testing period during 
which the apples were imaged multiple times.

 
E = +m gh m g hb r

2  
(1)

Where mb and mr are the masses of the steel ball and the steel 
rod (kg), respectively; g is the gravity of acceleration (m/s2), and h 
is the height (m) of the steel ball from ground.

Hyperspectral imaging system

Hyperspectral images of the apples were acquired by using 
the line-scan (pushbroom) hyperspectral imaging system 
illustrated in Figure  2. The system consisted of an electron-
multiplying charge-coupled device (EMCCD) camera (EMCCD: 
Luca R DL-604M, 14-bit, Andor Technology, South Windsor, 
CT, United States), visible/near-infrared imaging spectrograph 
(Headwall photonics, Fitchburg, MA, United  States), a 
programmable linear stage (translation table) with stepping 
motor, and light sources. The camera was coupled with a 
C-mount objective lens (F1.9 35-mm compact lens, Schneider 
Optics, Hauppauge, NY, United  States). The hyperspectral 
imaging system was constructed to cover visible to near-
infrared wavelengths for reflectance measurements. The lighting 
sources used were two 150-W halogen lamps with DC power 

A

B

FIGURE 1

(A) Schematic of the apple-bruising device and (B) color image of 
sound and bruised samples.
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supplies which enabled control of light intensity. Light was 
transmitted via two optical fibers to provide near-uniform 
illumination. Hyperspectral reflectance images of apple samples 
were collected by placing the loaded apple sample plate onto the 
programable translation table unit and obtaining spectral/
spatial data line-by-line as the translation table moved the 
sample plate under the instantaneous field of view (IFOV) of the 
hyperspectral imaging system.

To extract the actual spectral response of the samples, the 
VIS–NIR hyperspectral images were calibrated by a flat-field 
method. When using a hyperspectral imaging camera, the raw 
hyperspectral images contain noise and artifacts related to the 
measurement environment and imperfections of each component 
(e.g., source, lens, filter, spectrograph, and camera). By using flat-
field correction, noise was reduced and the relative reflectance 
spectrum data from hyperspectral image was gained (Kim et al., 
2001). To be specific, the relative reflectance intensity (IR) can 
be determined by the following process (Kim et al., 2001). White 
and dark reference images were acquired after collecting 
hyperspectral data for individual sample plates. A white reference 
was obtained using a Spectralon panel (~99% reflectance, SRT-99-
120, Labsphere, North Sutton, NH, United States), and the dark 
reference was obtained by capping the objective lens.

 
IR r d

w d

I I
I I

=
−
−  

(2)

Selection of key-wavelengths

The steps of the procedure for finding key wavelengths and 
optimal wavelength resolutions for detecting apple bruises are 
shown in Figure 3. This study had two experimental parts. The 
first experiment was conducted to find key-wavelength to 
detecting bruise and second experiment was conducted to search 
for optimum wavelength resolution based on key wavelength. In 
the first experiment, hyperspectral images of apples were obtained 
and spectral data for bruised and sound regions of the apples were 
extracted from the images. Because the shape of the bruise on each 
apple was different and the apple bruises were not consistently 
classifiable by any one single wavelength image, manual pixel 
selection was used to visually identify pixels from clearly 
observable bruised and sound regions in the third or fourth 
principal component (PC3 or PC4) images, such as those shown 
in Supplementary Figure  1, that were created based on entire 
wavelength images.

Spectral data were then extracted from the raw hyperspectral 
images at those bruised and sound pixels identified from the PC 
3 or 4 images. Next, the extracted spectral data were split into a 
training set (70%) and a test set (30%) to be used for modeling and 
generalization, respectively. The optimum number of wavelengths 
and the key wavelengths for detecting bruises on apples were 
selected by SFS with four classifiers. Before applying SFS, a 
pre-selection of wavelengths was chosen by PCA weighting 

FIGURE 2

Schematic of hyperspectral imaging system and the hyperspectral camera.
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coefficients because the training for the model would take a long 
time if the entire spectral range of the hyperspectral wavelength 
images were to be used. The PC images were created by linear 
transformation. Therefore, the peaks and valleys for each 
weighting coefficient of the PCs imply a dominant wavelength, 
which means that the dominant wavelengths have the largest 
contribution when performing the linear transformation (Cho 
et al., 2013).

Thus, predominant wavelengths were first pre-selected by 
PCA, and then from this pool, optimal key wavelengths and 
the optimum number of key wavelengths to use were identified 
by using SFS with classifiers. After identifying 
key-wavelengths, SVM and a discriminant analysis model was 
optimized based on key-wavelengths and optimum number of 
wavelengths. When making classification models, all of the 
methods were coupled with a five cross-validation schemes to 
prevent overfitting problems. In this study, two results were 
shown based on spectrum data and hyperspectral images. The 
models were applied to both spectrum data and hyperspectral 
images in generating the results. Details of the principles and 
equations of each analysis method are explained in the 
Supplementary material.

Optimized parameters for hyperspectral 
imaging

As mentioned before, the CCD responses in the spectral and 
spatial domains are not uniform. For the purpose of quasi-
optimizing the wavelength-dependent system throughput and 
gaining a greater portion of the dynamic range of the A/D 
digitizer, the system throughput can be  compensated by 
optimizing the ROI in the spectral direction (spectrum 
resolution). For example, the multispectral imaging system can 
use three specific wavebands selected for optimal target detection. 
These three wavebands may each have different quantum 
efficiency (QE). The exposure time can be set to use the full A/D 
dynamic data range for the first waveband which has the highest 
QE. However, the remaining second and third wavebands (each 
with lower QE than the first waveband) will not optimally use 
their full A/D dynamic data range since these two wavebands may 
have lower response for the same exposure time. If exposure time 
were to be set to maximize dynamic data range at the second or 
third wavebands, then the signal at the first waveband would 
be overexposed (saturated signal). Therefore, the procedure to 
optimize spectrum resolution must be  done carefully since 

FIGURE 3

Key steps in the procedure used to find optimal wavelengths and spectrum resolutions to detect bruises on apples.
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spectrum resolution is associated with target detection accuracy 
and image acquisition time in conjunction with exposure time. 
Thus, crucial to the process of choosing the size of the ROI in the 
spectral direction is the trade-off between each key wavelength 
resolution and image acquisition time.

To find optimum spectrum resolutions and exposure time, the 
second experiment in this study used two sets of combinations 
based on key-wavelength spectrum resolution. The first and 
second sets for wavelengths were based on four classifiers, 
respectively. The CCD responsivity was highest at 553.9 nm 
among the key-wavelengths. Exposure time was selected by 
maximizing the dynamic data range centered at 553.9 nm. 
Therefore, the wider the bandwidth at 553.9 nm, the shorter the 
exposure time. The bandwidths of each of the remaining two 
key-wavelengths were selected by dynamic data range. For 
example, with a narrow bandwidth at 553.9 nm, an exposure time 
of 0.17 s was needed to use the full dynamic range. However, the 
remaining two wavebands could not reach full dynamic range in 
only 0.17 s. So, the bandwidths for the remaining two wavebands 
were adjusted to reach 25, 50, or 90% of their dynamic data ranges, 
in 21 combinations of the three wavebands. Tables 1, 2 show the 
21 parameter combinations used to optimize the bandwidths. 
After using the 21 imaging parameter combinations to take 
hyperspectral images of the bruised and sound apples according 
to the steps described in Figure 3, a model was made for each 
parameter combination.

Image processing

One of the advantages of hyperspectral imaging is that it 
provides a visualization map for the samples being imaged. Using 
the combined characteristics from the acquired spatial and 
spectral information, the developed four classification models 
which are linear discriminant analysis (LDA), quadratic 
discriminant analysis (QDA), SVM, and SVM with radial basis 
function kernel (RBF-SVM), can be  applied to hyperspectral 

images to form classification maps. A simple classification based 
on the intensity of the pixels can be obtained. In this study, the 
visualization process was performed on hyperspectral images of 
apples surfaces with the background removed by applying the 
different classification models. The resultant images provide 
information that can be used to determine the presence of any 
bruises on an apple surface image. Since a classification model will 
assign lower score values to pixels in bruise regions and higher 
score values to pixels in sound regions, the resultant images can 
be used for discriminating between bruised and sound region 
on apples.

Results and discussion

Average spectra of bruise on apple

Figure 4 presents the average spectra of bruised and sound 
regions, in different colors, from the hyperspectral images 
acquired. In general, a wavelength around 558 nm indicated the 
browning symptom of the bruised region on an apple (Xing et al., 
2005). The color of bruised apple areas was browner and darker 
compared to sound areas, and the corresponding differences in 
reflectance intensity between sound areas and impacted areas is 
clearly seen in the wavelengths between 550 and 600 nm in 
Figure 4. Differences in reflectance were observed for the three 
different impact energy levels. The reflectance of high-impact 
bruises was lower than the reflectance of medium-and low-impact 
bruises since the color and chemical compound change on an 
apple surface occurred the most quickly from bruising at the high-
impact energy level. Absorption valleys around 500 (450–550 nm) 
and 680 nm were exhibited, which relate to the carotenoids and 
chlorophyll pigment in apple peel, respectively (Baranowski et al., 
2012). The sugar content of apples was reflected in the absorption 
valley at 820 nm (Zhang and Li, 2018). When an apple bruise 
develops, the cells in the apple tissue are damaged and the 
intercellular air spaces decrease, causing differences in water 

TABLE 1 Combinations of wavelength resolutions and exposure times for QDA and SVM-RBF classifier.

Combination 
number

Exposure time 
(s)

Centered 774.2 nm Centered 553.9 nm Centered 424.5 nm

Size of the 
ROI

Dynamic range 
(%)

Size of the 
ROI

Dynamic range 
(%)

Size of the 
ROI

Dynamic range 
(%)

1 0.17 0 90% 0 90% 7.8 90%

2 0.012 11.7 90% 10.2 90% 73.5 90%

3 0.012 7.0 50% 10.2 90% 46.9 50%

4 0.012 0.8 25% 10.2 90% 10.2 25%

5 0.0048 27.4 90% 25.0 90% 112.6 90%

6 0.0048 14.9 50% 25.0 90% 73.5 50%

7 0.0048 3.9 25% 25.0 90% 14.9 25%

8 0.002 58.6 90% 50.0 90% 162.6 90%

9 0.002 35.2 50% 50.0 90% 104.7 50%

10 0.002 7.0 25% 50.0 90% 22.7 25%

https://doi.org/10.3389/fpls.2022.963591
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Baek et al. 10.3389/fpls.2022.963591

Frontiers in Plant Science 07 frontiersin.org

content between bruised and sound regions (ElMasry et al., 2008). 
Hence, the relative reflectance of bruised regions is lower than in 
sound regions at wavelengths associated with water absorption, 
since the bruised regions have increased water content. The NIR 
region from 750 to 1,000 nm, which is associated with the water 
absorption wavebands (ElMasry et  al., 2008), presented 
predominant wavebands for classifying bruises. In addition to 
identifying water absorption, these wavebands are also free of 
color information, and thus would be  useful for detecting 
differences between bruised and sound regions regardless of apple 
color (Huang et  al., 2015). The relative reflectance spectra in 
Figure  4 illustrate spectral indicators of carotenoids and 

chlorophyll pigment in apple peel (450–550 nm), sugar content 
(820 nm), and water absorption (750–1,000 nm) associated with 
the phenomenon of bruises on apple. Therefore, bands selected in 
these spectral regions would be useful for a multispectral imaging 
system to detect bruises.

Key-wavelength selection

If the entire spectrum of wavelengths were to be used for 
choosing the key-wavelengths, training a model with the 
amount of data obtained would take a long time. Therefore, this 

TABLE 2 Combinations of wavelength resolutions and exposure times for LDA and SVM classifier.

Combination 
number

Exposure time 
(s)

Centered 812.5 nm Centered 553.9 nm Centered 424.5 nm

Size of the 
ROI

Dynamic range 
(%)

Size of the 
ROI

Dynamic range 
(%)

Size of the 
ROI

Dynamic range 
(%)

11 0.17 0.8 90% 0.0 90% 7.8 90%

12 0.17 0.0 50% 0.0 90% 4.7 50%

13 0.012 18.8 90% 10.2 90% 73.5 90%

14 0.012 12.5 50% 10.2 90% 46.9 50%

15 0.012 1.6 25% 10.2 90% 10.2 25%

16 0.0048 41.4 90% 25.0 90% 112.6 90%

17 0.0048 25.8 50% 25.0 90% 73.5 50%

18 0.0048 47 25% 25.0 90% 14.9 25%

19 0.002 76.6 90% 50.0 90% 162.6 90%

20 0.002 44.6 50% 50.0 90% 104.7 50%

21 0.002 13.3 25% 50.0 90% 22.7 25%

FIGURE 4

Averaged relative reflectance of sound apple regions and of bruised regions caused at low-, medium-, and high-impact energy levels.

https://doi.org/10.3389/fpls.2022.963591
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Baek et al. 10.3389/fpls.2022.963591

Frontiers in Plant Science 08 frontiersin.org

study used PCA to pre-select a pool of potential 
key-wavelengths. In this study, the first through fourth principal 
components were used since PC1 through PC4 accounted for 
99.21% of the spectrum data variation as shown in the 
Supplementary Figure  2. Moreover, visual evaluation by PC 
image suggested that images beyond PC4 contained no useful 
data variance for detecting bruised regions. 
Supplementary Figure 1 shows PC images for one apple that was 
subjected to high-impact bruising. Characteristically, the PC1 
images showed explanation for the largest variance of the data, 
which were influenced largely by the surface variance of the 
apples. The PC2 images display some dark spots that resulted 
from the absorption of chlorophyll. The PC3 images appear to 
show the greatest contrast between bruised and sound regions 
of the apple. Thus, PC3 images have high discrimination power 
for classifying the bruised regions from sound regions and 
would contain key wavelengths. The PC4 images show some 
evidence of the presence of bruise regions, but both sound and 
bruise regions have a darker appearance with less contrast, 
which would be less useful for distinguishing between bruise 
and sound regions.

Figure 5 shows the weighting coefficients for PC1 through 
PC4, obtained from the entire range of the reflectance 
hyperspectral images. The red markers in Figure 5 indicate the 
dominant wavelengths of each PC. Supplementary Table 1 lists the 
dominant wavelengths for each PC and the potential 
key-wavelengths that were pre-selected based on the weighting 
coefficients. Similar to results observed for the average spectrum 
data, the pre-selected wavelengths included wavelengths 
associated with known absorptions for carotenoids, chlorophyll, 
sugar, and water. Bruising has known effects on these components 
in apple tissue. These results suggest that the wavelengths 
pre-selected through PCA are suitable as potential 
key-wavelength selections.

The optimum number of wavelengths for detecting bruises 
on apples was determined by the SFS method based on the PCA 
pre-selected wavelengths. Figure 6 presents the bruise detection 
accuracies corresponding to the number of wavelengths used, 
from 1 to 5, for the four classifiers. The SVM and LDA classifiers 
showed lower accuracies (near 90%) when using only two 
features, compared to the SVM-RBF and QDA classifiers which 
demonstrated 95% accuracy with only two features used. With 
three or more features used, all of the classifiers obtained higher 
accuracies (over 94%). Therefore, in this study, the number of 
optimal wavelengths was considered to be three wavelengths for 
further analysis of wavelength resolutions, since there was no 
significant improvement in classification accuracy when more 
wavelengths were added beyond three. The results of identifying 
the key-wavelengths for classifying bruised regions on apples 
are shown in Table 3, and are similar to the previous result from 
PC image analysis. The PC3 image has higher discriminant 
power than other PCs image with fewer components. The 
weighting coefficients of PC3 included 424, 553, 774, and 
812 nm as the predominant wavelengths. Furthermore, these 

wavelengths for detecting bruises were also observed by 
Solovchenko et  al. (2010). According to their observations, 
brownish pigment exhibits increasing absorption monotonously 
from NIR to shorter wavelengths, and they suggested three 
wavelengths around 550, 750, and 800 nm as key wavelengths. 
The 550 nm wavelength was sensitive to browning symptoms 
and the 750 nm wavelength exhibits less variation in sound 
regions than bruised regions. Another spectral feature 
characteristic of the key-wavelengths is the association of 
flavonols and anthocyanin with wavelengths near 420 and 
810 nm, respectively.

Optimum resolution for detecting 
bruises on apples

After obtaining multispectral images of the apples using the 
21 bandwidth combinations listed in Tables 1, 2, the 
classification result images were generated by applying the 
models for visualizing the bruises on apples. For LDA, 
combination #12 (0.12 s exposure time; 812.5, 424.5, and 
553.9 nm throughputs at 50, 50, and 90% of dynamic range, 
respectively) showed the best result image, with the fewest 
number of scattered pixels of false positives. Figure 7 shows the 
LDA classification result images for apples with high-impact 
bruises. All of these images show false positives but combination 
#12 has the smallest misclassification area. All QDA 
classification result images exhibited good visual classification. 
The QDA combination #9 image (0.002 s exposure time; 774.2, 
424.5, and 553.9 nm throughputs at 50, 50, and 90% dynamic 
range, respectively) produced relatively good classification 
results compared with LDA combination #12. QDA combination 
#9 detects the bruise well and the scattered pixels of false 
positives around the bruise region are the fewest. Moreover, 
exposure time is shorter for QDA combination #9 than for LDA 
combination #12, indicating that QDA combination #9 can 
be used to take more images than the LDA method in any given 
time period. The SVM resultant images are similar to the LDA 
resultant images. The SVM classification results are the best for 
combination #12. This result implies that linear type 
classification methods are influenced by 553.9 and 424.5 nm as 
these wavebands represents the brown symptom of bruise and 
are identically employed by both models. In contrast with the 
QDA result, the optimum parameters for SVM-RBF result 
images were in combination #6 (0.0048 s exposure time; 774.2, 
424.5, and 553.9 nm throughputs at 50, 50, and 90% of dynamic 
range, respectively). Other combination result images show 
many scattered pixels of false positives around bruise region. 
The discriminant power of SVM-RBF is higher at combination 
#6. In addition to bandwidth, dynamic range also had noticeable 
effect. The QDA and SVM-RBF models showed their best 
results at 50% of dynamic range at other two key-wavelength; at 
over 50%, misclassification of pixels increased. If dynamic 
ranges are over 50%, then misclassification of pixels increases.
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Classification result with optimized 
resolution

Resultant images for all 24 apples are shown in Figure 8 for 
the LDA classification model using combination #12, which 
yielded the best LDA-based results. This model led to a false 
positive on sample 21, but correctly detected the bruised and 
sound areas on the other 23 apples. The background regions 
were removed from the 553.9 nm waveband image by using a 
masking method, and then the classification models were 
applied to three band images. When applying classification 
methods, the model was only applied to apple area pixels, not 
the entire image, to lower image processing time. After 
applying the classification method, only those pixels identified 
as bruise region pixels have a value of “1” in the binary image. 
Some scattered pixels of false positives in the classification 
images were eliminated by open-close image processing 
methods, and then this image was used as reference image for 
further processing to visualize the bruise against the sound 
surface of the apple. Based on reference image, the bruised 
region pixels are changed to red color to reveal them in the 
553.9 nm band image, and most were successfully detected on 
the apple surface as shown in Figure 8. Upon application of the 

algorithm to the multispectral images of the 24 apples, more 
than 90% of the bruised apples were correctly identified. 
Therefore, using a broad bandwidth is efficient since broad 
bandwidth can reduce acquisition time and maximize dynamic 
range, and thus is suitable for rapid line-scan-based sorting 
systems for real-time processing. For classification of bruised 
and sound apple surfaces, parameter combinations # 6, #9, and 
#12 were found to result in the highest accuracies overall. 
However, the QDA model with combination #9 yielded better 
(faster) performance speed in detecting bruises, compared to 
the other classification methods with their best combinations. 
The bandwidths of the key-wavelengths investigated in this 
study could be  helpful for developing rapid multispectral 
devices for monitoring apple quality. The classification 
resultant images for QDA, SVM, and SVM-RF with optimized 
spectrum resolutions are shown in Supplementary Figures 3–5, 
respectively.

Conclusion

In this research, a large multispectral image data set was 
constructed for Golden Delicious apples subjected to low-, 

FIGURE 5

Spectral weighting coefficients for the first, second, third, and fourth principal components, with dominant wavebands for pre-selection marked in 
red.
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medium-, and high-impact bruising, key-wavelengths for bruise 
detection were selected, and wavelength-specific spectral imaging 
resolution was evaluated based on classification results for 
multiple combinations of exposure time and spectral bandwidths. 

Four classification methods were applied to multispectral images 
spanning a range of resolutions, and the best resolution and 
dynamic range were selected in terms of the ability to identify 
bruises on apples. The most significant and important result of this 
study is finding optimum bandwidths and dynamic range. The 
LDA and SVM, have their best performances at parameter 
combination #12. These combination parameters can use over 
90% of the full-dynamic range. The QDA and SVM-RBF are 
suitable for detecting bruises on apples using parameter 
combinations #9 and #6, respectively. This part of the research 
evaluated diverse combination parameters related to acquisition 
speed and the wavelength-dependent system throughput of 
camera CCD sensors in conjunction with the use of four 
classification algorithm. The results showed that the QDA 
classification method with parameter combination #9 could 
achieve 90% accuracy with the shortest exposure time (0.002 s). 

A B

C D

FIGURE 6

Performance comparison of sequential forward selection (SFS) using four classifiers: (A) support vector machine (SVM) with slack variable; 
(B) linear discriminant analysis (LDA); (C) SVM with radial basis function (RBF) kernel; and (D) quadratic discriminant analysis (QDA).

TABLE 3 The three most important wavelengths for each classifier, as 
determined by the sequential forward selection (SFS) method for 
selection of key-wavelengths.

Classifier First 
wavelength 

(nm)

Second 
wavelength 

(nm)

Third 
wavelength 

(nm)

SVM 812.5 553.9 424.5

SVM with RBF 553.9 424.5 774.2

LDA 812.5 553.9 424.5

QDA 553.9 424.5 774.2
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The method developed here for determining appropriate 
bandwidths can be applied to many more industry applications 
beyond detection of apple bruises and will be  of interest to 

researchers and developers faced with the task of reducing 
system speeds.
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FIGURE 7

LDA classification result images using various wavelength 
resolutions, for apples with high-impact level bruises. 
Combination 12 (boxed in yellow) was found to be the best 
wavelength resolution for detecting bruises.

FIGURE 8

Bruise classification images from LDA model with combination #12.
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