AUTHOR=Salih Abdalrhaman M. , Al-Qurainy Fahad , Khan Salim , Nadeem Mohammad , Tarroum Mohamed , Shaikhaldein Hassan O. TITLE=Biogenic silver nanoparticles improve bioactive compounds in medicinal plant Juniperus procera in vitro JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.962112 DOI=10.3389/fpls.2022.962112 ISSN=1664-462X ABSTRACT=

Bioactive compounds of medicinal plants present as natural ingredients provide health benefits beyond the basic nutritional value of these products. However, the availability of bioactive compounds in the current natural sources is limited. Hence, the induction of bioactive compound production from medicinal plants through nanoparticles (NPs) might play a vital role in industrially important medicinal compounds. Therefore, this study aimed to synthesize silver nanoparticles (AgNPs) biologically and to investigate their effect on phytochemical compound production from the callus of Juniperus procera. AgNPs were synthesized biologically using aqueous leaf extract of Phoenix dactylifera, which acted as a reducing and capping agent, and silver nitrate solution. The formation of AgNPs has been confirmed through different analytical techniques such as UV-Visible spectroscopy (UV), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and scanning electron microscope (SEM). The impact of different concentrations (0.0, 5, 20, and 50 mg/L) of AgNPs on enzymatic and non-enzymatic antioxidants of the callus of J. procera was investigated. The obtained results showed a significant effect of AgNPs on biomass accumulation and non-enzymatic antioxidants (phenol, tannin, and flavonoid content). Additionally, total protein content and superoxide dismutase (SOD) activity were increased in response to AgNPs. Furthermore, bioactive compounds like gallic acid, tannic acid, coumarin, hesperidin, rutin, quercetin, and ferruginol were chromatographically separated and quantified using high-performance liquid chromatography (HPLC) with reference standards. These compounds were increased significantly in response to AgNPs treatments. We concluded that AgNPs could be a promising elicitor for improving the production of phytochemical compounds in medicinal plants. This work can serve asa good model for improving the production of bioactive compounds from medicinal plants in vitro. This molecular investigation should be done to understand better the metabolic mechanism leading to bioactive compound production scaling.