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Toward a smart skin: Harnessing
cuticle biosynthesis for crop
adaptation to drought, salinity,
temperature, and ultraviolet
stress
Lang Liu, Xiaoyu Wang and Cheng Chang*

College of Life Sciences, Qingdao University, Qingdao, China

Drought, salinity, extreme temperatures, and ultraviolet (UV) radiation are

major environmental factors that adversely affect plant growth and crop

production. As a protective shield covering the outer epidermal cell wall

of plant aerial organs, the cuticle is mainly composed of cutin matrix

impregnated and sealed with cuticular waxes, and greatly contributes to

the plant adaption to environmental stresses. Past decades have seen

considerable progress in uncovering the molecular mechanism of plant cutin

and cuticular wax biosynthesis, as well as their important roles in plant stress

adaptation, which provides a new direction to drive strategies for stress-

resilient crop breeding. In this review, we highlighted the recent advances

in cuticle biosynthesis in plant adaptation to drought, salinity, extreme

temperatures, and UV radiation stress, and discussed the current status and

future directions in harnessing cuticle biosynthesis for crop improvement.

KEYWORDS
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Introduction

Growing population and consumption greatly increase the global crop demand.
It is expected that 70% more food is needed to feed 10 billion people by 2050
(Tilman et al., 2011). However, plant growth and global crop production are adversely
affected by unfavorable environmental conditions such as water deficit (drought),
salinity, extreme temperatures, and ultraviolet (UV) radiation. For instance, 10.1%
loss in national cereal production was reported in drought years from 1964 to
2007 (Lesk et al., 2016). Notably, drought stress led to 20.6 and 39.3% yield
reduction in wheat and maize, respectively between 1980 and 2015 (Daryanto et al.,
2016; Fahad et al., 2017). As an environmental factor causing land degradation,
salinity affects about 11% of the global irrigated areas and could lead to above
50% yield loss in salt-sensitive crop species including all important glycophytic
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crops (Zörb et al., 2019). During the past century, extreme
temperatures have become more frequent and seriously affected
agriculture production. It was estimated that global cereal
production in extreme heat years was reduced by 9.1%
on average during 1964–2007 (Lesk et al., 2016). Low-
temperature stresses such as chilling (0–18◦C) and freezing
(<0◦C) temperature significantly affect spatial distribution and
production in cold-sensitive crop species like rice (Shimono
et al., 2007; Wang P. et al., 2019; Zhang et al., 2019a). Similarly,
increased UV radiation could induce morphological changes,
alter genome stability and affect yields in sensitive crop species
(Robson et al., 2019). In addition, stratospheric ozone depletion
and global climate change have contributed to the increased
incidence and prolonged duration of these environmental
stresses during past decades. Therefore, developing crop
varieties adapted to drought, salinity, extreme temperatures,
and UV radiation stress is essential to secure and enhance
food production.

As the true interface between plant aerial parts and
surrounding environments, lipophilic cuticle synthesized by
plant epidermal cells protects plant tissue from environmental
stresses such as desiccation, extreme temperatures, increased
UV radiation, pathogen infections, and mechanical damages,
and greatly contributes to the plant adaptation to stressful
terrestrial habitats (Domínguez et al., 2011; Kong et al., 2020a).
Although cuticle composition varies among plant species,
organs, developmental stages and environmental conditions,
the cuticle is generally composed of lipids, polysaccharides
and phenolic compounds (Yeats and Rose, 2013). Cuticular
lipid components mainly consist of wax, cutin, and cutan
polymers, which confer cuticle the hydrophobic property. As
the framework of the plant cuticle, cutin polymers contain
a large amount of cross-linked polyester of oxygenated long-
chain (C16 or C18) fatty acids and their derivatives (Philippe
et al., 2020). Cuticular wax mixtures are mainly composed of
very-long-chain (VLC, >C20) fatty acids, alcohols, aldehydes,
alkanes, esters, and ketones (Lee and Suh, 2015; Wang et al.,
2020; Suh et al., 2022). Compared with cutin and wax, cutan
polymers are less explored in structure due to their non-
hydrolysable bounds (Bhanot et al., 2021; Reynoud et al.,
2021). Phenolic compounds identified in cuticle fraction include
hydroxycinnamic acids such as ð-coumaric, ferulic, caffeic,
and ð-hydroxybenzoic acids, as well as flavonoids in some
species (Fernández et al., 2016). As an adaptive innovation in
land plants, lipophilic cuticle could protect plant tissues from
environmental stresses, thereby gaining increasing attention
in the study of plant stress tolerance (Li and Chang, 2021).
Herein, we summarized the most recent progress in studies
of cuticle biosynthesis in plant adaptation to drought, salinity,
extreme temperatures, and UV radiation stress, and discussed
the potentials, challenges and strategies in exploiting cuticle
biosynthesis for crop improvement.

Cuticle biosynthesis in model and
crop plants

With the contribution of cuticle biosynthetic mutants and
advanced cuticle phenotyping methods, cuticle biosynthetic
pathways are extensively studied in the model plant Arabidopsis
thaliana (Yeats and Rose, 2013; Suh et al., 2022). As summarized
in previous reviews, cuticular wax and cutin are synthesized
mainly by modification of plastid-derived C16 and C18 fatty
acids in the endoplasmic reticulum (ER) of plant epidermal
cells (Philippe et al., 2020; Wang et al., 2020). For the cutin
monomer biosynthesis, plastid C16 and C18 fatty acids were
conjugated to coenzyme A (CoA) by long-chain acyl-coenzyme
A synthases (LACS) and then trafficked to the ER, where the C16
and C18 acyl-CoAs could undergo aliphatic chain elongation
into C20–C26 acyl-CoAs catalyzed by the fatty acid elongase
(FAE) enzyme complex consisting of β-ketoacyl-CoA synthases
(KCS), β-ketoacyl-CoA reductase (KCR), 3-hydroxyacyl-CoA
dehydratases (HCD), and enoyl-CoA reductases (ECR) (Yeats
and Rose, 2013; Fich et al., 2016; Philippe et al., 2020).
These C16–C26 acyl-CoAs are oxidized at their terminal
and/or midchain carbons by cytochrome P450 enzymes
(CYP77 and CYP86) and the protein HOTHEAD, hydroxylated
by epoxide hydrolases (EH), and finally modified into
monoacylglycerol cutin monomers by glycerol-3-phosphate
acyltransferases (GPAT) (Pineau et al., 2017; Philippe et al.,
2020). At the same time, the phenolic compound ferulic acid
converted from coumaric acid by cytochrome P450 enzyme
(CYP98) is conjugated to monoacylglycerol cutin monomers
under the action of the transferase enzyme DEFICIENT IN
CUTIN FERULATE (DCF) (Fich et al., 2016; Philippe et al.,
2020). These cutin monomers are then exported out of the
cell via the plasma membrane (PM)-localized ABC type of
transporters and deposited into the cuticle, where cutin synthase
(CUS) proteins mediate the cutin polymerization (Fich et al.,
2016; Hong et al., 2017).

For the cuticular wax biosynthesis, plastid-derived C16 and
C18 acyl-CoAs were first elongated to VLC (up to C34) acyl-
CoAs by the FAE complex and the ECERIFERUM2 (CER2)
protein (Haslam et al., 2015). It was recently demonstrated
that protein-protein interactions in the FAE complex, including
extensive protein–protein interactions among Arabidopsis FAE
complex proteins KCR1, PASTICCINO2 (PAS2), ECR, and
PAS1, as well as specific interactions between KCS9 and
PAS2 or ECR, are essential to the VLC acyl-CoAs elongation
(Kim et al., 2021). These elongated VLC acyl-CoAs were
then either converted into n-alkanes, n-aldehydes, secondary
alcohols, and ketones via the alkane-forming pathway or
modified into primary n-alcohols and esters through the
alcohol-forming pathway. In the alkane-forming pathway,
VLC acyl-CoAs were converted into VLC alkanes under
the action of the ECERIFERUM1 (CER1)/ECERIFERUM3
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(CER3)/CYTOCHROME B5 (CYTB5) complex, and then
oxidized to secondary alcohols and ketones by the CYP95A
family cytochrome P450 enzymes (MAH1) (Pascal et al., 2019;
Tang et al., 2020). In the alcohol-forming pathway, VLC acyl-
CoAs were converted into primary alcohols under actions
of acyl desaturase ECERIFERUM17 (CER17) and fatty acyl-
CoA reductase ECERIFERUM4 (CER4), and modified into wax
esters by WAX SYNTHASE/ACYL-COA:DIACYLGLYCEROL
ACYLTRANSFERASE 1 (WSD1) (Yang et al., 2017). These
generated wax components such as VLC fatty acids, alcohols,
aldehydes, alkanes, esters, and ketones were transported from
the ER to the PM via the Golgi and trans-Golgi network (TGN)-
trafficking pathways, and finally exported out of the plant
cell to the cuticle via the PM-localized ATP binding cassette
G (ABCG) subfamily half transporters and the lipid transfer
proteins (LTPs) (Yeats and Rose, 2013; Lee and Suh, 2015; Suh
et al., 2022). In addition to these straight-chain wax components,
branched waxes such as iso-alkanes and iso-alcohols have
been identified in Arabidopsis flowers and leaves, and are
derived from the catabolism of branched-chain amino acid
(BCAA) such as valine. The isobutyl-CoA synthetase ACYL-
ACTIVATING ENZYME 9 (AAE9) was recently identified to
connect the BCAA catabolism with branched wax biosynthesis
in the plastid (Li et al., 2022).

Increasing evidence revealed that cuticle biosynthesis is
tight regulated at transcriptional, post-transcriptional, and
post-translational levels. For instance, Arabidopsis APETALA2-
Ethylene responsive factor (AP2-EREBP)-type transcription
factors (SHN1/2/3), myeloblastosis (MYB) family transcription
factors (MYB16, MYB30, MYB41, MYB94, MYB96, MYB106),
zinc-finger transcription factors (NFXL2), and the class
IV homeodomain-leucine zipper family transcription factors
(HDG1) widely get involved in the transcriptional regulation
of cutin and cuticular wax biosynthesis (Yeats and Rose, 2013;
Lee and Suh, 2015; Philippe et al., 2020; Suh et al., 2022).
ECERIFERUM16 (CER16), RNA exosome subunit RRP45B
and Ski complex components (SKI2, SKI3, SKI7, and SKI8)
regulate the post-transcriptional gene silencing of CER3, a
VLC fatty acid reductase gene (Lee and Suh, 2015; Yang X.
et al., 2020). E3 ubiquitin ligases ECERIFERUM9 (CER9),
HMG-CoA Reductase Degradation 1 (HRD1), SMALL AND
GLOSSY LEAVES1 (SAGL1) and ABA-related RING-type E3
ligase (ARRE) contribute to the post-translational regulation of
cuticular lipid biosynthesis (Zhao et al., 2014; Kim et al., 2019;
Liu et al., 2021; Wu et al., 2021).

With the assistance of forward and reverse genetic
approaches, past decades have seen great advances in functional
characterization of genes essential for cuticle biosynthesis
in many crop species such as Zea mays, Triticum aestivum,
Hordeum vulgare, Oryza sativa, Solanum lycopersicum, Glycine
max, Malus domestica, Medicago truncatula, Camellia sinensis,
Sorghum bicolor, Arachis hypogaea, Cyperus esculentus,
Gossypium hirsutum, Citrus sinensis, Cucumis sativus, and

Brassica napus (Zhou et al., 2013; Wang et al., 2015; Zhou
et al., 2015; Li et al., 2018, 2019; Lokesh et al., 2019; Cheng
et al., 2020; Guo et al., 2020; Zhang et al., 2020a; Abdullah
et al., 2021; Ayaz et al., 2021; Busta et al., 2021; Lu et al., 2021;
Wu et al., 2022). Although cuticle composition varies among
plant species, evolutionarily conserved functions were revealed
in cuticle biosynthesis genes of model and crop plants. For
instance, tomato cutin synthase (SlCUS1), together with its
homolog in Arabidopsis and the moss Physcomitrella patens,
exhibited cutin monomer polymerizing activity in vitro (Yeats
et al., 2014). Expression of GmLACS2-3, soybean homolog of
Arabidopsis LACS2 gene, in the Arabidopsis atlacs2 mutant
could rescue its cutin-deficient phenotype (Ayaz et al., 2021).
This functional conservation was also obvious for cuticular
wax biosynthesis genes such as CER1, CER2, CER3, ECR, KCR,
KCS1, KCS2, KCS6 in model and crop plants. For instance,
silencing the SlCER1-1 gene, tomato homolog of Arabidopsis
AtCER1 gene, attenuated wax alkane biosynthesis in tomato
(Wu et al., 2022). Consistent with this, ectopic expression
of MdKCS2 and MdCER2, apple homologs of Arabidopsis
AtKCS2 and AtCER2 genes, in Arabidopsis could enhance the
accumulation of cuticular wax in Arabidopsis leaves and stems
(Zhong et al., 2020; Lian et al., 2021). Notably, the function
of cuticular wax biosynthesis genes seems conserved among
monocots and dicots. For instance, the mutation in HvKCS1 and
HvKCS6, barley homologs of Arabidopsis AtKCS1 and AtKCS6,
resulted in a substantial reduction in the total cuticular wax
load in barley leaves (Weidenbach et al., 2014; Li et al., 2018).
Similarly, reduced expression of TaECR and TaKCS6, wheat
homologs of Arabidopsis AtECR and AtKCS6, was associated
with significant reductions in total wax load in bread wheat
(Wang X. et al., 2019; Kong et al., 2020b). In addition, the wheat
nullisomic-tetrasomic substitution line lacking TaCER1-1A had
significantly reduced amounts of C33 alkane (Li et al., 2019).

Recent studies revealed that regulatory genes in cuticle
biosynthesis also showed functional conservation in model
and crop plants. For instance, silencing MdMYB30, apple
homologs of Arabidopsis AtMYB30 gene, compromised wax
crystal accumulation in apple (Zhang et al., 2019c). Similarly,
tomato mutant with a mutation in CUTIN DEFICIENT2
(CD2), tomato homolog of Arabidopsis ANTHOCYANINLESS2
(ANL2), exhibited cutin deficiency in tomato fruit (Nadakuduti
et al., 2012). Notably, this functional conservation of cuticle
biosynthesis regulatory genes is also obvious between monocots
and dicots. For instance, overexpression of TaSHN1/WAX
INDUCER1 (TaWIN1), wheat homologs of Arabidopsis AtSHN1,
resulted in increased accumulation of wax alkanes in wheat
leaves (Bi et al., 2018). Silencing wheat TaWIN1 and barley
HvWIN1 could attenuate cuticular wax accumulation (Kong and
Chang, 2018; McAllister et al., 2022). Similarly, overexpressing
OsWR1, rice homologs of Arabidopsis AtSHN1, improved while
silencing OsWR1 attenuated wax biosynthesis in rice leaves
(Wang et al., 2012).
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Cuticle biosynthesis in plant
adaptation to drought stress

As the major transpiration barrier, the hydrophobic cuticle
restricts the non-stomatal water loss and protects plant tissues
from desiccation in drought conditions. Induction of cuticle
biosynthesis, including activation of cuticle biosynthesis genes,
by drought stress has been observed in a wide range of plant
species such as A. thaliana, O. sativa, T. aestivum, Z. mays,
C. sativus, S. lycopersicum, M. domestica, S. bicolor, H. vulgare,
G. max, G. hirsutum, C. sinensis, and G. hirsutum (Islam et al.,
2009; Weng et al., 2010; Zhou et al., 2013, 2015; Wang et al.,
2015; Li et al., 2018, 2019; Lokesh et al., 2019; Guo et al.,
2020; Zhang et al., 2020a; Abdullah et al., 2021; Ayaz et al.,
2021; Lu et al., 2021; Wu et al., 2022). As summarized in
Table 1, altered expression of cuticle biosynthesis genes such as
LACS1, LACS2, CER1, CER2, CER9, KCS1, KCS2, KCS6, FAR3.1,
WSD1, GPAT2, and ABCG31 could lead to the changed drought
tolerance in model and crop plants. Generally, over-expression
of these cuticle biosynthesis genes results in the increased
accumulation of cuticular wax or cutin, which contributes to
the enhanced tolerance to drought stress. For instance, over-
expression of Arabidopsis wax biosynthesis gene AtCER1 and
its homologs in wheat (TaCER1-A), cucumber (CsCER1) and
tomato (SlCER1-1) could increase VLC alkanes accumulation
and enhance drought tolerance in transgenic plants (Bourdenx
et al., 2011; Wang et al., 2015; Li et al., 2018; Wu et al., 2022).
Over-expression of Arabidopsis wax biosynthesis gene AtWSD1
in Arabidopsis and Camelina resulted in enhanced drought
tolerance in transgenic plants (Abdullah et al., 2021). Over-
expression of GmLACS2-3, soybean (Glycine max) homolog
of Arabidopsis AtLACS2, in Arabidopsis could enhance the
amounts of cutin and suberin but not wax, and result in the
increased drought tolerance (Ayaz et al., 2021). Consistent with
the results of over-expression studies, knockout or knockdown
of cuticle biosynthesis genes could lead to impaired cuticle
development and decreased drought tolerance in model and
crop plants. For instance, silencing of SlCER1-1 in tomato
reduced the amounts of n-alkanes and branched alkanes, and
decreased plant drought resistance (Wu et al., 2022). Similarly,
silencing of GhFAR3.1 expression in Upland cotton leaves could
attenuate wax accumulation and lead to enhanced susceptibility
to desiccation (Lu et al., 2021).

Recent studies on transcription factors governing cuticle
biosynthesis provide new insight into plant cuticle biosynthesis
and drought stress adaptation. For instance, over-expression of
Arabidopsis transcription factor genes AtSHN1, AtSHN2 and
AtSHN3, as well as their homologs in barley (HvSHN1), wheat
(TaSHN1), apple (MdSHINE2) and tomato (SlSHN1), could
induce expression of wax biosynthesis genes and result in
the increased wax accumulation and enhanced plant drought
resistance (Aharoni et al., 2004; Al-Abdallat et al., 2014; Bi
et al., 2018; Zhang et al., 2019b; Djemal and Khoudi, 2021).

Over-expression of Arabidopsis transcription factor gene
RAP2.4 could upregulate the expression of wax biosynthesis
genes KCS2 and CER1, resulting in increased wax content
and enhanced drought tolerance (Yang S. U. et al., 2020).
In addition, the rice homeodomain leucine zipper IV (HD-
ZIP IV) family of transcription factor ROC4 could positively
regulate wax biosynthesis and drought tolerance by directly
activating the cuticle biosynthesis gene OsBDG (Wang Z.
et al., 2018). Interestingly, a RING-type E3 ligase DHS
(DROUGHT HYPERSENSITIVE) negatively regulates rice wax
biosynthesis and drought tolerance by targeting ROC4 for
ubiquitin-mediated proteasomal degradation, suggesting the
regulatory role of ubiquitin/26S proteasome (UPS) pathway
in the transcriptional reprograming essential for plant cuticle
biosynthesis and drought stress adaptation (Wang Z. et al.,
2018).

Cuticle biosynthesis in plant
adaptation to salinity stress

As a water loss barrier, the cuticle functions to reduce
the transpiration rate and avoid tissue dehydration under
salinity stress. Up-regulation of cuticle biosynthesis genes and
elevated accumulation of wax and cutin is observed in model
and crop plants in response to salinity stress. Increasing
evidence revealed that plant tolerance to salinity stress could
be enhanced by over-expression of cuticle biosynthesis genes
and reduced by knockout or knockdown of cuticle biosynthesis
genes (summarized in Table 1). For instance, over-expression
of the wax ester biosynthesis gene WSD1 in Arabidopsis could
increase leaf and stem wax loading, leading to enhanced plant
tolerance to salinity stress (Abdullah et al., 2021). Ectopic
expression of MdLACS2 and MdLACS4, apple homologs of
Arabidopsis AtLACS2 and AtLACS4, could enhance the wax
accumulation and salt stress resistance in transgenic Arabidopsis
plants (Zhang et al., 2020a,b). Recent studies on transcription
factors that regulate cuticle biosynthesis shed novel light
on the involvement of plant cuticle biosynthesis in plant
salinity stress adaptation. For instance, ectopic expression of
HvSHN1, barley homolog of Arabidopsis transcription factor
gene AtSHN1, could induce expression of wax biosynthesis
gene NtCER1 and increase salinity tolerance in transgenic
tobacco (Nicotiana tabacum) plants (Djemal and Khoudi, 2021).
Recent transcriptome analysis revealed that the AtMYB49
could directly activate MYB41, ASFT, FACT, and CYP86B1,
representative genes in the category of ‘cutin, suberin, and
wax biosyntheses’ (Zhang et al., 2020c). The biochemical
analysis further showed that cutin deposition and salt tolerance
were higher in transgenic Arabidopsis plants overexpressing
AtMYB49 but lower in transgenic plants overexpressing
the chimeric repressor AtMYB49-SRDX49 fusion construct,
suggesting that transcriptional activation of cutin biosynthesis
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TABLE 1 Summary of plant resilience to drought, salinity, temperature, and ultraviolet (UV) stress contributed by cuticle biosynthesis.

Plant stress
resilience
traits

Stress
resilience-

related cuticle
biosynthesis

gene

Stress
resilience-

related cuticle
components

Plant species Contribution of cuticle biosynthesis to plant
stress resilience and evidence

References

Drought stress
resilience

LACS1, LACS2,
LACS4

Cutin and cuticular
wax

Arabidopsis thaliana,
Malus domestica,

Glycine max

Arabidopsis lacs1 lacs2 double-mutant plants displayed
deficiency in cutin synthesis together with high
susceptibility to drought stress. Ectopic expression of apple
MdLACS2/4 and soybean GmLACS2-3 in Arabidopsis could
enhance the accumulation of wax and cutin respectively,
leading to the increased plant drought tolerance.

Weng et al., 2010;
Zhang et al., 2020a,b;

Ayaz et al., 2021

CER1 Cuticular wax A. thaliana,
Oryza sativa,

Solanum
lycopersicum,

Triticum aestivum

Overexpression of Arabidopsis AtCER1, wheat TaCER1-1A,
cucumber CsCER1, rice OsGL1-2 and OsGL1-3 could
promote wax alkane biosynthesis and enhance drought
tolerance in the transgenic plants. Knockout or knockdown
of the tomato SlCER1-1, rice OsGL1-1 and OsGL1-6 genes
all led to drought hypersensitive phenotypes and attenuated
cuticle wax alkane accumulation.

Islam et al., 2009;
Bourdenx et al.,
2011; Qin et al.,

2011; Zhou et al.,
2013, 2015; Wang

et al., 2015; Wu et al.,
2022

CER2 Cuticular wax M. domestica Ectopic expression of apple MdCER2 in Arabidopsis could
result in enhanced wax accumulation and increased plant
drought tolerance.

Zhong et al., 2020

CER9 Cutin and cuticular
wax

A. thaliana Arabidopsis cer9 mutant plants displayed altered deposition
of cuticular cutin and wax together with enhanced plant
drought resistance.

Lü et al., 2012; Zhao
et al., 2014

OSP1 Cuticular wax A. thaliana Arabidopsis osp1 mutants exhibited defects in the formation
of stomatal cuticular ledges and enhanced drought
tolerance.

Tang et al., 2020

DWA1 Cuticular wax O. sativa Rice dwa1 knock-out mutant exhibited attenuated cuticular
wax accumulation and high sensitivity to drought stress.

Zhu and Xiong, 2013

KCS1, KCS2, KCS6 Cuticular wax Arachis hypogaea,
Camellia sinensis,

M. domestica,

Overexpression of groundnut AhKCS1, apple MdKCS2, and
orange CsKCS6 all led to enhanced wax accumulation and
drought tolerance in transgenic plants.

Lokesh et al., 2019;
Guo et al., 2020; Lian

et al., 2021;

FAR3.1 Cuticular wax Gossypium hirsutum Silencing the GhFAR3.1 gene in cotton leaves could
attenuate wax accumulation and resistance against
desiccation.

Lu et al., 2021

GPAT2 Cutin Physcomitrella
patens

Disruption of PpGPAT2 in P. patens plant attenuated cutin
accumulation and plant drought tolerance.

Lee et al., 2020

WSD1 Cuticular wax A. thaliana Arabidopsis wsd1 mutant plants displayed reduced wax
ester coverage together with compromised plant drought
tolerance, whereas over-expression of AtWSD1 in
Arabidopsis and Camelina resulted in enhanced drought
tolerance in transgenic plants.

Patwari et al., 2019;
Abdullah et al., 2021

GL6 Cuticular wax Zea mays Maize gl6 mutant exhibited decreased epicuticular wax
accumulation and attenuated seedling drought tolerance.

Li et al., 2019

ABCG9, ABCG31 Cutin and cuticular
wax

Hordeum vulgare,
O. sativa

Loss of function of HvABCG31 gene in barley led to a
deficiency in cutin biosynthesis and plant drought
hypersensitivity, whereas rice osabcg9-2 mutant displayed
attenuated wax accumulation and enhanced drought
susceptibility.

Chen et al., 2011;
Nguyen et al., 2018

MYB94, MYB96 Cutin and cuticular
wax

A. thaliana,
Z. mays

Overexpression of Arabidospis AtMYB94 and AtMYB96
could enhance the wax accumulation and potentiate
drought tolerance in transgenic plants, whereas lack of
ZmFDL1/MYB94 in maize led to a reduction in the
biosynthesis of cuticular cutin and wax biosynthesis, as well
as desiccation hypersensitivity.

Lee et al., 2016;
Castorina et al., 2020

SHN1, SHN2, SHN3 Cutin and cuticular
wax

A. thaliana,
T. aestivum,
H. vulgare,

S. lycopersicum,
M. domestica

Overexpression of Arabidopsis AtSHN1/2/3, barley
HvSHN1, wheat TaSHN1, apple MdSHINE2 and tomato
SlSHN1 all resulted in the enhanced wax coverage and
increased drought resistance in transgenic plants.

Aharoni et al., 2004;
Al-Abdallat et al.,

2014; Bi et al., 2018;
Zhang et al., 2019b;
Djemal and Khoudi,

2021;

WRI4 Cuticular wax Cyperus esculentus Ectopic expression of yellow nutsedge WRI4-like gene in
Arabidopsis resulted in enhanced cuticular wax
accumulation and improved plant drought tolerance.

Cheng et al., 2020

(Continued)
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TABLE 1 (Continued)

Plant stress
resilience
traits

Stress
resilience-

related cuticle
biosynthesis

gene

Stress
resilience-

related cuticle
components

Plant species Contribution of cuticle biosynthesis to plant
stress resilience and evidence

References

RAP2.4 Cuticular wax A. thaliana Overexpression of Arabidopsis AtRAP2.4 gene led to enhanced
wax accumulation and increased desiccation tolerance in
transgenic plants.

Yang S. U. et al., 2020

DHS Cuticular wax O. sativa Overexpression of rice DHS inhibited wax accumulation and
drought tolerance in transgenic plants.

Wang Z. et al., 2018

SRL5 Cuticular wax Z. mays The maize loss-of-function mutant srl5 exhibited abnormal
wax crystal morphology and distribution, as well as
hypersensitivity to drought stress.

Pan et al., 2020

Salinity stress
resilience

WSD1 Cuticular wax A. thaliana Overexpression of the wax ester biosynthesis gene WSD1 in
Arabidopsis resulted in an increase in leaf and stem wax
loading and the enhanced plant tolerance to salinity stress.

Abdullah et al., 2021

LACS2, LACS4 Cuticular wax M. domestica Ectopic expression of apple MdLACS2 and MdLACS4 in
Arabidopsis resulted in enhanced wax accumulation and salt
stress resistance.

Zhang et al., 2020a,b

WBC11 Cutin and cuticular
wax

A. thaliana Arabidopsis loss-of-function mutant of the AtWBC11 gene
exhibited reduced levels of cutin monomers and wax
constituents, as well as decreased tolerance to salinity stress.

Bird et al., 2007

SHN1 Cuticular wax H. vulgare Ectopic expression of barley HvSHN1 could enhance wax
biosynthesis gene expression and increase salinity tolerance in
transgenic tobacco plants.

Djemal and Khoudi,
2021

MYB49 Cutin A. thaliana Cutin deposition and salt tolerance were enhanced in
transgenic Arabidopsis plants overexpressing AtMYB49 but
attenuated in transgenic plants overexpressing the chimeric
repressor AtMYB49-SRDX49 fusion construct.

Zhang et al., 2020c

GPAT2 Cutin P. patens Disruption of PpGPAT2 in P. patens plant leads to attenuated
cutin deposition together with reduced plant salinity
resilience.

Lee et al., 2020

Extreme
temperature
stress resilience

SHN1 Cuticular wax H. vulgare Ectopic expression of barley HvSHN1 in tobacco could
activate the expression of tobacco wax biosynthesis gene
NtCER1 and potentiate plant heat tolerance.

Djemal and Khoudi,
2021

OSCs Cuticular wax
triterpenoids

Sorghum bicolor Cuticular wax triterpenoids biosynthesis mediated by
sorghum SbOSCs contributes to the reinforcement of plant
cuticles in a spatial pattern to restrict water loss at high
temperatures.

Busta et al., 2021

TT2 Cuticular wax O. sativa Rice OsTT2 null mutant displays enhanced retention of wax at
high temperatures and increased thermotolerance.

Kan et al., 2022

ACC1 Cuticular wax A. thaliana A missense mutation in Arabidopsis AtACC1 attenuated wax
deposition on inflorescence stem and resulted in plant
supersensitivity to freezing stress.

Amid et al., 2012

WXP1, WXP2 Cuticular wax M. truncatula Ectopic expression of barrel medic MtWXP1 in Arabidopsis
promoted accumulation of wax n-alkanes and primary
alcohols, leading to enhanced freezing tolerance, whereas
transgenic Arabidopsis plants overexpressing MtWXP2
displayed reduced freezing tolerance accompanied with a
decreased level of primary alcohols.

Zhang et al., 2007

CER3 Cuticular wax A. thaliana Cold-acclimated Arabidopsis mutant cer3-6 exhibited reduced
accumulation of wax alkanes and alcohols, and froze at
warmer temperatures compared to WT.

Rahman et al., 2021

DEWAX Cuticular wax A. thaliana Cold-acclimated Arabidopsis mutant dewax exhibited
enhanced accumulation of wax, and displayed freezing
exotherms at colder temperatures compared to WT.

Rahman et al., 2021

UV stress
resilience

Not identified Cuticular phenolics S. lycopersicum UV-Vis spectrometry analysis showed that cuticle membranes
isolated from tomato fruit could screen the UV-B light by
99%, which is mainly attributed to the UV absorption
mediated by phenolic acids.

Benítez et al., 2022

Not identified Cuticular phenolics Capsicum annuum,
Vitis vinifera, Brassica

oleracea, Beta
vulgaris, Hedera helix,
Iris germanica, Agave

Americana, Clivia
miniata

Ultrafast transient spectroscopy analysis revealed that UV-B
photoprotection varies from above 99% to more than 50% for
the tested cuticle samples isolated from multiple plant species,
and the major UV-B attenuation could be attributed to the
UV-B absorbance by cuticular phenolic compounds.

González Moreno
et al., 2022
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by AtMYB49 contributes to the plant salt tolerance in
Arabidopsis (Zhang et al., 2020c).

Cuticle biosynthesis in plant
adaptation to
extreme-temperature stress

Since the heat capacity of the cuticle was above the
one of air, the cuticle could function as a heat sink to
impair the heat transference between plant aerial organs
and the surrounding environment, thereby governing the
temperature increment in plant tissues at high temperatures.
Differential scanning calorimetry (DSC) measurements
showed that high-temperature stress could induce wax melting
and glass transition, as well as increased permeability, in
tomato fruit cuticle membrane (Benítez et al., 2022). As
summarized in Table 1, molecular genetic studies of cuticle
biosynthesis genes shed more light on plant adaptation
to heat stress. A recent cuticular wax chemical analysis
showed that triterpenoids enriched in adult leaf waxes of
S. bicolor, a heat and drought-tolerant crop, but not its
close relative Z. mays (maize) (Busta et al., 2021). Further
comparative genomics and heterologous expression analyses
revealed that sorghum cuticular triterpenoids are synthesized
by a neofunctionalized steroid biosynthesis gene that is
truncated and not expressed in maize, which leads to the
reinforcement of sorghum cuticle in a spatial pattern to
restrict water loss at high temperatures (Busta et al., 2021).
In addition, a natural quantitative trait locus (QTL), TT2
(THERMOTOLERANCE 2), that could confer thermotolerance
in rice without a yield penalty was recently found to encode
a Gγ subunit that regulates the heat-triggered elevation of
Ca2+, which leads to the activation of OsSCT1 (Sensing
Ca2 + Transcription factor 1) protein (Kan et al., 2022).
Interestingly, OsSCT1 was revealed to function as a negative
regulator of cuticle biosynthesis genes such as the transcription
factor gene OsWR2. Therefore, a natural loss-of-function
allele TT2 fails to initiate the heat-triggered elevation of
Ca2+, which results in the inactivation of SCT1 and de-
repression of OsWR2 at high temperature, thereby inducing
the wax biosynthesis and conferring the rice thermo-tolerance
(Kan et al., 2022).

Activation of cuticle biosynthesis, such as up-regulation of
cuticle biosynthesis genes, by cold stress has been observed
in model and crop plants such as A. thaliana, M. truncatula,
T. aestivum, B. distachyon, Thellungiella salsuginea, and
Cucurbita pepo (Lee and Suh, 2015; Wang Y. et al., 2018;
He et al., 2019). Interestingly, overaccumulation of cuticular
wax alkanes was induced by cold stress in fruits of cold-
tolerant zucchini variety “Natura,” but not the cold-sensitive
variety “Sinatra,” suggesting the potential contribution of

the wax alkane biosynthesis to the postharvest quality
improvement of zucchini fruit during low-temperature storage
(Carvajal et al., 2021). Current evidence revealed that plant
tolerance to cold stress is affected by altered expression
of cuticle biosynthesis genes (summarized in Table 1).
For instance, Cold-acclimated Arabidopsis mutant cer3-6
exhibited reduced accumulation of wax alkanes and alcohols,
and froze at warmer temperatures compared to WT. In
contrast, cold-acclimated dewax mutant exhibited enhanced
accumulation of wax alkanes and alcohols, and displayed
freezing exotherms at colder temperatures compared to
WT, indicating that cuticular wax contributes to plant
tolerance to cold stress.

Cuticle biosynthesis in plant
adaptation to ultraviolet radiation
stress

Due to stratospheric ozone depletion during past decades,
solar UV radiation that reached the earth surface has increased,
especially in the Arctic and Northern biosphere. Based on the
wavelength region, UV radiation could be divided into UV-A
(315–400 nm), UV-B (280–315 nm), and UV-C (200–280 nm)
(Robson et al., 2019). Through enhancing the generation of
reactive oxygen species (ROS) to damage macromolecules
such as DNA, proteins and lipids, energetic UV-B is harmful
to land plants (Robson et al., 2019). Upon exposure to
the UV-B radiation, increases in cuticle thickness and wax
deposition have been reported in multiple plant species such
as Cucumis sativus, P. vulgaris, H. vulgare, Coffea arabica,
and C. canephora. As major UV-screening compounds in land
plants, phenolic acids, and flavonoids have been identified in
the cuticular wax fraction, cutin matrix and even cell walls.
Current evidence showed that flavonoids could function as
UV-A attenuators, whereas phenolic acids mainly contribute
to the UV-B and UV-C photoprotection. Indeed, UV-Vis
spectra analysis revealed that cuticle membranes isolated
from tomato fruit could screen the UV-B light by 99%,
which is mainly attributed to the UV absorption mediated
by phenolic acids but not cuticular waxes (Benítez et al.,
2022). Ultrafast transient spectroscopy analysis showed that
the UV-B photoprotection varies from above 99% to more
than 50% for the tested cuticle samples isolated from multiple
plant species, and the major UV-B attenuation could be
attributed to the UV-B absorbance by cuticular phenolic
compounds (González Moreno et al., 2022). Quantum chemical
computational analyses further revealed that UV-B energy
absorbed by cuticular phenolic compounds can be either
released as blue fluorescence via the radiative mechanism or
dissipated via the conformational isomerization of phenolic
compounds (González Moreno et al., 2022).
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Harnessing cuticle biosynthesis for
crop adaptation to environmental
stress

Environmental stresses such as drought, salinity, extreme
temperatures, and UV radiation adversely affect plant growth
and crop production, which has become increasingly serious
under stratospheric ozone depletion and global climate change.
As an adaptive innovation in land plants, hydrophobic cuticle
shields plant tissues from environmental stresses associated with
terrestrialization and represents a valuable resource for crop
improvement. Cuticle-associated traits have been employed in
traditional crop breeding (Petit et al., 2017). For instance,
glaucousness determined by epicuticular wax deposition has
been selected as a target trait for crop drought tolerance
in traditional breeding. Indeed, a recent study revealed that
increased leaf wax n-alkane concentration has been selected for
enhanced productivity in five wheat cultivars developed over
the past half-century (Liu et al., 2019). In addition, advanced
breeding strategies and approaches established in recent years
have paved the new path for harnessing cuticle biosynthesis
to improve crop adaptation to stressful environments (Bailey-
Serres et al., 2019; Varshney et al., 2020; Gao, 2021).

Cuticle-associated genetic variants have been isolated from
natural populations in multiple crop species such as Z. mays,
O. sativa, S. lycopersicum, C. sativus, and B. napus through
visual screen for altered reflectance (glaucousness, glossiness,
or bloom) of plant aerial organs. As summarized in prior
reviews, a set of phenotyping techniques such as toluidine blue
soaking, gas chromatography coupled with mass spectrometry
(GC-MS), gas chromatography equipped with flame ionization
detector (GC-FID), Fourier transform infrared (FTIR) imaging,
and spectroscopy, matrix-assisted laser desorption/ionization
(MALDI) imaging and leaf radiometric measurements have
been developed to analyze cuticle properties, chemical
composition and physical structure, which greatly contribute
to the characterization and high-throughput phenotyping
of cuticle-related genetic variants in crop plants (Petit et al.,
2017; Camarillo-Castillo et al., 2021). In addition to natural
genetic diversity, cuticle-associated genetic variants have been
obtained from the induced mutant population of crop plants
Z. mays, O. sativa, S. lycopersicum, and H. vulgare. Chemical,
irradiation and insertion mutagenesis methods are available
for generating the induced mutant populations. EMS (ethyl
methanesulfonate) chemical mutagenesis and irradiation
mutagenesis with x/y-rays or fast neutrons are widely employed
to generate induced mutation in commercial crop breeding.
At the same time, T-DNA insertion mutant populations
have been constructed in model and crop plants, including
A. thaliana, Brachypodium distachyon, Z. mays, S. lycopersicum,
and O. sativa, from which cuticle-associated genetic mutants
were identified (Choi et al., 2022).

Map-based cloning of cuticle-associated genetic mutation
leads to the identification of cuticle genes in model and crop
plants, which has been extensively discussed in previous reviews.
Although many cuticle genes identified in the model plant
Arabidopsis control cuticle-associated traits in a Mendelian
manner, cuticle-associated traits in natural crop populations
are usually controlled by quantitative trait loci (QTLs).
Conventional QTL mapping and genome-wide association
studies (GWAS) were employed for identifying these cuticle-
related QTLs in crop species. For instance, the natural QTL TT2
(THERMOTOLERANCE 2) conferring rice thermotolerance
was identified by QTL mapping as a G-protein γ subunit
gene controlling cuticular wax biosynthesis in rice plants
(Kan et al., 2022). Similarly, genome-wide association study of
natural variation for maize leaf cuticular conductance identifies
cuticle genes associated with enhanced crop productivity under
drought stress. Through employing the combined chemical
analyses, heterologous expression, and comparative genomics,
Busta et al. (2021) demonstrated that a neofunctionalized steroid
biosynthesis gene that is truncated and not expressed in maize
is essential to the biosynthesis of cuticular triterpenoids and
thermotolerance in sorghum plants, suggesting that combined
metabolomic, transcriptomic, and genomic analyses contribute
to the identification of cuticle genes. These cuticle-related
QTLs can be used as makers in crop genomic breeding (GB)
to facilitate the marker-assisted selection (MAS) and marker-
assisted backcrossing (MABC) (Varshney et al., 2020). Through
combining chemical or irradiation mutagenesis with genome-
wide screening, targeting induced local lesions in genomes
(TILLING) could effectively induce mutation in cuticle-related
QTLs and genes, and represents a promising non-transgenic
method for improving cuticle-associated traits in crop species.
For instance, a drought-insensitive rice mutant (ditl1) harboring
a mutation in the LOC_Os05g48260 gene, a putative rice
ortholog of WSD1, was selected by drought stress screening in
the rice TILLING population (Choi et al., 2022).

As summarized in Table 1, genetic engineering of cuticle
genes was widely employed for improving crop tolerance to
drought, salinity and extreme temperature stress. For instance,
overexpression of groundnut wax biosynthesis gene AhKCS1 led
to enhanced leaf epicuticular wax accumulation and increased
drought tolerance in transgenic groundnut plants (Lokesh
et al., 2019). Overexpression of wheat transcription factor gene
TaSHN1 and tomato SlSHN1 resulted in the enhanced wax
coverage and increased drought resistance in transgenic wheat
and tomato plants, respectively (Al-Abdallat et al., 2014; Bi
et al., 2018). In addition, ectopic expression of cuticle genes
identified from model and crop plants was conducted to
improve crop stress tolerance. For instance, ectopic expression
of Arabidopsis AtMYB96 and AtWSD1 in Camelina plants could
potentiate plant drought tolerance (Lee et al., 2014; Abdullah
et al., 2021). Similarly, ectopic expression of wheat cuticle
gene TaCER1-1A in rice plants could promote rice wax alkane
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FIGURE 1

Strategies and targets in harnessing cuticle biosynthesis for crop resilience to drought, salinity, temperature, and ultraviolet (UV) stress.
Cuticle-related genetic variations could be either identified from natural populations or artificially induced, which would facilitate crop breeding
for cuticle-associated traits through genomic breeding. In addition, crop plants with improved resilience to drought, salinity, temperature, and
UV stress could be generated by targeted mutagenesis, genetic engineering, and genome editing of cuticle biosynthesis genes. These crop
plants with smart cuticles would display improved performance in yield and resilience under drought, salinity, temperature, and UV stress.

biosynthesis and enhance rice leaf tolerance to desiccation
stress (Li et al., 2019). For the biosafety of transgenic crops,
many marker-free transgenic approaches have been established.
Cao et al. (2020) reported the development of marker-free
and transgene insertion site-defined (MFTID) transgenic wheat
lines with improved grain storability and fatty acid content
through suppressing lipoxygenase (LOX) gene expression in
wheat grains, which provides a new avenue for the genetic
engineering of cuticle genes in crop species.

Through using sequence-specific nucleases (SSNs), plant
genome editing (GE) could introduce precise DNA mutations
such as insertion, deletion and base substitution into target
genome regions (Manghwar et al., 2019; Gao, 2021). As the
most recently developed GE technique, CRISPR (clustered
regularly interspaced short palindromic repeats)-Cas9 (CRISPR
associated nuclease 9) system relies on the programmable
guide RNA (gRNA) to guide the Cas9 nuclease to the
DNA targets, where DNA double-strand breaks (DSBs) are
generated and precise GE is achieved via endogenous DNA
repair pathways (Manghwar et al., 2019; Gao, 2021). CRISPR-
Cas9 system has been successfully applied in generating
genome-edited crop plants with altered cuticle traits. For
instance, precise editing of the OsPYL9 gene, one of the ABA
receptor genes in rice, by CRISPR-Cas9 system resulted in
the overaccumulation of cuticular wax and enhanced drought
tolerance in genome-edited rice plants (Usman et al., 2020).

Similarly, multiplex knockout of transcription factor gene
MYB186 and its paralogs MYB138 and MYB38 in hybrid
poplar by CRISPR-Cas9 system with a single gRNA led to
a glabrous phenotype accompanied with the absence of wax
triterpenes in trichomeless leaves (Bewg et al., 2022). These
studies paved a new path for generating genome-edited crop
plants with improved cuticle traits and enhanced stress tolerance
in future research.

Concluding remarks and
perspectives

In this review, we highlighted recent advances in cuticle
biosynthesis and its roles in plant adaptation to drought, salinity,
extreme temperatures, and UV radiation stress, and discussed
the current strategies and future directions in harnessing cuticle
biosynthesis for crop improvement. As shown in Figure 1,
cuticle-related genetic diversity could be either identified
from natural populations or artificially induced, which would
facilitate crop breeding for cuticle-associated traits through
breeding approaches MAS and MABC. In addition, crop plants
with improved cuticle-related traits and stress tolerance could
be generated by non-transgenic TILLING, genetic engineering
and genome editing of cuticle biosynthesis genes. Although
the past decade has seen great progress in the molecular
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biology of plant cuticle biosynthesis, we still have a long way
to go toward fully understanding the mechanism of cuticle
biosynthesis in plant adaptation to drought, salinity, extreme
temperatures, and UV radiation stress, as well as its application
in crop improvement. For instance, most of our knowledge
about plant cuticle biosynthesis comes from the study of
model plants Arabidopsis, mechanisms of cuticle biosynthesis
in important crops remain to be explored. Furthermore, the
expression of some cuticle biosynthesis genes could be induced
by environmental stress, but the underlying mechanisms of
cuticle biosynthesis responding to environmental stress remains
to be disclosed. Moreover, cuticle generally shields plant tissues
from environmental stress, but the exact roles and mechanisms
of cuticle structure and components in plant adaptation to
specific environmental stress are poorly understood. In addition,
overexpression of cuticle biosynthesis gene usually enhances
crop stress resilience with a yield penalty due to the altered
metabolic flux allocation, breeding crop variety with a ‘smart
cuticle’ that confer crop plants improved stress tolerance at a
low cost of energy and metabolic flux might be essential to
balancing crop yield and resilience. With the advance in the
knowledge of plant cuticle biosynthesis in plant adaptation to
drought, salinity, extreme temperatures and UV radiation stress,
generating this ‘smart cuticle’ with improved structure and
optimized composition would certainly provide new avenues for
crop improvement under adverse environments.
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