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Rapid identification of plant diseases is essential for e�ective mitigation and

control of their influence on plants. For plant disease automatic identification,

classification of plant leaf images based on deep learning algorithms is

currently the most accurate and popular method. Existing methods rely on

the collection of large amounts of image annotation data and cannot flexibly

adjust recognition categories, whereas we develop a new image retrieval

system for automated detection, localization, and identification of individual

leaf disease in an open setting, namely, where newly added disease types

can be identified without retraining. In this paper, we first optimize the

YOLOv5 algorithm, enhancing recognition ability in small objects, which helps

to extract leaf objects more accurately; secondly, integrating classification

recognition with metric learning, jointly learning categorizing images and

similarity measurements, thus, capitalizing on prediction ability of available

image classification models; and finally, constructing an e�cient and nimble

image retrieval system to quickly determine leaf disease type. We demonstrate

detailed experimental results on three publicly available leaf disease datasets

and prove the e�ectiveness of our system. This work lays the groundwork for

promoting disease surveillance of plants applicable to intelligent agriculture

and to crop research such as nutrition diagnosis, health status surveillance,

and more.

KEYWORDS

leaf disease recognition, image retrieval algorithm, deep metric learning, object

detection, convolutional neural networks

Introduction

As one of the hottest topics in intelligent agriculture, plant disease detection

has received unprecedented attention recently. The solution to this task is crucial

to meet multifarious challenges in agriculture such as sustainable development,

productive forces, and environmental implications. In actual production, this task is

normally completed by artificial classification. But this complex task generally requires

seasoned experts who are frequently limitedly available. Various automatic classification

algorithms relying on convolutional neural networks (CNNs) have been constructed

to solve these difficulties. As the most representative algorithm in deep learning, CNN

has achieved great success in computer vision, information retrieval, natural language

processing, and many other fields. In recent years, CNN is becoming more and more
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popular for diagnosing plant leaf diseases. If we look at the

literature, we can recognize the effectiveness of existing deep

learning methods for diagnosing plant diseases (Abade et al.,

2021; Kundu et al., 2021). For existing methods, they can

be further subdivided into classification methods, objective

detection methods, and segmentation methods according to the

network structure used (Dhaka et al., 2021; Liu andWang, 2021).

As for classification methods, because of CNN’s powerful

feature extraction ability, the adoption of CNN-based models

has become the most commonly used pattern in plant disease

identification. Most of them utilized classical CNN models for

transfer learning or feature extraction (Li et al., 2021). There

are also some studies that have designed network structures

based on practical problems (Ahila Priyadharshini et al., 2019;

Sunil et al., 2022). A lot of scientific research also employed

segmentation networks or detection networks for plant disease

identification. For example, YOLOv5 was used for detecting

the bacterial spot disease in the bell pepper plant, which can

detect even a small spot of disease with considerable speed and

accuracy (Mathew and Mahesh, 2022). Chouhan et al. (2021)

proposed a neural network model with superpixel clustering

for segmentation and achieved 98.57% detection accuracy.

However, no matter which method is used, most of these

methods classify plant disease images based on CNN network

to diagnose and quantify plant diseases.

Although good progress has been made over the past years,

these image classification-based methods still suffer from some

problems that limit the practical applications of plant leaf disease

recognition algorithms based on image classification networks.

These problems are mainly manifested in three aspects:

(1) The recognition category cannot be adjusted flexibly.

In practical applications, the categories of plant leaf

diseases usually change frequently in different scenarios,

and the number of categories that can be predicted

by classification algorithms including image classification

networks is fixed. This severely limits practical applications

of current approaches, as each time the network needs

to be modified and retrained when adding or reducing

recognition categories (Guo et al., 2019).

(2) The number of recognition categories is restricted. In

various detection scenarios, the categories of leaf disease

are huge and diverse, and the number of parameters and

calculations of the image classification network will many

fold grow as add number of recognition categories, which

requires powerful computer capability and data storage,

but this severely hinders model training and deployment

on hardware devices with limited performance. Therefore,

the recognition algorithm based on image classification

networks is difficult to apply to leaf disease recognition

applications with a large number of categories.

(3) Over-reliance on labeled data. Numerous current image

classification for visual recognition tasks commonly relies

on large amounts of labeled training data to achieve

high performance (Liu et al., 2020a). Data collection and

labeling of leaf diseases are commonly challenged, either

because of high cost or lack of appropriate expertise.

Under the condition of limited training samples, it is

problematic for image classification models to obtain

preferable identification results in leaf disease diagnosis.

The study focuses on the issues listed above. Accordingly,

we put forward an image retrieval system based on object

detection and deep metric learning to identify plant leaf

diseases. Our system can identify leaf diseases quickly and

accurately and overcome the shortcomings of leaf disease

identification methods based on image classification,

which has high theoretical research and engineering

application value.

Simply put, the primary advantages and contributions of our

proposed retrieval system are as follows:

(1) A detection algorithm was proposed based on object

detection algorithm and deep metric learning, which

can locate and identify plant leaves and disease

types that seldom appear or never appear before in

the training dataset. The training data required is

considerably reduced and gets a near image classification

algorithm performance.

(2) We designed a complete but simple image retrieval

system structure using the reconfigurable and module

method, without employing any complicated projects

(such as network compression, vision transformer), and

gradually analyzed the impact of different hyper-parametric

techniques andmodels on performance with a large number

of experiments. Recognition categories and each module of

our system are allowed to adjust quickly and freely within

actual task requirements.

(3) Using the image retrieval system to improve the versatility

of the algorithm. The leaf disease detection model trained

on a large-scale dataset can be directly applied to

various practical leaf disease identification tasks without

retraining or fine-tuning. This can be confirmed by the

application and development of technologies such as person

reidentification (Zhong et al., 2017) and face recognition

(Liu et al., 2018). Thus, the modules of our algorithm are

separated, allowing task-by-task optimization to enhance

system performance.

Three different datasets were considered in the test: PlantVillage

dataset (Hughes and Salathe, 2016), coffee leaf dataset (Esgario

et al., 2020), and citrus leaves dataset (Wu et al., 2007). By

evaluating our methods in a large number of experiments with

plant disease images, we demonstrate that our novel image

retrieval framework can address plant disease detection in small

samples and complex environments from a new perspective by

combining object detection and metric learning technology.
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Related work

Metric learning

Metric learning focuses on automatically extracting a robust

metric from images to precisely determine similarity or distance

between different images. The common methods for metric

learning are roughly divided into two types: Siamese networks

coupled with contrastive loss (Simo-Serra et al., 2015) and triplet

networks coupled with triplet loss (Wang et al., 2014). Since it

has been proved that triplet loss outperforms contrastive loss

(Liu et al., 2020b) in most cases, we adopted the former in

this paper.

The difference between image classification approaches

and metric learning approaches is shown in Figure 1. The

goals of classifier training and metric learning are different.

The CNN network trained using classification loss makes the

classification task easier with learning separable features from

images. To obtain correct recognition result, metric learning

selects the discriminative features so that make the distance

of the same class images in the feature space as close as

possible, while that of different classes images further wherever

possible. Therefore, metric learning is more appropriate

for small samples or multi-category classification scenarios

than classification learning. However, unlike classification

loss, metric learning loss cannot constrain each individual

sample, which will lead to instability of metric learning loss

during model training (Ma et al., 2021). To alleviate this

problem, this paper would perform similarity measurements

and categorize images through integrated metric learning with

classification prediction.

Image retrieval

Image retrieval is a well-explored problem in computer

vision research. Its goal is to find one or more images containing

the same target or scene as the query image from a collection

of images (Yang et al., 2019). Unlike image classification tasks,

image retrieval solves a problem where the testing categories are

generally different from those used in training (Jiang et al., 2021).

There are two paradigms for image searching: content-based

image retrieval and text-based image retrieval (Nag Chowdhury

et al., 2018). Content-based image retrieval utilizes image search

techniques that combine vision features to answer queries. Text-

based image retrieval manages data and seeks an image that best

matches the query text from a set of images through traditional

database techniques. The image retrieval mentioned in this

paper refers to content-based image retrieval since it directly

uses vision features extracted from images for retrieval. Figure 2

shows the general process of image retrieval.

The overall process of image retrieval is: firstly, the

images are represented in a suitable feature vector, and get

image features from existing images to generate retrieval

indexes for building a gallery library. Secondly, a search

method is performed on this image feature vector using

Euclidean or Cosine distances to find similar images

in the gallery library, and finally, some post-processing

techniques can be used to fine-tune the retrieval results and

determine information such as the category of the image

being recognized.

Feature extraction generalizes images into high-

dimensional feature vectors, the quality of which plays a

pivotal role in determining retrieval performance. Here,

we employ deep metric learning to extract abstraction

features from image data and then measure similarities

among images.

According to sample data specific purpose in image retrieval,

it can be divided into three parts:

1. Training dataset: Used to train the model so that it can learn

the image information of the collection.

2. Gallery dataset: Used to provide gallery data for image

retrieval tasks. The gallery dataset can be the same as the

training set or the test set, or different.

3. Query dataset (test dataset): Used to test the goodness of

the model.

Closed-set identification and open-set
identification

Image identification is an important task in computer vision,

which can commonly be categorized as closed-set identification

and open-set identification according to whether classes in the

test set appear in the training set (Bendale and Boult, 2016). For

closed-set identification, all classes in the test set are restricted

to the classes seen before in the training set. In the case of

open-set identification, classes of the training set disjoint from

those of the test set. The open-set identification task is a more

common situation, with the closed-set identification being its

particular case; therefore, the difficulty of the former is typically

considerably greater than that of the latter.

The leaf disease detection method based on image

classification can only solve closed-set image identification,

while our method based on image retrieval proposed in this

paper can both perform closed-set identification and open-

set identification. We will test the efficiency of our work by

performing closed-set identification and open-set identification

on datasets.

Methods

In this section, we will systematically describe our method

and emphasize its main advantages.
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FIGURE 1

Comparison of image classification and image retrieval in leaf disease recognition.
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FIGURE 2

Workflow of image retrieval.
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FIGURE 3

The framework of our image retrieval system.

Overall framework

As demonstrated in Figure 3, the framework of our image

retrieval system is given.

The framework is mainly composed of four parts, namely,

leaf object detection (Step 1), feature extraction network training

(Step 2), construct index library build (Step 3), and plant

image retrieval (Step 4). These modules are briefly described
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below. Technical details will be described in the rest of

this section.

Leaf object detection algorithm is responsible for predicting

the bounding box location for each leaf in an image. The feature

extractor is used to generate a feature vector for each leaf

region. The feature extraction algorithm and the object detection

algorithm are independent of each other by training completely

different datasets, so they can be carried out separately during

the training process.

In practical application of leaf disease image retrieval

system, the number of categories that need to be recognized

is commonly very large or unknown. For fast retrieval, the

nearest neighbor search is then used on the search between query

vectors and index vectors and is performed to obtain matching

prediction categories. Therefore, before image retrieval system

deployment, we will extract given image features into the form

of feature vectors and build an index library according to the

corresponding categories. For a new leaf disease category, we

only need to put images of this category into the retrieval

database, so that our retrieval system can identify this new leaf

disease without further retraining.

Leaf object detection

The first stage in our image retrieval framework is the

automatic detection and localization of leaves within images.

That is, we train a generic leaf detector such that for an input leaf

image, and then get bounding box coordinates with confidence

scores enclosing every leaf region within it as output. There

are obvious differences in phenotypic characteristics among

different varieties of plant leaves, with each individual presenting

a varying texture and shape. How to accurately and timely

locate leaves in a complex environment is a huge challenge

for many detection algorithms. In object detection of deep

learning (Song et al., 2021), YOLO series models have the best

composite performance that effectively balances accuracy and

speed. YOLOv5 is based on YOLOv3 (Redmon and Farhadi,

2018) and adopts the model scaling technology of EfficientDet

(Tan et al., 2020) to realize dynamic adjustment of accuracy,

speed, and model parameters, which has been widely used in

practical tasks. Therefore, we believe that YOLOv5 is most

suitable for leaf detection.

YOLOv5 was first released on GitHub 4 in May 2020

(Ultralytics/yolov5, 2021), and its version v5.0 is used in

our experiments. Moreover, according to model structure and

its layer channels different in set width and depth factor,

several models can be chosen in YOlOv5 to meet diverse

circumstances. Object detection is a very time-consuming task;

so in order to reduce detection time, we adopt YOLOv5s, the

lightest model among all YOLOv5 networks, as our base object

detection structure.

However, YOLOv5s cannot accurately handle the detection

of small leaf objects in a complex environment. As the leaf has

small size and few pixel features in some images, the detection

model is required to have a strong ability for small objects. In

the original YOLOv5s model, the feature map of the last layer of

the backbone network is too small to meet the requirements of

the subsequent detection and regression. To solve this problem,

we add a small object detection layer and modify or remove

some layers.

In detail, the acquired feature map and the feature map of

the second layer in the backbone network are fused to generate

a larger feature map for small object detection. Moreover, in

the feature pyramid structure of YOLOv5s, we also introduce

the shortcut connection used in the weighted bidirectional

feature pyramid network (BiFPN) structure to better combine

representations of an image at different resolutions (Tan et al.,

2020). YOLOv5-ours consists of three components: a backbone

network, a neck module (BiFPN), and a detection head, whose

whole structure is shown in Figure 4.

In Figure 4, Input refers to network input. UpSample

represents an upsampling operation, Concat denotes a

concatenation operation, and Conv denotes a convolution

operation. The CBS block is composed of a convolution

layer, a batch normalization operator, and a SiLU activation

function. The YOLOv5-our model contains two cross-stage

partial structures, of which the C3_A structure is applied to the

backbone of the network, while the C3_B structure is used in

the neck of the network. Both C3_A and C3_B are composed of

several bottleneck modules and other core modules. The only

difference between them is that the bottleneck module of C3_A

contains a shortcut connection, but that of C3_B does not.

1. Input: The input end of YOLOv5-ours uses the same data

augment method as YOLOv4, which performs better in small

object detection. YOLOv5s adds the function of adaptive

anchor frame calculation. In the training process, adaptively

calculate the value of the best anchor frame in different

training sets.

2. Backbone: Our model aggregates and forms image features

on different types of image granularity through the backbone.

In addition, YOLOv5s-ours uses the Focus structure to realize

the slicing operation. For example, the original 640 × 640

× 3 image is fed into the Focus module, and it finally

constructs a feature map of 320 × 320 × 32. The main

function of the Focus structure is to reduce floating point

operations and improve the running speed of the model.

The backbone further incorporates a spatial pyramid pooling

(SPP) block, which performs concat operations on feature

maps of different scales to allow dynamic setting of input

image sizes.

3. Neck: YOLOv5-ours uses the BiFPN structure as neck

to aggregate features and pass the image features to the

prediction layer, strengthening detection of different scale
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FIGURE 4

YOLOv5-our structure overview.

objects. This structure enhances the bottom-up path and

adds the shortcut path which improves propagation of low-

level features.

4. Heads: Our model uses the same head architecture as

YOLOv5s, which can handle image features, generate

prediction categories, and export bounding boxes.

To generate predictions with only a high degree

of confidence, the minimum confidence threshold

for detection is set at 0.70. Except for the model

structure, other parameters, training strategy,

and loss function of our model are the same

as YOLOv5s.
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Feature extraction network based on
metric learning

The goal of our feature extraction network is to extract

robust and discriminant semantic information from the leaf

image that is mapped to a fixed dimension feature vector. This

feature vector will finally be matched with the same claimed

identity vector to obtain leaf disease recognition result. It can

be noticed that the quality of extracted features essentially

determines system retrieval accuracy. Therefore, we proposed a

feature extraction network that combines metric learning and

standard supervised classification prediction to heighten the

model’s stability and precision.

Network architecture design

The structure of our feature extraction network is illustrated

in Figure 5. The network mainly includes a data augment

module, a backbone network, a feature extraction module, and

a classification module.

Data augment module: We use standard data augmentation

pipeline typically used in classification tasks, such as, randomly

cropping the image to size with 224 × 224, normalizing the

image pixel values, randomly flipping the image horizontally,

decoding images, and so on.

Backbone network: The backbone network is a pre-

trained image classification network whose classification layer is

removed. This network can be any common classification CNN.

Feature extraction module: Generally, deep features

extracted from most backbone networks are ultra-high

dimensions, and direct use of such features will lower vector

search efficiency in image retrieval and attach additional

computations. So, in the feature extraction module, the

fully connected layer is deployed to compress the output

of the backbone network into prefixed size feature maps

for our tasks. This fixed size choice was found on the

existing study, and empirical values typically are 128, 256,

and 512. In Section Analysis of leaf disease recognition

algorithms, we will conduct experiments to test the impact

of this parameter toward detection performance. The fully

connected layer is adopted to convert feature maps into

a single dimension feature vector, that is, the required

feature vector.

Classification module: This module consists of a fully

connected layer to perform leaf disease image classification.

Its input dimension is consistent with the feature vector

size, and the output dimension is determined according to

sample categories numbers in the training set. This module

is only added to make model training more stable with faster

convergence. During the testing phase of image retrieval, the

category prediction results have become practically insignificant.

So, after training, the classification module is removed from the

trained network.

Selection of backbone network

Feature extraction ability of our selected backbone network

directly affects feature vector quality. Our proposed framework

can use any standard CNN backbone or transformer network

backbone in the computer vision field, such as ResNet,

MobileNetV3, Vision Transformers (ViT), Data-efficient Image

Transformer (DeiT). Recently, compared with the excellent

CNN network (ResNet, MobileNetV3), transformer networks

(VIT and DeiT) have been shown to achieve advanced results

on various computer vision tasks. It seems better to choose a

complex network with significant feature extraction capabilities

in our tasks, such as Vision Transformers or ResNet151.

However, due to the high parameter complexity of transformers

and ResNet151, which results in huge training and inference

costs, more training data samples are required (Khan et al.,

2021). Our principle is to choose ResNet50 since it balances

efficiency and accuracy. In the process of building a feature

extraction network, we removed the linear classification layer

of ResNet50. Therefore, when the input size of the feature

extraction network is 224, the backbone network will provide a

1× 2048-sized feature map at the output.

Loss function

A suitable loss function selection is a necessary way to

acquire good performance in the training process of a feature

extraction network. We use two types of loss functions: softmax

cross-entropy loss (softmax loss) and triplet loss. Triplet loss

is based on feature distances, while softmax loss is based on

the output of classification module. In the training process,

we combine the two loss functions and minimize both at the

same time.

Triplet loss

Figure 6 shows the usage of triplet loss function. The triplet

loss function attempts to pull features of two images from

different classes farther and push features of two images from

the same class closer. Thus, our objective is:

∥
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where the function ’f (.)’ indicates our feature extraction

network.A indicates an anchor image, P indicates another image

from the same class, and N indicates an image from another

different class. α is a hyperparameter called the margin that

represents the minimum value between distances (A to P) and

distance (A to N). In our experiment, this value is set at 0.5.

During model training, we use the Euclidean distance to

minimize the triplet loss defined as:
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FIGURE 5

The feature extraction network structure diagram.

FIGURE 6

Sketch of common triplet loss calculation.
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where N and i represent the number of training samples and the

i-th training sample, respectively. The notation [x]+ is a hinge

function (x stands for any function or value), representing max

(x, 0), which can exclude the samples accurately predicted by the

network from loss calculation to avoid network overfitting.

The training mode of triplet loss is divided into offline

training and online training through generation rules of training

samples. Offline training stands for training samples that are

generated before training. However, this method is inefficient

because we should perform a full forward propagation on the

whole training set to generate triplets, and a lot of candidate

triplets may be generated, resulting in a large batch size of each

training epoch. For online training, we use image vectors of

the current training batch to build useful triplets without any

offline mining. Therefore, we chose the online training strategy

for our task. In addition, this paper also uses the batch hard

triplet loss algorithm (Hermans et al., 2017) to provide a better

code implementation for online triplet mining, which can guide

the model to learn a more discriminative feature vector of

leaf disease.

Softmax loss

Label smoothing and temperature scaling in softmax loss

have been certified to be useful for model training (Jun

et al., 2020). Thus, we add them in our experiments to learn

robust features and avoid overfitting. The softmax loss here is

defined as:

Lsoftmax = −
1

M

M
∑

i=1

log
e
(WT

yif (xi)+byi )/T

N
∑

j=1
e
(WT

j f (xi)+byj)/T
(3)

where M, N, and yi are the batch size, the number of classes,

and class label of i-th input, respectively. f (xi) represents the

output of the feature extractor, and W and b represent the

weights and bias for the last layer of the network. T is a

temperature parameter that can provide a softer probability

distribution over classes with a higher value, which is set

to 5 in our experiment. The label smoothing estimates the

marginalized effect of a label dropout during training to enhance

model generalization.

Total loss

The total loss function is defined as:

Ltotal = αLtriplet + βLsoftmax (4)

The hyper-parameters α and β are constant values to balance

the influence of each loss term. To set the two loss functions to

be at the same order of magnitude during the training process,

we made α and β both equal to 1.

Image retrieval system

Once the feature extraction network is trained, we can

construct a vector search engine that is able to find any feature-

related images from its database and return results to achieve leaf

disease detection. The architecture of our vector search engine

is represented in Figure 7. To find the images closest to a given

query, a vector search engine needs to:

(1) Calculate feature vectors of all the gallery set images

through a trained feature extraction network. When we

obtain a fixed-dimensional feature vector f (x) then which

will be performed L2 norm normalization. The calculation

formula is:

EF =
f (x)

∥

∥f (x)
∥

∥

2

(5)

finally, we will save the feature vectors and their label

information to database.

(2) Get all leaf detection regions in a query image through

object detection. Then, compute the feature vector of all leaf

regions and the query image by a similar procedure as step

1. Adding the whole query image as a leaf region for feature

extraction is to improve recall since the results of leaf object

detection are not always accurate.

(3) For each leaf region, similarity measurement by comparing

its feature vector to all the feature vectors in our gallery

dataset. Similarity is computed with a metric distance

function, such as cosine distance or Euclidean distance.

The smaller the Euclidean distance or the larger the cosine

distance of the feature vector, the greater the feature vector

similarity. Since cosine distance is easier to calculate, it

is selected to represent the similarity of features. The

calculation formula of cosine distance is:

Dcos(EF1, EF2) =
EF1 · EF2

∥

∥EF1
∥

∥

2

∥

∥EF2
∥

∥

2

(6)

where EF1 and EF2 represent feature vectors. Since EF1 and
EF2 are the normalized vectors, the above equation can be

simplified to:

Dcos(EF1, EF2) = EF1 � EF2 (7)

However, the above implementation is an instance of a linear

search with O(n) complexity, indicating that it will execute

slowly while gallery data volume is massive. We could boost

the query speed by, for example, using specialized data

structures or approximate nearest neighbor algorithms that

decrease the computational complexity to O(logn). Here,

a simple but efficient novel graph indexing and searching

algorithm will be used in our vector search task, that is

Mobius (Zhou et al., 2019), a fast search on graph algorithm

for maximum inner product search, which brings welcome

changes in comparison with existing search mode.

Frontiers in Plant Science 11 frontiersin.org

https://doi.org/10.3389/fpls.2022.963302
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Peng and Wang 10.3389/fpls.2022.963302

FIGURE 7

Workflow of the proposed image retrieval system.
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(4) For individual leaf regions, sort these similarity scores in

descending order and filter similarity scores with confidence

threshold to ensure accuracy. Then, we adopt non-

maximum suppression for object boxes of all leaf regions

to avoid fetching duplicate regions. Take the category of leaf

image in gallery dataset with the Top-1 or Top-5 similarity

scores as category prediction for the query image. In our

work, we set the Top-1 score as the prediction result. At

the same time, these similar images and the query image

are displayed for users’ reference. If all similarity scores are

less than the confidence threshold, it is considered that the

category of the current queried image does not appear in the

gallery image.

Results and discussion

Wewill give evidence that our proposedmethod successfully

constructs a plant disease image retrieval system with

remarkable inference speed and great accuracy.

Datasets and experimental setup

Datasets

Dataset in metric learning

We evaluated our method on three typical image datasets:

1) PlantVillage dataset (Hughes and Salathe, 2016), 2) coffee

leaf dataset (Esgario et al., 2020), and 3) citrus leaves dataset

(Wu et al., 2007). The PlantVillage dataset was divided into a

sub-dataset (PlantVillage-A) of 38,035 images and a sub-dataset

(PlantVillage-B) of 16,270 images. Coffee leaf dataset (2,209

images) and citrus leaves dataset (609 images) were divided into

training (coffee training, citrus training) and test set (coffee test,

citrus test) with a 7:3 ratio. The training of the metric learning

approach in this paper is divided into three parts.

Model training: When training a feature extraction network,

it is common practice to select several categories of images in

the dataset, divide these images into validation sets, and then

use the remaining images as training sets. In our work, we used

PlantVillage-A for training feature extraction networks. The

detailed approach was that the first 19 classes were divided as

the training set (PlantVillage-A-training), and the last 19 classes

were divided as the validation set (PlantVillage-A-validation).

PlantVillage-A-training and PlantVillage-A-validation contain

22,214 and 15,821 images, respectively.

Closed-set identification: In this instance, PlantVillage-

A was used as the gallery dataset for all query images

in PlantVillage-B. Through the analysis experiments on

PlantVillage-A and PlantVillage-B with the same category label,

the algorithm classification ability will be demonstrated.

Open-set identification: We created a gallery set from

PlantVillage-A, coffee training, citrus training, and a query set

from coffee test, citrus test. Since most of the classes in coffee

dataset and citrus dataset did not appear in Plantvillage-A, it

would highly evaluate the generalization ability of our image

retrieval system.

Dataset in object detection

In our work, the experimental dataset for leaf detection

used public datasets supplied by Flavia (Wu et al., 2007),

Swedish (Söderkvist, 2001), Leafsnap (Kumar et al., 2012). Flavia

consists of 1,907 leaf images divided into 32 categories, which

were sampled in Nanjing, China. Swedish contains 15 different

Swedish tree species, with 75 images per species for a total of

1,125 images. Leafsnap consists of 7,719 images (800 × 600

pixels), covering all 185 tree species from the Northeastern

United States. Moreover, we used web crawlers to capture 1,500

leaf images and introduced these images and PlantVillage-A

(38,035 images) into experiments. PlantVillage-A dataset and

Leafsnap dataset provide leaf location segmentation information

that can be used to generate object bounding boxes. For other

datasets, we labeled bounding boxes for each image manually.

The above images were then cleaned and mixed to create a leaf

location dataset containing 50,000 images. Our object detection

model was trained to only perform one class object detection,

namely, a leaf object.

Experimental setup

Hardware Platforms: All experimental codes were executed

on Python 3.7.10 with Pytorch1.8 and CUDA 10. We

used a cloud server with two Intel Xeon CPUs, eight

NVIDIA Tesla V100 GPUs, and 256 GB memory to train

models. Model evaluation was conducted on a local server

with an Intel Core CPU, an NVIDIA GTX 1060ti GPU,

and 16 GB memory.

Model training: For object detection tasks, all models used

in this study are initialized by the COCO pretrained YOLOv5

series models. Furthermore, multi-scale training and additional

enhancement testing techniques were not used in these tasks.

For metric learning tasks, we used the ImageNet pretrained

model to initialize the backbone network. When training

models, we used the Tree-structured Parzen Estimator (TPE)

approach (Bergstra et al., 2011) for tuning the hyperparameters

to obtain the best model. All networks were fixed and trained

for 100 epochs using the stochastic gradient decent optimization

algorithm. Then, defined three hyperparameters, that is, batch

size, initial learning rate, and weight decay, will be chosen by

TPE to optimize performance. For each model training, the

total number of parameter search trials in TPE was 20. The

early stopping mechanism was configured in TPE to speed up

model training, which was set to stop the current search trial if

any ten consecutive epochs with no advancement in reducing

training loss.
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TABLE 1 Performance on leaf location testing set for each object

detection method.

Methods Input size mAP@0.5

(%)

Inference

time (ms)

Model

size (MB)

YOLOv5-ours 320X320 98.03 4.52 14.24

416X416 98.17 6.33

608X608 98.00 13.11

YOLOv5s 320X320 97.76 3.31 13.69

416X416 97.96 4.73

608X608 97.87 10.14

YOLOv5m 320X320 97.86 7.75 40.47

416X416 98.12 12.16

608X608 97.94 28.87

YOLOv5l 320X320 98.02 13.18 89.35

416X416 98.22 20.29

608X608 98.06 48.60

YOLOv5x 320X320 98.23 23.61 166.93

416X416 98.43 36.42

608X608 98.33 95.31

Leaf detection algorithm

The YOLOv5-ours and different YOLOv5 architectures,

and whose different resolutions input size, were tested and

evaluated for the leaf object detection task. We will use mean

average precision (mAP) as the selected metric to quantitatively

compare their performance. The evaluation in this paper

was based on mAP@0.5, which was used as comprehensive

evaluation metrics, where mAP@0.5 was the mAP calculated

under the intersection over union (IOU) threshold of 0.5

(Song et al., 2021). Quantitative comparisons of the proposed

improved detection method against YOLOv5s and different

structure models of YOLOv5 are shown in Table 1, which give

a comparison of different networks with different dimensions of

feature vectors in mAP@0.5 (accuracy), inference time (speed),

and model size (the number of model parameters).

YOLOv5-ours has better test accuracy than YOLOv5s and

YOLOv5m, and comparable performance with YOLOv5l and

YOLOv5x. Obviously, mAP value of YOLOv5s was the lowest,

but inference speed and model size were the fastest. YOLOv5x

has the best detection accuracy but demands more inference

time than other detectionmodels. Comparedwith YOLOv5s, the

detection accuracy of our model was substantially improved at

the expense of a tiny amount of inference speed and model size.

Model complexity introduced by BiFPN structure and added

a small object detection layer only increases a small amount

of model storage space and inference time in our proposed

model, and overall capability has clear superiority compared

with heavy-weight networks. The comparison results in different

model input sizes, particularly under 320 input sizes, exhibit the

TABLE 2 Performance for feature extraction networks with di�erent

dimensions of feature vectors.

Backbone Dimension

of feature

vectors

Top-1 (%) Inference

time (ms)

Model

size (MB)

ResNet-50 128 97.22 14.07 90.92

ResNet-50 256 97.39 14.15 91.94

ResNet-50 512 97.88 14.22 93.98

power of our model in improving the accuracy of small object

detection. This result demonstrates that our proposed approach

has a good trade-off between accuracy and computational

efficiency. An input size of 416 × 416 was simpler to obtain

wonderful results than others on most occasions. So, we used

input size of 416 × 416 as the input image size of our detection

network in subsequent tasks.

Analysis of leaf disease recognition
algorithms

In this part, we showed the performance of our feature

networks on PlantVillage-A datasets. After that, we explored the

contributions of each proposedmodule by ablation experiments.

Experimental results on PlantVillage-A

Top-k accuracy was a widespread evaluation standard,

which means that the model outputs the most probable k

classification results, and the output is regarded as correct when

those k results contain the actual class label. We used Top-1

test accuracy for feature network model evaluation during the

training stage. Table 2 lists the performance of our networks as

compared to different dimensions of feature vectors.

The feature extraction networks built on the backbone

network being ResNet50 with an output feature vector of 512

dimensions achieved the highest performance with a validation

accuracy of 97.88%. However, networks with different output

dimensions have all shown good performance in this context,

which indicated a sure sign that we were on the right track to

achieve higher accuracy of leaf disease identification. Obviously,

a larger output feature dimension improved identification

performance, yet increased model computing and storage

resources consumption. From our experimental results, the

512 dimensions of output did not bring excessive resource

consumption relative to others. So, we considered that was

acceptable and set the output feature vector of all feature

extraction networks to 512 dimensions in subsequent image

retrieval stages.
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TABLE 3 Comparisons of di�erent backbone networks on validation

sets.

Backbone Top-1 (%) Inference

time (ms)

Model

size (MB)

MobileNetV3-Large 97.21 - 18.72

ResNet101 98.02 28.31 166.65

ResNet152 98.53 40.79 226.53

ResNet50 97.88 14.22 93.98

EfficientNet-B0 98.01 20.63 18.06

Vit-Base-patch16 98.73 - 328.89

Deit-Base-patch16 98.92 - 328.89

The impact of backbone

To further explore the potential performance improvement

on different backbone networks for leaf disease recognition,

we performed ablation analysis on the PlantVillage-A dataset.

A variety of classification networks were used to build

feature extraction networks based on metric learning, and the

dimension of the feature vector was adjusted to 512.

Compared with ResNet50 as the backbone network,

ResNet101 and ResNet152 increased validation accuracy by

0.14 and 0.65%, respectively (Table 3). When the feature vector

length was 512, the feature extraction network based on

ResNet152 achieved the highest recognition accuracy of 98.53%

(Table 3). Yet it is worth noting that the inference time and

model size for both ResNet101 and ResNet152 were much larger

than that in ResNet50. Therefore, in actual application, it is

possible to choose a proper backbone network according to the

requirements of system performance and recognition accuracy.

Inference times of transformers and MobileNet vary too much

depending on physical hardware architecture. These data are

not listed in our paper because they were not representative and

intangible on our platform.

However, no matter which common backbone network

we chose, our algorithm still achieved good performance.

In short, our results showed that choosing ResNet50 as the

backbone network, albeit not optimal in accuracy, has the

highest performance price ratio, which can acquire trade-offs

between time and accuracy, and it was the best solution for

our task.

The impact of model loss algorithms

We designed a controlled experiment to explore the

contribution of classification loss and triple loss to the feature

extraction network. The detailed experimental results are shown

in Table 4.

The feature extraction network training with softmax loss

and triplet loss was the baseline model. Here, we discussed

model accuracy after removing triplet loss and softmax loss in

TABLE 4 Comparisons of di�erent loss functions on validation sets.

Backbone Loss Top-1 (%)

ResNet50 Tripletloss+ softmax loss 97.88

ResNet50 Triplet loss 97.45

ResNet50 Softmax loss 96.93

TABLE 5 Performance of our image retrieval system on di�erent test

sets.

Datasets Backbone Top-1

(%)

Top-5

(%)

Inference

time

(ms)

Identification

mode

PlantVillage-B ResNet50 97.84 99.52 32.48 Close-set

identification

Coffee test ResNet50 89.09 99.09 33.36 Open-set

identification

Citrus test ResNet50 91.67 98.89 32.65 Open-set

identification

the baseline model, respectively. Compared with the baseline

model, recognition accuracy of the model trained with softmax

loss was reduced by 0.95%, while that trained by triplet loss was

only reduced by 0.43%. With or without classification loss, our

model maintains satisfactory recognition accuracy. However,

compared with using only triple loss, adopting the joint learning

strategy combining softmax loss and triplet loss can bring high

accuracy gain.

Closed-set identification and open-set
identification

Experimental results of recognition system

Themain aim of our image retrieval system was to efficiently

find relevant images from a dataset given a query image, thereby

determining the category of the query image. To judge how our

image retrieval system performance, Top-1 and Top-5 accuracy

were employed as the evaluation metric for all test datasets.

Table 5 exhibits Top-1 accuracy, Top-5 accuracy, and inference

time of our image retrieval system on the test set.

For close-set identification, our image retrieval system

obtained 97.84 and 99.52% Top-1 and Top-5 classification

accuracy, respectively, while it takes 32.48ms to accomplish

per detection on average. The computation time of recognition

process includes leaf detection time, feature extraction time, and

image matching time. These results showed that our system can

recognize leaf disease on the PlantVillage-B set well.

We also explored the generalization capability of our image

retrieval system in unknown datasets (open-set), those were
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coffee test and citrus test. As shown in Table 5, for test results

of coffee test and citrus test, Top-1 accuracy rates were 89.09

and 91.67%, and Top-5 accuracy rates were 99.09 and 98.89%,

respectively. The feature search was carried out on the GPU

mode with C/C++ implementation. Our system achieved a

faster search speed, and the running time for the test on both

datasets was less than 34 ms.

An identification example of open-set identification is

shown in Figure 8. Using our image retrieval system, we

obtained the following two results. Figure 8A is the test results

in citrus test; Figure 8B is the test results in the coffee test. Our

improved YOLOv5 can accurately locate leaf objects, especially

small leaf objects. The proposed retrieval system demonstrated

good performance and successfully gave accurate identification

results and confidence for query images with different types of

leaf diseases. Although new plant disease types in the test set are

not present in the training set, our image retrieval system was

able to recognize new classes when test images were loaded in

the retrieval system, which indicates that the features extracted

by the feature extraction network have sufficient discrimination

capability and proves the effectiveness of metric learning.

Robustness analysis of recognition system

There is no doubt that conducting analysis experiments on

the more challenging open-set recognition task can demonstrate

the model robustness. To this end, the classification confusion

matrixes on the two datasets of open-set recognition tasks are

plotted in Figure 9.

In Figure 9, the columns of the confusion matrix indicate

the predicted classes, and the rows correspond to the true

classes. The diagonal represents the ratio of true positives,

whereas the rest of the matrix corresponds to false negatives.

A detection result whose probability is less than the threshold

is set as the class: “other”. As can be seen from the results of

citrus, our models performed well in “canker”, “black spot”,

“healthy”, and “melanose” classes, achieving greater than 94%

classification accuracy. However, it can be observed that the

lowest accuracy is reported for the “black spot” disease since

some of the samples from the “black spot” have evidence of

“greening” disease. Not surprisingly, the major portion of the

failed samples from the “greening” class was also classified as

“black spot”. This behavior is because the black spot symptoms

tend to blend with the “greening” disease symptoms when the

severity of the “black spot” disease is not intense. Likewise,

for coffee datasets, the results of the most disease classes have

good accuracy except for “cercospora” disease which displayed

a considerable number of classification errors. This result is

consistent with the experiments carried out in coffee leaf by

Esgario et al. (2020) whose class with the largest number of

samples misclassified was also the “cercospora” disease.

We can alleviate these problems by improving the input

resolution of the model when the hardware conditions allow.

Further, to go for a higher accuracy model, one can use a heavier

backbone model or higher feature dimensions.

Comparison with classification results of
previous studies

The experimental results of our image retrieval system

obtained are not directly comparable with classificationmethods

in the previous. However, there is some consistency concerning

the results obtained with those of classification methods. For

fair comparison, we compare the accuracy of our method and

different classification models on citrus and coffee datasets.

For the citrus datasets, Janarthan et al. (2020) proposed a

patch-based classification network that comprises an embedding

module, a cluster prototype module, and a simple neural

network classifier, to reach the accuracy rate of 95.04%.

Syed-Ab-Rahman et al. (2022) employed a two-stage deep

CNN model for citrus disease classification using leaf images,

whose model delivers 94.37% accuracy in detection. For the

coffee datasets, Esgario et al. (2020) proposed a multi-task

system based on convolutional neural networks and achieved

97.07% accuracy.

From the above results, the existing deep learning-based

methods usually employ classification models to achieve

detection of plant diseases. These methods all aim at specific

datasets via the data-driven manner to build classification

models, which can achieve high classification performance. In

contrast, our model achieved 91.67 and 89.09% accuracy in

citrus and coffee datasets. Compared with image classification

methods, image retrieval has a gap in recognition accuracy.

But our image retrieval system offers great versatility and

tunability characteristics, which means we can obtain sufficient

recognition accuracy in unknown class datasets without

rebuilding and retraining the model. For the environment where

plants suffer from many kinds of diseases and insect pests,

our image retrieval system can be quickly applied at minimal

implementation cost.

Discussion on algorithm applications

The extensive experimental results demonstrate

the feasibility and validity of our proposed image

retrieval system in leaf disease recognition. However, the

recognition system shall be adjusted according to its actual

application situation.

In our work, leaf detection largely dictates the accuracy

of subsequent plant disease retrieval. In the experiments, we

locate leaves through the improved YOlOv5s. In a complex

dynamic environment, a larger detection model or higher image

resolution is needed to maintain detection accuracy but this

change is at the expense of detection speed and application

performance. Therefore, to make a trade-off between accuracy
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FIGURE 8

An identification example of open-set identification on citrus datasets and co�ee datasets. The red zone in the diagram indicates a leaf location.

The description text on each image indicates the type of disease and the confidence of recognition. (A) Recognition results of diseases on citrus

leaf images. (B) Recognition results of diseases on co�ee leaf images.

and speed according to the actual situation, the model can be set

by referring to the results in Table 2.

If users need to apply our system to edge devices with

weak hardware performance, they should do some extra work

on the system to speed up model inference. Firstly, some

model compression techniques (Chen et al., 2020), including

pruning, quantification, and model distillation, can be used

to compress leaf detection models and leaf disease retrieval

models. Secondly, according to our experimental results, smaller

backbone models and smaller feature sizes can speed up the

inference of image retrieval model, but only with a small loss

of accuracy. Finally, using a universal and efficient inference

engine is a more efficient and common acceleration method for

model deployment (Jiang et al., 2020). If the edge device can

perform network communication, the recognition system can

be deployed on a high-performance remote server, and the edge

device only needs to send images and display results.

Use different levels to indicate the severity range recognition

of a plant disease, and representing each level as a category.

Like this, we can measure the severity of the symptoms on the

target leaf. Further, we can train our detection model to detect

new categories of objects, such as the different organs of plants.

Then, collect images of different disease categories of other

plant organs and retrain the recognition model. In this way, our

detection system can be extended to the disease recognition of

different plant organs.

Conclusions

This study focuses on a more common and challenging

scenario, namely, the open-set identification of leaf disease.

With regard to this, we proposed a new image retrieval system

that simultaneously produces leaf diseases localization and

identification with limited annotation images. This opens up

the probability of our model being able to accurately identify

leaf disease even though it has encountered a new type never

before seen by the model. For the task of detecting leaf objects,

we have improved YOLOv5s, which has higher overall accuracy

and performs better in small object detection. We believe

that CNNs built with metric learning are more suitable for

our retrieval tasks. These methods leave a lot of room for

improvement since they fail to take advantage of class labels.

Toward this end, we combine metric learning with classification

prediction, empowering our networks to make full use of the

classification capability of CNNs and acquire great recognition
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FIGURE 9

Confusion matrix for the evaluation results on the citrus and co�ee datasets. (A) Citrus dataset. (B) Co�ee dataset. The columns of the confusion

matrix indicate the predicted classes and the rows correspond to the true classes. The diagonal represents the ratio of true positives whereas the

rest of the matrix corresponds to false negatives. A detection result whose probability is less than the threshold is set as the class: ‘other’.
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performance. We also chose ResNet50 as the backbone network

to extract features at various levels, which balances efficiency and

accuracy. We ultimately employ Mobius for fast vector search

and integrate various algorithm modules to build a retrieval

system to find out matching images for a given image.

The extensive experimental results prove the feasibility and

validity of our proposed image retrieval system in leaf disease

recognition. With a new leaf disease category, we only need to

put images of that category into the retrieval library; thereby,

our retrieval system can identify this new leaf disease without

further retraining. Future work focuses on ensemble vision

transformer and CNN for image retrieval and pursuing better

overall performance.
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