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Full-length transcriptome
sequencing analysis and
characterization, development
and validation of microsatellite
markers in Kengyilia melanthera
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Wei Liu1, Lina Sha1, Jiqiong Zhou1, Minghong You2, Daxu Li2,
Xiong Lei2, Shiqie Bai2* and Xiao Ma1*
1College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China,
2Sichuan Academy of Grassland Science, Chengdu, China

As a typical psammophyte of the Triticeae, Kengyilia melanthera possesses

high feeding potential and great utilization values in desertification control in

the Qinghai-Tibet Plateau. However, few gene function and genetic studies

have been performed in K. melanthera. In this study, single-molecule real-

time sequencing technology was used to obtain the full-length transcriptome

sequence of K. melanthera, following the functional annotation of transcripts

and prediction of coding sequences (CDSs), transcription factors (TFs), and

long noncoding RNA (lncRNA) sequences. Meanwhile, a total of 42,433 SSR

loci were detected, with 5′-UTRs having the most SSR loci and trinucleotide

being the most abundant type. In total, 108,399 SSR markers were designed,

and 300 SSR markers were randomly selected for diversity verification of

K. melanthera. A total of 49 polymorphic SSR markers were used to construct

the genetic relationships of 56 K. melanthera accessions, among which 21 SSR

markers showed good cross-species transferability among the related species.

In conclusion, the full-length transcriptome sequence of the K. melanthera

will assist gene prediction and promote molecular biology and genomics

research, and the polymorphic SSR markers will promote molecular-assisted

breeding and related research of K. melanthera and its relatives.

KEYWORDS

Kengyilia melanthera, full-length transcriptome, SMRT sequencing, SSRs
development, transferability

Background

The Kengyilia is a perennial genus in the tribe Triticeae of Poaceae with the genome
constitution of StStYYPP (2n = 6 × = 42; Yen and Yang, 2020). It is only distributed
in the temperate zone of the northern hemisphere with the distribution range roughly
between 29◦ to 48◦ N and 57◦ to 104◦ E (Bing, 2001). The genus Kengyilia can provide
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important genetic resources for forage breeding and cereal
improvement owing to its high feeding values and excellent
resistance to biotic and abiotic stresses (Yen and Yang,
2020). As a typical psammophyte species of Kengyilia genus,
Kengyilia melanthera mainly distributed in the Qinghai-
Tibet Plateau (QTP) areas at an altitude of 3,300–4,750 m
and possessed great utilization potential in desertification
control and ecological restoration (Yen and Yang, 2020).
Furthermore, the strong drought resistance and high
carbohydrate content of K. melanthera make it suitable for
artificial grassland building in QTP areas to cope with the
seasonal shortage of forage.

Kengyilia is a new genus established in 1990 (Yen and
Yang, 1990). Therefore, more attention has been paid to the
genetic diversity and taxonomy of Kengyilia species in previous
studies. The application of gene sequences in genetic diversity
detection of Kengyilia including nuclear genes, namely, Pgk1
(Fan et al., 2012) and DMC1 (Gao et al., 2016), and chloroplast
genes, namely, trnL-F (Zhang et al., 2009), trnT-trnL (Gao
et al., 2014), and matK (Luo et al., 2012), was reported.
Considering the simplicity, polymorphism, and stability, some
molecular markers (Zhou et al., 2000; Zhang et al., 2005,
2008) have been applied to the phylogenetic relationship
analysis of Kengyilia. Compared to those markers, SSR markers
have greater advantages including their easy development,
codominance, and high polymorphism (Wu et al., 2020).

Compared to G-SSR (genomic SSR), EST-SSR (expressed
sequence tag SSR) possesses higher cross-species transferability
and the ability to mark functional genes (Karcι et al.,
2020). Recently, the increasing utilization of transcriptome
sequencing makes it an efficient and cost-effective tool for
EST-SSR marker development. Although there have been
many reports about SSR identification and development via
second-generation transcriptomic sequencing, little research
is concerned with the SSR development using full-length
transcriptome sequencing technology (Ge et al., 2019; Wu
et al., 2020). Compared to the second-generation transcriptome
sequencing, the SMRT sequencing technology hold more
advantages including longer read length, less sequencing, and
assembly error, which is more beneficial for the study of plants
without a reference genome (Thomas et al., 2014; Gordon et al.,
2015). The acquisition of full-length transcripts contributed
to the gene annotation and identification of isoforms,
fusion transcripts, and long noncoding RNA (lncRNA) (Zhao
et al., 2019). Therefore, more SSRs can be discovered,
and complete functional genes can be explored in this
case.

In this study, first, the full-length transcriptome of the
K. melanthera was obtained, and the functional annotation
was performed to better understand its functional classification.
Second, we characterized the SSRs of the K. melanthera by
analyzing the frequency, distribution, and function of SSRs in
the transcriptome. Finally, newly developed EST-SSR markers

were used for genetic diversity and structure study in 56
K. melanthera accessions and other Kengyilia populations.

Materials and methods

Plant material collection and DNA and
RNA extraction

The K. melanthera was collected from the nursery base
of Sichuan Academy of Grassland Sciences (Chengdu, China)
in Qiongxi Town, Hongyuan County (32◦48′N, 102◦33′E)
(Supplementary Figure 1). To obtain as many transcripts
as possible, the roots, stems, leaves, and inflorescences of
a single plant were collected and stored in liquid nitrogen
rapidly. A total of mixed 2 g sample containing the equal
amounts of each tissue was used for RNA extraction and
full-length transcription sequencing. The wild germplasms
used to identify the polymorphism of the developed SSRs
were collected from the nursery base of Sichuan Academy
of Grassland Sciences in Hongyuan County, the sandy land
in Waqie town (33◦10′N, 102◦37′E) and the sandy land in
Dazhasi town (33◦40′N, 102◦56′E). The young leaves were
stored in silica gel (Supplementary Table 1). The seeds of
a further four related species, Kengyilia alatavica, Kengyilia
batalinii, Kengyilia mutica, and Kengyilia rigidula, all came
from the U.S. National Plant Germplasm System and were
planted in the greenhouse of Sichuan Agricultural University
(Supplementary Table 2). Total DNA and RNA were extracted
by DNA extraction kit and RNA extraction kit (Tiangen Biotech,
Beijing, China), respectively. Their concentration and quality
were checked using NanoDrop1 ND-1000 Spectrophotometer
(NanoDrop Technologies, United States) and agarose gel
electrophoresis, respectively.

PacBio library construction and
sequencing

The qualified mixed RNA samples of roots, stems,
leaves, and inflorescences were used to construct cDNA
library. SMARTer PCR cDNA Synthesis Kit (Clontech,
Mountain View, CA, United States) was used to synthesize
cDNA, and then PCR amplification, quality control, and
purification were performed. The 1–6 kb cDNA fragments
were generated using BluePippin Size Selection System (Sage
Science, United States). The SMRT sequencing libraries was
constructed using the Pacific Biosciences DNA Template
Prep Kit 2.0. Qubit 2.0 and Agilent 2100 were used to
detect the concentration and quality of cDNA libraries,
respectively. Finally, SMRT sequencing was performed on
the PacBio RS II platform (Pacific Biosciences, Menlo Park,
CA, United States).
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FIGURE 1

Length distribution of 204,028 consensus isoforms in K. melanthera (A) and homologous species distribution of K. melanthera based on the
NCBI non-redundant protein sequences (NR) database (B).

FIGURE 2

Functional classification of transcripts based on the GO (A) and KEGG (B) in K. melanthera.

Quality filtering and error correction of
PacBio long reads

Raw reads were processed into circular consensus sequences
(CCSs) according to the adaptor, with full pass ≥3 and
sequence accuracy >0.9. Next, full-length, non-chimeric
transcripts were detected by searching the polyA tail signal
and the 5′ and 3′ cDNA primer sequences in CCSs.
The IsoSeq module in SMRT Link version 5.0.1 software
(Pacific Biosciences of California, Inc., Menlo Park, CA,
United States) was used to group the full-length sequences
of the same transcript, and the similar full-length sequences
were grouped into a cluster. Each cluster contained a

consistent sequence, and the corrected consistent sequences
were used to obtain high-quality sequences (accuracy >99%) for
subsequent analysis. After removing the low-quality and high-
quality redundant sequences (identity >0.99) using CD-HIT
software (Li and Godzik, 2006), non-redundant high-quality
transcripts were obtained.

Functional annotation

The obtained transcript sequences were aligned to the
NCBI non-redundant protein sequences (NR) (Deng et al.,
2006), Protein family (Pfam) (Finn et al., 2014), Clusters of
Orthologous Groups of proteins (COG) (Tatusov et al., 2000),
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euKaryotic Ortholog Groups (KOG) (Koonin et al., 2004),
Evolutionary Genealogy of Genes: Non-supervised Orthologous
Groups (eggNOG), Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Minoru et al., 2004), Gene Ontology (GO) (Ashburner
et al., 2000) using BLAST v2.2.26 (Altschul et al., 1997) (E-
value < 10-5).

Predictions of coding sequences,
transcription factors, and long
noncoding RNA

TransDecoder v3.0.01 was used to identify coding sequences
(CDSs) based on Pfam database. ITAK v1.2 (Yi et al., 2016)
was used to identify transcription factors (TFs), transcription
regulators (TRs), and protein kinases (PKs).

Coding Potential Calculator (CPC) (Kong et al., 2007),
Coding-Non-Coding Index (CNCI), Coding Potential
Assessment Tool (CPAT) (Wang et al., 2013), and Pfam database
were used to screen nonprotein-coding RNA candidates. The
lncRNA candidates were predicted with the following criterion:
the transcripts longer than 200 nt and possessing more than two
exons. The predicted lncRNA candidates were further screened
in CPC/CNCI/CPAT/Pfam.

SSRs identification and primer design

Transcripts with the length more than 500 bp were used
to identify SSRs based on MISA (Beier et al., 2017) software.
The SSR loci were identified with the following criteria: repeat
numbers of mono-, di-, tri-, tetra-, penta-, and hexa-nucleotide
motifs greater than or equal to 10, 6, 5, 5, 5, and 5, respectively.
Finally, Primer3.0 (Untergasser et al., 2012) was used to design
primers with the primer size of 18–25 bp, annealing temperature
of 55–65◦C, GC content of 30–70%, and product length of 100–
300 bp.

Validation and evaluation of SSR
markers

A total of 300 SSR primer pairs were randomly selected
for synthesis and further validation. The PCR system included
10 µl of 2× Taq Master Mix (Tiangen Biotech, Beijing, China),
1 µl of forward/reverse primer (20 ng/µl), 2 µl of genomic
DNA (20 ng/µl), and 6 µl of ddH2O. PCR was performed
on Biometra Tadvanced under the following process: 94◦C for
5 min, followed by 35 cycles including 30 s at 94◦C, 30 s at 56 or
58◦C, and 30 s at 72◦C, and then extension at 72◦C for 5 min.

1 https://transdecoder.github.io/

Given that the heterohexaploid feature of K. melanthera,
it is difficult to record the allelic variation. Therefore, the
amplified bands were recorded as the 0/1 (presence/absence
of bands) binary matrix. GenAlEx 6.503 (Peakall and Smouse,
2010) was used to calculate the number of alleles (Na),
number of effective alleles (Ne), and Shannon’s information
index (I). The polymorphic information (PIC) and expected
heterozygosity (He) were calculated based on the formula of
PIC = 1− p2

− q2, where p and q are frequency of present/absent
band; He = 1 − 6pi2, where pi is frequency of the i-th allele
(Zhang et al., 2019; Zheng et al., 2020). The Nei genetic distance
(GD) matrix was obtained by Freetree (Hampl et al., 2001),
the UPGMA (unweighted pair-group method with arithmetic
means) dendrogram was constructed, and the visualization was
performed on Figtree (Hampl et al., 2001). Population structure
was speculated using STRUCTURE v2.3.4 (Falush et al., 2007)
with 50,000 burn-in and 100,000 Monte Carlo Markov chain
(MCMC). Then the optimal K value was determined using
STRUCTURE HARVESTER (Earl and Vonholdt, 2012). The
principal coordinate analysis (PCoA) was carried out by NTSYS
v2.2 (Rohlf, 1987).

Results

General properties and functional
annotations of full-length
transcriptome

A total of 96.1 GB raw data was obtained (GenBank database
accession number: PRJNA735213). There were 542,441 CCSs
(read bases of 1,399,665,069) with an average length of 2,397 bp
and mean number of passes of 35. We obtained 491,001 full-
length non-chimeric (FLNC) reads, and the percentage of FLNC
is 90.52%. After clustering the FLNC sequences, we obtained
4,580 polished low-quality isoforms and 199,134 (97.60%)
polished high-quality isoforms. Finally, 204,028 consensus
isoforms were obtained, with the average length of 2,399 bp
(Figure 1A). After removing the low-quality and redundant
high-quality transcripts, 126,410 transcripts were obtained. In
order to access the completeness and accuracy of transcripts
obtained in this study, we also aligned the transcripts to
OrthoBD database. The results showed that 82.57% (1,189 of
1,440) of transcripts were completed with only 4.52 and 12.91%
being fragmented and missing.

A total of 118,341 transcripts of K. melanthera were
perfectly matched with the COG, GO, KEGG, KOG, Pfam
Annotation, Swissprot Annotation, eggNOG, and Nr databases
(Supplementary Table 3). Sequence alignment based on NR
database showed that three species with the highest homology
with K. melanthera all belonged to the Triticeae (Figure 1B),
among which Aegilops tauschii (50.77% of transcripts) had the
highest homology with K. melanthera, followed by Hordeum
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FIGURE 3

The length distribution of 79,159 CDS-encoded protein sequences.

vulgare (12.08% of transcripts) and Triticum urartu (9.87%
of transcripts). A total of 91,155 and 44,928 transcripts
were assigned into 51 subcategories of three major GO
functional categories and 130 KEGG pathways (Figures 2A,B),
respectively. The pathways involving the largest number of
transcripts were starch and sucrose metabolism (1,528), carbon
metabolism (1,518), and biosynthesis of amino acids (1,467).

FIGURE 4

The number of long noncoding RNA transcripts predicted
according to the CPC, CNCI, CPAT, and Pfam databases.

In this study, a total of 48,095, 110,413, and 69,144
transcripts were assigned to 25 COG categories, 23
eggNOG categories, and 25 KOG categories. The largest
number of transcripts were annotated in the signal
transduction mechanism category (5,893) in COG categories
(Supplementary Figure 2a). Among the 23 eggNOG
categories, in addition to function unknown, most of
the transcripts (8,403) were annotated with the signal
transduction mechanism category (Supplementary Figure 2b).
In KOG categories, most transcripts were assigned to
the general function prediction only category (12,904),
followed by the signal transduction mechanism (10,135)
(Supplementary Figure 2c).

Analysis of coding sequences,
transcription factors, and long
noncoding RNAs

A total of 79,159 CDSs (Figure 3) and 12,355 TFs
belonging to 222 families were identified (Supplementary
Table 4). The most abundant TF family was RLK-Pelle_DLSV
(1,122), followed by C2H2 (412) and RLK-Pelle_LRR-XII-1
(282). Four databases CNCI, CPC, Pfam, and CPAT were
used to predict the lncRNAs. The results showed that there
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TABLE 1 General information for the SSR analysis.

Items Number

SSR number detected 42,433

Number of sequences containing SSR 31,862

Number of sequences containing ≥1 SSR 7,535

Number of compound SSRs 3,083

Frequency of SSRs loci (%) 35.87

Distribution density of SSRs loci (kb) 7.19

were 2,484, 21,601, 2,165, and 15,637 lncRNA candidates with
length ≥200 bp and exon ≥2. Finally, 2,165 transcripts shared
in four databases were considered as the potential lncRNA
(Figure 4).

Characterization of SSRs in
transcriptome

A total of 42,433 SSRs (Table 1) were identified from
31,862 transcripts in the K. melanthera transcriptome. The
frequency of SSRs was 35.87%, and an average of one SSRs
loci was found every 7.19 kb. The most abundant repeat motif
type was trinucleotide (45.1%), followed by mononucleotide
(30.1%) and dinucleotide (21.0%) (Supplementary Figure 3),
while pentanucleotide and hexanucleotide accounted only for
0.6 and 0.5%. A/T (83.74%), AG/CT (54.75%), CCG/CGG
(31.09%), ACAT/ATGT (11.28%), AGAGG/CCTCT (12.41%),
and ACCGCC/CGGTGG (5.56%) were the most abundant
motifs in mono- to hexanucleotide repeats, respectively
(Supplementary Figure 3).

We also explored the position distribution feature of
SSRs in K. melanthera transcriptome (Figure 5). A total of
25,944 SSRs were identified in the CDS and untranslated
regions (UTRs), of which the 5′-UTR region had the
most SSRs (13,234), followed by the 3′-UTR (8,270) and
the CDS region (4,440). Totally, trinucleotide (85.4%),
mononucleotide (53.3%), and dinucleotide SSRs (42.3%) were
the most repeat types in the CDS, 3′-UTRs and 5′-UTRs
regions.

In total, 8,458 transcripts holding SSRs were categorized
into three functional categories (Supplementary Figure 4a).
Metabolic process (5,227) and cellular process (4,285) were
the two subcategories with the most transcripts in the
“biological process category.” In the “cellular component,”
cell (2,319) and cell part (2,322) are the two subcategories
that involved the greatest number of transcripts. The two
subcategories of catalytic activity (4,541) and binding (4,938)
involved the most transcripts in the “molecular function
category.” In addition, based on KEGG pathway analysis, 8,833
transcripts were assigned to 124 pathways. The three most
abundant transcript pathways are Carbohydrate metabolism

(316), Starch and sucrose metabolism (294), and Spliceosome
(262) (Supplementary Figure 4b).

Development and polymorphism
identification of SSR markers

A total of 108,399 primer pairs were designed in 36,133 SSR
loci (Supplementary Table 5), among which 300 SSR primer
pairs from different SSR loci were selected to amplify eight
selected DNA samples. A total of 208 primers pairs (69.3%)
successfully produced an amplicon of the expected size and 49
primer pairs (16.3%) showing good polymorphism were used
to amplify the 56 K. melanthera accessions (Supplementary
Table 6). The gel figure of Km-eSSR231 was presented in
Supplementary Figure 5. A total of 358 alleles (Na) and 285.68
effective alleles (Ne) were produced, with the average values
of 7.31 and 5.83, respectively (Supplementary Table 7). The
average values of I and He were 0.365 and 0.464, respectively.
The PIC values ranged from 0.025 to 0.431 (marker Km-
eSSR42).

The gene family annotations of the transcripts where
the newly developed polymorphic SSR resides were listed in
Supplementary Table 6. It is noteworthy that many SSRs
were annotated to genes with the important functions in
plant metabolism, growth and development, and resistance to
adverse growth environments. For example, seven transcripts
are annotated as PK genes, five as ABC transporter genes, and
some as POT gene, Spt20 gene, Hsp70 gene, F-box gene, and
cytochrome P450 gene.

Population structure analysis using
newly developed SSR markers

Unweighted pair-group method with arithmetic means
cluster analysis was used to construct the phylogenetic tree
using 49 pairs of SSR primer developed in this study. The
results showed that 56 wild K. melanthera germplasms could
be grouped into three clusters basically corresponding to their
geo-locations (Figure 6). The Cluster I included 28 germplasms
collected from Waqie town (WQ) and one from Dazhasi town
(DZS). The Cluster II included 22 germplasms from Dazhasi
town. The Cluster III included five germplasms collected from
Sichuan Academy of Grassland Sciences (SAGS) and one from
Dazhasi town. STRUCTURE analysis showed that the optimal
K value was 3 (Supplementary Figure 6), which indicated
that the tested germplasms possessed three potential genetic
memberships. It is interesting to note that the germplasms in
each cluster had the same main genetic background based on the
STRUCTURE results. The results of PCoA analysis were similar
with the UPGMA (Figure 7).
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FIGURE 5

Distribution of six SSR repeat types in different genic regions.

Verification of cross-species
transferability

In this study, 22 newly developed SSR markers with high
polymorphisms within K. melanthera were examined for cross-
species transfer. Except for Km-eSSR193, 21 markers were
successfully amplified in all four species (K. batalinii, K. mutica,
K. rigidula, and K. alatavica) (Supplementary Table 8). The
cluster analysis of five Kengyilia species was carried out based
on the amplified data, and the results demonstrated that
K. alatavica had closer genetic relationship with K. batalinii
(Supplementary Figure 7).

Discussion

Transcriptome sequencing can quickly and efficiently
present information with wide coverage and high accuracy,
which has become a good tool for the development of molecular
markers and has been widely utilized in the fields of genetics
and breeding, germplasm resources protection and development
(Wang et al., 2018). Compared to the next-generation
sequencing, full-length transcriptome sequencing can provide
an efficient and convenient way to obtain transcriptome
information of non-model plants without reference genomes
(Wang et al., 2019; Zhao et al., 2019). Here, 96.1 GB of
raw data was obtained, with the average transcripts length
of 2,399 bp. Compared with other gramineous plants, it is
shorter than Saccharum officinarum (3,099 bp) (Piriyapongsa
et al., 2018) and longer than Carex breviculmis (2,302 bp)

(Teng et al., 2019), Cynodon dactylon (2,317 bp) (Zhang et al.,
2018), and Lolium perenne (2,192 bp) (Xie et al., 2020). The
full-length transcriptome obtained in our study could accelerate
further related studies of K. melanthera and its relatives.

K. melanthera possesses excellent resistance to drought
and wind erosion, which makes it an ideal material for
desertification control (Yen and Yang, 2020). However, the
allohexaploid nature makes the genome assembly difficult,
which limits the mining and research of excellent resistance
genes contained in K. melanthera. Benefiting from the long-read
length of third-generation transcriptome sequencing, a total
of 118,341 (93.62%) non-redundant transcripts were annotated
based on the public databases. Those annotated sequences of
K. melanthera will provide a reference for the assembly of short-
read transcriptome sequencing, thus laying a foundation for
the subsequent exploration of drought and barren tolerance
genes of K. melanthera. In addition to functional annotation of
transcripts, CDSs, TFs, and lncRNAs were also predicted, which
could provide the data reference for later related researches.

Distribution of SSRs in transcriptome

SSRs continue to be the marker of choice for surveys of
genetic diversity (Merritt et al., 2015). Compared to G-SSRs,
EST-SSRs were intimately connected to the functional genes and
a lot of EST-SSRs have been developed from the transcriptome
data to perform the genetic diversity analysis. Our results
predicted the abundant SSRs (42,433 SSRs) based on the
transcriptome data of K. melanthera. The SSRs frequency was
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FIGURE 6

The UPGMA dendrogram and genetic structure of 56 K. melanthera individuals based on 49 developed SSR markers. WQ, Waqie town; DZS,
Dazhasi town; SAGS, Sichuan Academy of Grassland Science.

35.87%, which was much higher than that of SSR frequency
obtained from NGS sequencing in related Elymus sibiricus
(8.19%, 1/6.95 kb) (Zhou et al., 2016), Leymus chinensis (4.38%,
1/10.78 kb) (Chen et al., 2013), and Pennisetum purpureum
(10.89%, 1/6.45 kb) (Wang et al., 2017). The A/T and CCG/CGG
rich tendency of mononucleotide and trinucleotide motifs was
also consistent with the eukaryotes (Tóth et al., 2000). The most
abundant dinucleotide repeat motif was AG/CT (54.75%), which
was also the same as that of E. sibiricus (Zhou et al., 2016) and
Lolium multiflorum (Pan et al., 2018).

Microsatellites were found to be non-randomly distributed
in gene regions, including CDS, UTRs, and introns (Li et al.,
2004). The results of this study showed that UTR possessed
a higher number of SSRs compared to CDS regions, which
was also found in other species (Vieira et al., 2016). The
possible reason is that SSRs have a high mutation rate, and
the structure and function of genes will be severely changed

if mutation occurs in CDS regions (Xu et al., 2020). Among
the six repeat types, SSRs located in the CDS region are
dominated by trinucleotide repeat motifs, and their distribution
proportion was much higher than that of UTRs, because
trinucleotide repeat motifs are less likely to cause frameshift
mutations (Metzgar et al., 2000). At the same time, 5′-UTRs
contained more trinucleotide repeat motifs than 3′-UTRs,
because the SSR variations in 5′-UTRs could affect gene
expression (Li et al., 2004).

Development and transferability of
polymorphic SSR markers

At present, only a few RAPD (Fan et al., 2012), RAMP
(Gao et al., 2016), and ISSR (Zhang et al., 2009) markers have
been applied in phylogeny and genetic variation analysis of
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FIGURE 7

The PCoA analysis of 56 K. melanthera individuals based on 49 developed SSR markers.

Kengyilia, and few reports are available on the development of
SSR markers. Through transcriptome sequencing, we were able
to find a large number of SSRs residing on gene sequences.
In this study, 49 SSR markers with good polymorphism were
selected from 300 candidate SSR markers with an average
PIC value of 0.24, which was close to the E. sibiricus (0.25)
(Hampl et al., 2001). Considering the PIC value ranged from
0 to 0.5 for SSR markers, the EST-SSR markers developed in
this study possessed the potential for further genetic study of
K. melanthera and its relatives.

It has been found that mutations in SSR motifs can affect
gene regulation, transcription, and protein function (Kashi
and King, 2006). The transcripts of 49 newly developed SSR
markers are involved in the most important life activities of
plants, such as cell signal transduction, material transport,
response to abiotic stress, multiple biosynthetic pathways, and
biological detoxification pathways. Given that K. melanthera
mainly grows in high-altitude environments with insufficient
water and desertification (Yen and Yang, 2020), the polymorphic
SSRs located in these genes may be the result of adaptive
evolution of K. melanthera to the environment.

Both UPGMA and PCoA analyses divided 56 K. melanthera
accessions into three clusters, which coincided with their

geographical origin, indicating that there was a high degree of
genetic variation among geo-populations of K. melanthera. This
may be due to the geographical isolation and natural selection
in different populations (Kashi and King, 2006). Nevertheless,
the subpopulations of wild accessions collected from Waqie and
Dazhasi town were not distinguished. This is partly attributed to
the high level of gene flow caused by close geographical distance
between the subpopulations.

Of the 22 newly developed markers, 21 were successfully
amplified in the other four Kengyilia species, and the
transferability ratio was as high as 95%, indicating that the
newly developed markers had good transferability. The SSR
markers developed in this study showed a high level of
transferability among the related species. This phenomenon
was also found in many other species, such as E. sibiricus
(Zhang et al., 2019), Agropyron cristatum (Ren et al., 2016),
and E. excelsus (Xiong et al., 2019). In terms of geographical
distribution, K. alatavica and K. Batalinii were all from Central
Asia, while K. Mutica, K. rigidula, and K. melanthera were
mainly distributed in the QTP (Yen and Yang, 2020), which was
consistent with the results of clustering. Therefore, the novel
markers are reliable and have wide application value in other
Kengyilia species.
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Conclusion

Here, full-length transcriptome sequencing was performed
in K. melanthera for the first time, and 126,410 non-redundant
transcripts were annotated in multiple databases. In the absence
of K. melanthera genome-wide information, these full-length
transcriptome data will provide great help for future related
research. We identified 42,433 SSR loci from the transcriptome
and designed 108,399 primer pairs. In addition, the transcripts
containing SSR was associated with some important biological
processes. The 49 SSR markers obtained by screening showed
good polymorphism, and some of the SSR markers had good
transferability, which provided a basis for the genetic research
in K. melanthera and related species.
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