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Plants utilize delicate mechanisms to effectively respond to changes in

the availability of nutrients such as iron. The responses to iron status

involve controlling gene expression at multiple levels. The regulation of iron

deficiency response by a network of transcriptional regulators has been

extensively studied and recent research has shed light on post-translational

control of iron homeostasis. Although not as considerably investigated,

an increasing number of studies suggest that histone modification and

DNA methylation play critical roles during iron deficiency and contribute

to fine-tuning iron homeostasis in plants. This review will focus on the

current understanding of chromatin-based regulation on iron homeostasis

in plants highlighting recent studies in Arabidopsis and rice. Understanding

iron homeostasis in plants is vital, as it is not only relevant to fundamental

biological questions, but also to agriculture, biofortification, and human

health. A comprehensive overview of the effect and mechanism of chromatin-

based regulation in response to iron status will ultimately provide critical

insights in elucidating the complexities of iron homeostasis and contribute

to improving iron nutrition in plants.
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Introduction

Plants evolved complex regulatory mechanisms to cope with changes in the
environment, including nutrient availability (Secco et al., 2017). At the molecular
level, plants respond to nutritional status by modulating gene expression at multiple
levels through a network of transcription factors and via post-translational regulation.
Multiple studies have also revealed that changes in chromatin state by histone
modification or DNA methylation play important roles in nutrient homeostasis in plants
(Secco et al., 2017; Séré and Martin, 2020).

Post-translational modification of histone and DNA methylation lead to
transcriptional regulation by altering chromatin packaging and chemical properties
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of the nucleosome surface, both of which influence association
of DNA-binding transcriptional regulators (Berger, 2007).
Emerging evidence reveals the importance of chromatin
regulation in nutritional homeostasis in plants. For example,
phosphate starvation-induced genes are regulated by the histone
acetyltransferase GCN5 (Wang T. et al., 2019) and histone
deacetylases HDA19 and HDC1 (Chen et al., 2015; Xu et al.,
2020). Histone 3 lysine 4 trimethylation (H3K4me3) was
also shown to regulate gene expression under phosphate
deficiency (Chandrika et al., 2013a,b). In high nitrogen,
increased H3K27me3 deposition, and decreased H3K4me3
and H3K36me3 contribute to the repression of the high
affinity nitrate transporter gene, AtNRT2.1 (Widiez et al.,
2011). H3K27me3 also modulates AtNRT2.1 by limiting its
induction under low nitrogen (Bellegarde et al., 2018). Multiple
genes involved in sulfate uptake and assimilation are direct
targets of histone methylation and acetylation (Huang et al.,
2019). In addition, global changes in DNA methylation were
observed under phosphate starvation (Yong-Villalobos et al.,
2015; Secco et al., 2017), sulfur deficiency (Huang et al.,
2016), and zinc deficiency (Chen et al., 2018). Chromatin
remodeling genes were differentially expressed upon zinc or
iron treatment, implying chromatin-level responses to maintain
mineral homeostasis (Darbani et al., 2015). Although chromatin
remodeling has not been extensively studied in the context of
metal homeostasis, reports increasingly suggest the involvement
of histone modification and DNA methylation in regulating
iron. This minireview will focus on the current knowledge of
chromatin-based regulation of iron homeostasis in plants.

Iron is an essential micronutrient for plant growth and
development. Iron is an indispensable cofactor in vital metabolic
processes, but improperly regulated iron causes cytotoxicity
by facilitating the generation of reactive oxygen species (ROS)
(Halliwell and Gutteridge, 1992). Despite being abundant in
the soil, iron is not readily accessible for plants, as it is
highly insoluble in aerobic conditions at neutral or alkaline
pH (Colombo et al., 2014). Iron’s importance as an essential
micronutrient with low bioavailability and its potential for
toxicity necessitates a tightly regulated system of iron acquisition
and regulation in plants. Understanding iron homeostasis is
important to answer fundamental biological questions, but also
to improve agriculture and human health.

Iron deficiency response and iron
uptake

In response to iron deficiency, plants induce iron uptake
mechanisms that involve reducing or chelating iron (Connorton
et al., 2017; Riaz and Guerinot, 2021). Dicots acquire iron via
a reduction-based process known as Strategy I, which involves
proton efflux to the rhizosphere by proton ATPases such as
AHA2 to solubilize ferric chelates (Santi et al., 2005), coumarin

secretion to facilitate iron mobilization (Clemens and Weber,
2016), reduction of ferric chelates to ferrous iron by FERRIC
REDUCTASE OXIDASE 2 (FRO2) (Robinson et al., 1999),
and ferrous iron import into root epidermal cells by IRON-
REGULATED TRANSPORTER 1 (IRT1) (Eide et al., 1996).
IRT1, FRO2, and AHA2 co-localize in interactomes, which likely
optimize iron uptake (Martín-Barranco et al., 2020). Grasses use
a chelation-based process or Strategy II for iron uptake. When
iron is limited, phytosiderophores, mugineic acid (MA) and its
derivatives, are synthesized (Mori and Nishizawa, 1987; Shojima
et al., 1990) and secreted into the rhizosphere by Transporter of
Mugineic acid family phytosiderophores 1 (TOM1) to chelate
iron (Nozoye et al., 2011). Fe3+-phytosiderophore complexes
are then transported into the root epidermal cells by the Yellow
Stripe (YS) family transporters (Curie et al., 2001). Even though
grasses are considered as Strategy II plants, Strategy I is used
or its components exist in graminaceous plants (Bughio et al.,
2002; Ishimaru et al., 2006; Cheng et al., 2007; Bashir et al., 2011;
Li et al., 2016; Kaur et al., 2019; Wairich et al., 2019; Wang M.
et al., 2019).

Regulation of iron deficiency
response

Responses to iron availability are controlled from
transcriptional to post-translational levels (Vélez-Bermúdez
and Schmidt, 2022). In particular, the complex network of basic
helix-loop-helix (bHLH) family transcription factors involved
in iron deficiency response has been extensively studied (Gao
et al., 2020; Schwarz and Bauer, 2020). In Arabidopsis, FER-
LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION
FACTOR (FIT)/bHLH29 directly regulates IRT1, FRO2, FIT,
and other genes involved in iron uptake under iron deficiency
(Colangelo and Guerinot, 2004; Jakoby et al., 2004; Yuan
et al., 2005). FIT forms heterodimers with subgroup Ib bHLH
transcription factors, bHLH038/39/100/101, to activate FIT-
dependent gene expression (Yuan et al., 2008; Wang et al.,
2013). FIT also interacts with subgroup IVa bHLHs, triggering
the degradation of FIT via the 26S proteasome pathway
(Cui et al., 2018). Alongside FIT, POPEYE (PYE)/bHLH47
is another major transcriptional regulator of iron deficiency
response in Arabidopsis (Long et al., 2010). PYE is expressed
under iron deficiency and negatively regulates its target
genes, which include those involved in iron translocation,
storage, and assimilation. ILR3/bHLH105 plays a dual role in
iron homeostasis; depending on the heterodimer it forms, ILR3
activates PYE expression (Zhang J. et al., 2015) or represses PYE-
target genes (Tissot et al., 2019). UPSTREAM REGULATOR
OF IRT1 (URI)/bHLH121 directly or indirectly positively
regulates multiple iron homeostasis genes of the bHLH
network (Kim et al., 2019; Gao et al., 2020; Lei et al., 2020).
URI controls nearly half of iron-regulated genes, including
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both FIT-dependent and independent genes (Kim et al.,
2019; Gao et al., 2020). Although URI expression is not iron-
regulated, phosphorylation of its protein stabilizes it to form
heterodimers with subgroup IVc bHLH transcription factors
and activate subgroup Ib bHLH genes under iron deficiency
(Kim et al., 2019). Upon iron re-supply, phosphorylated URI
is targeted by the E3 ligase BRUTUS (BTS) and subjected
to proteasome-mediated degradation. The IRONMAN/FE-
UPTAKE-INDUCING PEPTIDE (IMA/FEP) peptides also
positively regulate iron deficiency response in Arabidopsis
(Grillet et al., 2018; Hirayama et al., 2018) by sequestering BTS
to prevent degradation of bHLH105/bHLH115 and activate
iron uptake (Li et al., 2021).

Responses to iron deficiency in grasses also utilize
several bHLH transcription factors (Gao and Dubos, 2021).
OsFIT/OsbHLH156 positively regulates Strategy II-related
genes such as those involved in MA biosynthesis and also
regulates OsIRT1, a Strategy I-related gene (Liang et al., 2020;
Wang et al., 2020). OsIRO2 interacts with OsFIT to promote
its nuclear localization and positively regulate iron uptake by
OsIRT1 (Ogo et al., 2006, 2007; Liang et al., 2020; Wang et al.,
2020). OsIRO3/OsbHLH63 represses iron deficiency response
possibly via antagonizing OsIRO2 to avoid iron overload by
limiting iron uptake (Zheng et al., 2010; Gao and Dubos, 2021).

Iron homeostasis and histone
modification

Each nucleosome consists of an octameric complex of
histones subjected to a wide range of post-translational
modifications. These modifications are reversible but are
controlled by many histone modifying enzymes and play
key roles in regulating chromatin structure and transcription
(Bannister and Kouzarides, 2011; Zhang T. et al., 2015). Multiple
iron homeostasis genes in Arabidopsis have been found to be
controlled by histone modifications as discussed in this section.

H3K4me3

H3K4me3, the trimethylation of histone 3 lysine 4,
generally leads to gene activation (Liu et al., 2010; Xiao
et al., 2016). Using a forward genetics screen in Arabidopsis,
Singh et al. (2021) identified a regulator of iron deficiency
response, NON-RESPONSE TO Fe-DEFICIENCY2 (NRF2).
In Arabidopsis, NRF2 is known as EARLY FLOWERING8
(ELF8), which regulates FLOWERING LOCUS C (FLC)
expression via H3K4me3 (He, 2009). NRF2/ELF8 belongs to
the trithorax group (TrxG) methyltransferases that modify
histones to activate genes via relaxing chromatin structure and
serve as antagonistic regulators of polycomb group proteins
(Schuettengruber et al., 2011).

Under iron deficiency, AtNRF2/ELF8 is required for
AtGRF11 expression as it modulates H3K4me3 levels at its
transcription start site (Singh et al., 2021). While AtGRF11
does not directly interact with AtFIT, it acts downstream of
NO to induce AtFIT expression in iron deficient roots (Singh
et al., 2021). In the nrf2 mutant, AtGRF11-regulated iron
uptake was repressed and iron transport and storage genes were
downregulated. The mutant normally induced NO under iron
deficiency, suggesting that the repression of AtGRF11 was solely
responsible for the regulation of iron uptake genes (Singh et al.,
2021).

H3K4me3 also likely regulates the expression of iron storage
genes AtFERRITIN1 (FER1), AtFER3, and AtFER4 in iron
sufficient seedlings (Tissot et al., 2019). At the promoter regions
of these ferritin genes, activation marks such as H3K4me3
and histone 3 lysine 9 acetylation (H3K9ac) were detected
in seedlings grown under iron sufficient conditions, whereas
H3K27me3 was not present based on analysis of publicly
available epigenome profiles (Tissot et al., 2019; Park et al.,
2020).

H3K27me3

The trimethylation of histone 3 lysine 27 (H3K27me3) is
typically associated with gene repression; it spreads along the
chromatin, resulting in compaction and the silencing of targeted
genes (Liu et al., 2010; Xiao et al., 2016). H3K27me3 is catalyzed
by Polycomb Repressive Complex 2 (PRC2) (Margueron
and Reinberg, 2011). CURLY LEAF (CLF) is a predominant
methyltransferase of the core PRC2 complex (Chanvivattana
et al., 2004; Schubert et al., 2006; Zhang et al., 2007). In
Arabidopsis, H3K27me3 was found to modulate the expression
of FIT-dependent genes by directly targeting their loci (Park
et al., 2019). Under iron deficiency, the expression of FIT-
dependent genes, such as AtFIT, AtIRT1, AtFRO2, and AtF6’H1,
was significantly higher in clf than in wild type roots, and their
transcript levels inversely correlated with H3K27me3 deposition
on their loci (Park et al., 2019). However, expression of PYE-
dependent genes was not significantly affected (Park et al., 2019).
Transcriptomic analysis revealed that transcript levels of FIT-
dependent genes were consistently higher in clf even under
iron-sufficient conditions where FIT-dependent gene expression
is extremely low, but the lack of the H3K27me3 mark in
iron sufficient clf mutants was not sufficient to fully induce
FIT-dependent genes when upstream iron-deficiency signals
were not present. In iron-deficient conditions, the residual
H3K27me3 on FIT-dependent genes may be attenuating the
induction of iron acquisition genes to limit their maximum
induction to prevent plants from iron-induced cytotoxicity.

H3K27me3 was also implicated to play a role in iron
translocation from roots to shoots in Arabidopsis (Park et al.,
2020). Iron-deficient clf mutants accumulated less iron in the
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roots than the shoots, but clf seedlings still had higher levels
of iron compared to wild type. This phenotype and the higher
expression of iron acquisition genes in clf roots (Park et al.,
2019) suggest that clf mutants may still be acquiring more iron
without retention in the roots due to greater translocation (Park
et al., 2020). Indeed, the expression of AtYSL1, which encodes an
iron-NA transporter involved in supplying iron to sink tissues
(Waters et al., 2006), was significantly increased in clf compared
to wild type and AtYSL1 was verified to be a direct target of
H3K27me3 (Park et al., 2020). AtIMA1 was also revealed to
be a direct target of H3K27me3, but under iron deficiency,
H3K27me3 appears to play a limited role in regulating AtIMA1
expression (Park et al., 2020).

H4R3sme2

Shk1 binding protein 1 (SKB1) catalyzes the symmetric
dimethylation of histone4 arginine3 (H4R3sme2) and regulates
diverse biological processes including response to salt stress
(Niu et al., 2007; Pei et al., 2007; Wang et al., 2007; Schmitz
et al., 2008; Zhang et al., 2011). SKB1-mediated H4R3sme2
also affects iron homeostasis by negatively modulating the
expression of Ib subgroup bHLH genes that encode FIT-
interacting partners, such as AtbHLH38/39/100/101, in response
to iron (Fan et al., 2014). While AtSKB1 expression is not
regulated by iron, the level of SKB1 association and H4R3sme2
deposition on the Ib subgroup bHLH loci positively correlated
with the iron status of plants. As a result, transcript levels
of the Ib subgroup AtbHLH genes and its downstream genes
including AtFRO2 and AtIRT1 that are not direct targets of
SKB1 were higher in skb1 mutants than in wild type roots.
Although SKB1 did not affect AtFIT expression, transcript levels
of AtFRO2 and AtIRT1 were not significantly increased in the
skb1 fit1 double mutant, indicating that the negative regulation
of iron acquisition genes by SKB1 was dependent on FIT
(Fan et al., 2014). The mechanism by which SKB1 perceives
iron levels and other environmental signals to determine
the degree of H4R3sme2 in specific genes remains to be
understood.

Histone acetylation

Histone acetylation is generally associated with
transcriptional activation, in contrast to the more complex
effects of histone methylation on gene expression (Berger, 2007).
The combined action of histone acetylation and deacetylation
is crucial for regulating gene expression (Grunstein, 1997).
GENERAL CONTROL NON-REPRESSED PROTEIN5
(GCN5) is responsible for the acetylation of H3K14 and
facilitates the acetylation of H3K9 and H3K27, which are
required for the expression of a large number of genes

(Vlachonasios et al., 2003; Earley et al., 2007; Benhamed et al.,
2008).

Xing et al. (2015) reported that AtGCN5 contributes to
iron homeostasis by modulating the expression of Arabidopsis
FERRIC REDUCTASE DETECTIVE3 (AtFRD3), which encodes
a transporter that loads citrate into the xylem to aid
translocation of iron-citrate complexes to the shoots (Durrett
et al., 2007). AtGCN5 directly binds to the promoters of
AtFRD3 and other iron responsive genes to control H3K9ac
and/or H3K14ac levels. In the gcn5 mutant, iron-related
phenotypes similar to those of frd3 were observed due to
significantly decreased H3K9ac and/or H3K14ac deposition at
the AtFRD3 locus and reduced expression of AtFRD3 (Xing
et al., 2015). In the mutants of two histone deacetylases,
hda7 and hda14, AtFRD3 transcript level was increased,
providing an example of the coordination between histone
acetylation and deacetylation to precisely regulate gene
expression (Xing et al., 2015).

Iron homeostasis and DNA
methylation

DNA methylation controls gene expression and contributes
to silencing of transposons to maintain genome stability (Law
and Jacobsen, 2010; Zhang et al., 2018). In plants, methylation
of cytosine occurs in symmetric methylation at CG and CHG,
where H represents A, T, or C, and asymmetric methylation
at CHH (Matzke and Mosher, 2014; Matzke et al., 2015).
While CG and CHG methylations are maintained during DNA
replication, CHH methylations are established de novo after
DNA replication via RNA-dependent mechanisms and are
frequently found between condensed and relaxed chromatin
near highly expressed genes (Gent et al., 2013; Martin et al.,
2021).

A recent report suggested that CHH DNA methylation
modulates iron deficiency response in rice via changing
methylation status of genes encoding two major positive
regulators of iron deficiency response, OsIRO2 and OsbHLH156
(Sun et al., 2021). In this study, widespread hypermethylation,
mainly CHH methylation, was detected in rice roots and
shoots grown in iron deficient conditions by mapping
the DNA methylome at a single-base resolution. Although
little correlation was found between CHH hypermethylation
and expression of iron deficiency response genes, OsIRO2
and OsbHLH156 exhibited CHH hypermethylation and their
expression increased under iron deficiency. Furthermore,
treatment of 5-aza-2-deoxycytidine (Aza), a DNA methylation
inhibitor, and the loss of OsDRM2, a key methyltransferase
responsible for CHH methylation, resulted in lower expression
of OsIRO2 and OsbHLH156, accumulation of less iron, and
growth retardment under iron deficiency (Sun et al., 2021).
It was speculated that small RNAs might play a critical role
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FIGURE 1

Schematic overview of histone modifications involved in iron homeostasis in Arabidopsis. Under iron sufficiency, PRC2-mediated H3K27me3
induces chromatin condensation in Arabidopsis, resulting in gene silencing of the target genes such as AtFIT, AtIMA1 and AtYSL1.
AtSKB1-induced H4R3sme2 also suppresses AtbHLH1b transcripts when iron is sufficient. Under iron deficiency, AtNRF2/ELF8 catalyzes the
trimethylation of H3K4 generating H3K4me3, and AtGCN5 acetylates H3K9 producing H3K9ac and facilitates the generation of H3K14ac and
H3K27ac to activate corresponding target genes. The color scheme denotes methylation (red), acetylation (light green), histone (light blue). This
figure was created with BioRender.com.

FIGURE 2

Schematic summary of DNA hypermethylation and iron deficiency response in rice. Under iron sufficient conditions, the CHH sequences of
OsIRO2 and OsbHLH159 promoters remain unmethylated and basal levels of OsIRO2 and OsbHLH159 are expressed. Upon iron deficiency,
hypermethylation of CHH nucleotides on the promoters of OsIRO2 and OsbHLH159 by DRM2 leads to activation of the expression of the
corresponding downstream genes in response to iron deficiency. This figure was created with BioRender.com.

as rice acclimates to iron deficiency, as the levels of 24-
nt siRNAs increased, whereas transcript levels of canonical
RNA-dependent DNA methyltransferases involved in CHH
methylation did not change under iron deficient conditions (Sun
et al., 2021).

In barley, iron deficiency led to a general reduction of CG
methylation, but the overall methylation and demethylation
status was not recovered after iron resupply (Bocchini et al.,
2015). Further studies are necessary to understand the extent to
which DNA methylation or demethylation is maintained upon
changes in iron conditions and mechanisms therein.

DNA methylation status was also proposed to be involved
in feedback mechanisms between iron status and tolerance
to cadmium stress (Fan et al., 2020). Arabidopsis plants
exposed to cadmium stress expressed lower levels of the three
DNA demethylase genes AtROS1/DML2/DML3 (RDD) and
exhibited increased global DNA methylation that resembled the
methylation profile of rdd triple mutants (Fan et al., 2020).
The rdd mutants were more tolerant against cadmium stress

and accumulated more iron in the shoots by expressing higher
levels of iron deficiency response genes than wild type. However,
inadequate iron supply abolished cadmium tolerance in rdd
mutants (Fan et al., 2020).

Conclusion and perspectives

Increasing evidence has shown that iron homeostasis gene
expression is affected by histone modification (Figure 1)
and DNA methylation (Figure 2). Such chromatin-based
regulation is critical during iron deficiency and allows to
fine-tune iron homeostasis in plants. Given that chromatin-
based regulation is a dynamic process, it will be important
to understand the mechanistic details regarding changes in
histone modification or DNA methylation in response to
changes in iron status. Research to date has mainly focused
on iron deficiency and little is known about the effect of iron
overload on chromatin remodeling via histone modification or
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DNA methylation. Global changes in H3K9me2 and H3K4me3
levels under high iron stress conditions were detected in
the proximal root meristem in rice (Polosoro et al., 2019),
but further studies are needed to understand the underlying
mechanisms and the biological implications. Furthermore, it
will be necessary to integrate large scale datasets of various
histone modifications, DNA methylation, and the combinatorial
effect of different modifications, as well as comparative analyses
of transcriptomics and epigenetics of specific cell-types or at
a single cell level. Although chromatin-based regulation is an
integral part of epigenetics, some chromatin modifications are
not heritable or considered epigenetic (Eichten et al., 2014).
Thus, transgenerational studies to determine the heritability
of chromatin modifications in response to iron will lead to
insightful information. Considering the growing evidence that
reveal the significance of dynamic adjustment in chromatin
structure and subsequent transcriptional changes in response
to nutritional status, a clear understanding of chromatin-
based iron homeostasis is necessary for a comprehensive
understanding of iron homeostasis. Such efforts will contribute
insights toward developing crops with improved nutritional
profiles and enhanced tolerance to undesirable conditions in the
long run.
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