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As one of the four most important woody oil-tree in the world, Camellia 

oleifera has significant economic value. Rapid and accurate acquisition of  

C. oleifera tree-crown information is essential for enhancing the effectiveness 

of C. oleifera tree management and accurately predicting fruit yield. This 

study is the first of its kind to explore training the ResU-Net model with 

UAV (unmanned aerial vehicle) images containing elevation information for 

automatically detecting tree crowns and estimating crown width (CW) and 

crown projection area (CPA) to rapidly extract tree-crown information. A 

Phantom 4 RTK UAV was utilized to acquire high-resolution images of the 

research site. Using UAV imagery, the tree crown was manually delineated. 

ResU-Net model’s training dataset was compiled using six distinct band 

combinations of UAV imagery containing elevation information [RGB (red, 

green, and blue), RGB-CHM (canopy height model), RGB-DSM (digital surface 

model), EXG (excess green index), EXG-CHM, and EXG-DSM]. As a test set, 

images with UAV-based CW and CPA reference values were used to assess 

model performance. With the RGB-CHM combination, ResU-Net achieved 

superior performance. Individual tree-crown detection was remarkably 

accurate (Precision = 88.73%, Recall = 80.43%, and F1score = 84.68%). The 

estimated CW (R2 = 0.9271, RMSE = 0.1282 m, rRMSE = 6.47%) and CPA 

(R2 = 0.9498, RMSE = 0.2675 m2, rRMSE = 9.39%) values were highly correlated 

with the UAV-based reference values. The results demonstrate that the input 

image containing a CHM achieves more accurate crown delineation than an 

image containing a DSM. The accuracy and efficacy of ResU-Net in extracting 

C. oleifera tree-crown information have great potential for application in non-

wood forests precision management.
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Introduction

Camellia oleifera, along with oil palm, coconut, and oil olive, 
is one of the world’s four most important woody oil-tree, and it is 
China’s top woody oil-tree. Camellia oleifera is widely used in 
cosmetics, medicine, tannin production, bio-feed, sterilization, 
and other fields, in addition to its primary use in the production 
of edible camellia oil (Zhang et  al., 2013). However, the 
management of C. oleifera continues to rely excessively on manual 
labor and possesses insufficient scientific and technological 
support. For mastering the growth distribution of C. oleifera, rapid 
yield measurement, and achieving accurate management of 
C. oleifera forests, accurate and efficient acquisition of C. oleifera 
crown information is crucial (Yan et al., 2021; Ji et al., 2022).

In recent years, UAV remote sensing technology with a visible 
digital camera has become one of the most important methods for 
obtaining crop growth data due to its high resolution, real-time, 
and adaptability, allowing for the efficient acquisition of high-
precision tree-crown data (Wang et al., 2004; Dash et al., 2019; 
Pearse et  al., 2020; Shu et  al., 2021). For crown information 
extraction, object-oriented classification (Zhang et al., 2015; Wu 
et al., 2021), watershed (Imangholiloo et al., 2019; Wu et al., 2021), 
local maximum (Lamar et al., 2005), and region-growing method 
(Pouliot and King, 2005; Bunting and Lucas, 2006) are often used. 
These techniques have yielded successful crown detection results 
for pure forests, plantations, or specific tree species and images. 
However, image processing parameter settings are too dependent 
on expert knowledge (Chadwick et al., 2020), making it difficult 
to automatically extract image information (Laurin et al., 2019). 
Therefore, new methods are required to rapidly extract tree-crown 
data to improve tree growth monitoring.

In recent years, image segmentation techniques based on deep 
learning technology that can automate and batch-process data have 
been widely adopted (Li et al., 2016; Kattenborn et al., 2021). Among 
them, the U-Net network based on Fully Convolutional Network 
(FCN) focuses more on segmentation details due to its capability of 
feature stitching and multi-scale fusion, which performs well in 
image segmentation (Ronneberger et  al., 2015). In forestry, the 
U-net model has been applied successfully to tasks such as extracting 
tree canopy information from UAV imagery. Li et  al. (2019) 
extracted the crown of the poplar with an accuracy of 94.1% using 
the U-Net network. However, if the number of U-Net network layers 
is excessive, network degradation will occur, and segmentation 
accuracy will decrease (Yang et  al., 2020). The unique residual 
structure of the residual network can effectively mitigate the network 
degradation problem caused by the deep network structure and 
speed up network convergence (He et al., 2016). ResU-Net, which is 
created by combining Res-Net and U-Net, can include more layers 
and prevent model performance degradation (Ghorbanzadeh et al., 
2021). Tong and Xu (2021) fused ResNet-34 and U-Net 
convolutional neural networks to create the ResNet-UNet (ResU-
Net) stumpage segmentation model, improving accuracy and 
robustness significantly. However, the research mentioned above 
focuses primarily on macrophanerophytes, and there are fewer 

studies on the extraction of C. oleifera crown parameters. In 
addition, when detecting tree crowns, images with only three bands 
(red, green, and blue) are typically used as model input images 
(Neupane et al., 2019; Weinstein et al., 2019). Few studies have used 
multi-band images with elevation data (digital surface and canopy 
height models) as input images to train models for detecting tree-
crown and estimating tree-crown width and projection area.

According to this context, this study is the first to apply ResU-Net 
to C. oleifera tree-crown extraction. UAV imagery with added 
elevation information (DSM and CHM) is used to create ResU-Net 
training datasets. This study investigates the capability of the 
semantic segmentation model ResU-Net to extract C. oleifera crowns 
from multi-band combined images with elevation information 
derived from UAV imagery. This study aims to (1) propose combined 
images with elevation information for a ResU-Net model to detect 
the tree-crown information of C. oleifera and (2) evaluate the models 
trained using various image combinations and select the optimal 
model for practical applications. This study is expected to provide 
more precise data support for the extraction of C. oleifera tree-crown 
information to better monitor and manage non-wood forests.

Materials and methods

Figure  1 illustrates the framework of this study. As input 
images, six distinct band-combined images were created first. The 
input and tree-crown binary images are split and amplified to 
obtain the training data set. The training dataset is utilized for the 
training of the proposed model. Then, six distinct ResU-Net models 
were utilized to estimate the number of plants, crown width, and 
projection areas at the study site. The model’s performance was then 
evaluated, including the precision of individual tree-crown 
detection, crown width, and crown projection area estimation.

Study site

The study site is located in Chenjiafang Town, Xinshao 
County, Shaoyang City, Hu-nan Province, between 111°08′–
111°05′E and 27°15–27°38′N (Figure 2). The region has a humid 
mid-subtropical continental monsoon climate and average annual 
precipitation of 1365.2 mm, making it a typical low-hilly terrain in 
the south. Camellia oleifera was planted in the study area on a total 
area of 59.18 hm2 in 2014.

Data collection and preprocessing

Image acquisition
The UAV imagery was collected using Phantom 4 RTK1 on 

July 4, 2021, in diffuse light weather to avoid the influence the 

1 https://www.dji.com/phan-tom-4-rtk
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tree shadows have on the aerial survey results. The UAV is 
equipped with a 1-inch COMS sensor. The focal length of the 
sensor is 24 mm, the aperture range is f/2.8–f/11, and the 
image resolution of the camera is 5,472 × 3,648 pixels (JPEG 
format). The flight altitude was set to 40 m, the course speed 
was 3 m/s, the bypass overlap rate was set to 70%, the heading 
overlap rate was set to 80%, and a total of 1,127 images were 
captured. The UAV imagery was pre-processed using Agisoft 
Metashape 1.7.1 software from Agisoft LLC, Russia, which 
generated the digital surface model (DSM) and the 
RGB-banded orthomosaic. The DSM is minimally filtered 
(window size is 20 × 20) and then smoothed with a mean filter 
(window size is 5 × 5) to generate the digital elevation model 
(DEM), which is then subtracted from the DSM to generate the 
canopy height model (CHM).

The objects in the UAV imagery are primarily plants (green in 
color) and backgrounds (soil, rocks, plant debris, etc., which are 
primarily earthy in color), so the red, green, and blue bands of 
orthomosaic are calculated to generate EXG images (Equation 1), 
which are used to highlight green plants and suppress backgrounds 
such as shadows, rocks, and soil (Woebbecke et al., 1995).

 EXG G R B= − −2  (1)

Where R, G, and B are the three standard bands of red, green, 
and blue, respectively.

Field survey data
Using UAV imagery, select 235 C. oleifera trees randomly and 

determine their exact location. Utilize a measuring rod to 
determine the height of the trees in the study area. The method is 
feasible because the height of C. oleifera is limited (<3 m), the tops 
of the trees are visible, and the distance between trees is known.

Tree-crown delineation
The tree crowns of C. oleifera were manually outlined in 

ArcMap 10.7 (ESRI, United States) using orthomosaic and CHM 
data (Table  1). There were a total of 1,862 crowns outlined 
(Figure 2C). Then, the manually delineated tree-crown image is 
binarized, the background pixel value is changed to 0, the pixel 
value of the C. oleifera crown area is changed to 255, and a tree-
crown binary image is generated that corresponds to the tree-
crown in the UAV image.

FIGURE 1

Flowchart of individual tree-crown detection, crown width, and projection area assessment in this study. DSM, digital surface model; DEM, digital 
elevation model; CHM, canopy height model; EXG, excess green index.
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The CV2 function provided by OpenCV, an open-source 
computer vision library, was used to count the number of 
pixels contained in the tree-crown of each of the 235 trees 
(Section “Field survey data”) based on the tree-crown mask 
image and calculate the crown projection area (CPA) based on 
the image resolution. Using Canny’s algorithm (Hu et  al., 
2018) to extract the edge features of each crown of 235 trees, 
followed by the ellipse fitting algorithm (Yan et al., 2008) to 
obtain each crown’s external ellipse. Calculate the long and 
short axes of the ellipse as the maximum and minimum values 
of C. oleifera crown width, and then calculate the mean of 
these two values to obtain the average crown width of 
C. oleifera (Zhang et  al., 2021). The crown width and 

projection area of 235 trees were calculated based on the 
0.01532703 m image resolution.

Dataset preparation

Input image

The blue, green, red, and EXG products are used as input images 
for the division of the tree crown. The CHM or DSM was added to 
the combined images to compare the effects of input images 
containing different elevation information on the model’s ability to 
accurately estimate the crown width and projection area (Table 2).

Training dataset

Thousand eight hundred and sixty-two delineated trees 
(Section “Tree crown delineation”) were separated into a training 
and validation set and a test set for this study. First, the six-band 
combination images containing information about the tree crowns 
of 1,627 trees and the corresponding binary tree-crown images are 
divided into 256 × 256 pixel image tiles for processing. In addition, 
the training data are rotated by 90°, 180°, and 270° from its original 
orientation to increase the number of training samples and 

A B

C

FIGURE 2

Location of the study site, Chengiafang County, Hunan, China; (A) digital surface model (DSM); (B) orthomosaic with RGB bands; (C) example of 
manually delineated Camellia oleifera crowns (in yellow) based on orthomosaic.

TABLE 1 Statistics of crown width and crown projection area.

Item CW/m CAP/m2

min 1.16 1.40

max 3.47 5.58

mean 1.99 2.95

CW, crown width; CAP, crown projection area.
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enhance the model’s robustness. In summary, six training datasets, 
each one containing 3,375 images, were obtained for this study.

To evaluate the performance of the final model, 235 C. oleifera 
trees with crown width and projection area reference information 
from UAV imagery were used as the test set.

ResU-Net model

Since C. oleifera tree-crown images contain a large number of 
background interference factors, such as weeds and soil, 
ResNet101, which has a strong feature extraction capability 
(Laurin et  al., 2019), is used as the backbone network and 
combined with the U-Net (Ronneberger et  al., 2015) network 
design concept to create the ResU-Net network model in this 
study. ResU-Net presents the Residual Block (Res-block) structure 

(illustrated in Figure 3B) based on the U-Net network, which can 
effectively overcome the network degradation and gradient 
dispersion issues caused by an increase in network depth and 
accelerate network convergence (Wu et  al., 2019). ResU-Net 
requires a smaller training set and focuses more on image 
segmentation details without compromising accuracy (Yang et al., 
2019), and it can recognize the crown of C. oleifera at the pixel level.

The encoder (to the left of the dashed line) and decoder (right 
of the dashed line) make up the ResU-Net structure, as shown in 
Figure 3A. The encoder is used to downsample the input image, 
capture image context information, and extract image semantic 
information features. The decoder upsamples the image using 
transposed convolution and concatenates features of the same 
dimension to provide detailed feature information (Chen 
et al., 2021).

For the encoder, the input image passes through a Convolution 
layer (CONV) with a convolution kernel of 7 × 7 and a step size of 
2, followed by a Max Pooling Layer. The image size is decreased to 
a quarter of its original size, and the number of channels is 
increased to 64. Following this, the tree-crown features are 
extracted through the residual block (Res-block) until an 8 × 8 
feature vector with a depth of 2048 is obtained.

The initial step for the decoder is to increase the size of the 
feature layer and decrease its depth by upsampling. Next, the 
downsampled and upsampled feature layers of equal size are 
concatenated. The concatenated feature layers are fused using a 
3 × 3 convolutional layer, a Batch Normalization layer (BN), and a 

TABLE 2 Combination of different images for ResU-Net training.

Combinations Bands description Image layers

RGB Blue, green, red 3

RGB-DSM Blue, green, red, DSM 4

RGB-CHM Blue, green, red, CHM 4

EXG Excess green index 1

EXG-DSM Excess green index, DSM 2

EXG-CHM Excess green index, CHM 2

A

B

FIGURE 3

ResU-Net network structure: (A) ResU-Net network framework; (B) Res-block modules.
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Rectified linear unit after each concatenation (ReLU). The tree-
crown binary mask of C. oleifera is obtained through a final 
convolution operation.

The hold-out method is selected for cross-validation, and the 
mIoU of the model is set to stop in advance without increasing 
within 10 epochs to prevent overfitting of the model. Only the 
model with improved accuracy after each training is saved. Res-Net 
weights pre-trained on ImageNet are used for transfer learning. The 
ResU-Net model was then trained using the six training datasets. 
Set the learning rate parameter to 0.001, the epochs to 100, and the 
batch size to 4 when training the model. Based on these six distinct 
composite images, six ResU-Net models were generated. All 
models were trained on a Windows 10 desktop with an Intel i7 
6700k CPU, 6 GB GPU, and 24 GB RAM using PyCharm 2010.1.4 
software based on the Pytorch framework for deep learning.

Accuracy evaluation

To determine the optimal ResU-Net model, the accuracy of 
tree detection, crown width, and projection area assessment were 
calculated separately. The test set, which contained crown width 
and projection area reference data from the UAV images, was 
utilized to assess the performance of each model.

The intersection over union (IoU) was used to assess the 
ResU-Net model’s accuracy in detecting tree crowns (Equation 2). 
IoU measures the area of the union and intersection of the crown 
polygons of the test set and the crown polygons predicted by the 
model. When IoU exceeded 50%, it was deemed acceptable. 
ResU-Net model’s detection of individual tree crowns was evaluated 
using precision, recall, and F1 score (Equations 3–5). Precision is 
the proportion of accurately detected trees in a model detection. 
The recall is the proportion of correctly identified trees in the test 
set. The F1 score indicates the overall test accuracy, which is based 
on recall and precision (Shao et al., 2019; Hao et al., 2021).
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where TP is the number of correctly identified trees by the 
model and IoU is >50%. FN is the number of trees omitted by the 
model when the IoU is <50%, and FP is the number of other tree 
or weed species found. The term Aactual refers to the crown 
polygons of the test set. The crown polygons predicted by the 
ResU-Net model are indicated by Apredicted. The intersection 
operation represents the area shared by Aactual and Apredicted, 
whereas the union operation represents the area formed when 
Aactual and Apredicted are combined.

The 235 tree-crown widths and projection area from the UAV 
imagery were then compared to the six ResU-Net model 
predictions. Coefficient of determination (R2), root mean square 
error (RMSE), and relative RMSE (rRMSE) were utilized to 
evaluate the model’s accuracy in estimating tree-crown width and 
projection area (Equations 6–8). R2 is utilized to assess fitness, 
while RMSE and rRMSE are employed to estimate error.

Finally, a comprehensive analysis of the accuracy of individual 
tree-crown detection, crown width, and predicted area assessment 
was conducted to determine the best ResU-Net model for crown 
width and crown projection area assessment.
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where N represents the number of trees that the model has 
detected. yi denotes the crown width and predicted area from the 
assessed datasets. yi  represents the average crown width and 
predicted area from the assessed datasets; xi denotes the crown 
width and predicted area from the reference dataset; and xi  
represents the average crown width and predicted area from the 
reference dataset.

Results

Detection of individual tree crown

Figure  4 illustrates examples of the ResU-Net model 
identifying individual tree crowns at the study site. The accuracy 
of crown detection and delineation is shown in Table  3. 
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RGB-CHM had the highest precision (88.73%) for tree detection, 
followed by RGB-DSM (87.92%), RGB (85.00%), EXG-CHM 
(82.30%), EXG-DSM (80.71%), and EXG had the lowest precision 
(80.68%). The RGB-CHM combination had the highest recall rate 
(80.43%), while the EXG-DSM combination had the lowest 
(67.66%). The F1 score of the RGB-CHM combination reached 
84.38%, followed by RGB-DSM (82.35%), RGB (82.20%), 
EXG-CHM (77.48%), EXG (75.57%), and EXG-DSM (73.61%). 
The RGB-CHM combination had the highest IoU (91.38%) for 
tree-crown delineation, while the EXG-DSM combination had the 
lowest (87.07%).

The results of all ResU-Net models yielded precision >80%, 
recall >65%, F1 score >70%, and IoU >85%. When the input image 
is based on the RGB or EXG combinations of ResU-Net and 
contains CHM, the precision, recall, F1 score, and IoU are greater 
than when the input image contains DSM, reflecting the higher 

precision of tree-crown detection and delineation in the CHM 
combination. The model’s average processing time for tree-crown 
detection in each image is 0.16 s, which meets the requirements of 
practical applications.

Extraction of tree-crown width

Using the UAV-based tree-crown width as reference. As a 
result of their proximity to the study area’s boundaries, certain 
canopies were omitted from the evaluation of the model’s accuracy 
in estimating tree-crown width, resulting in incomplete shapes. 
The accuracy of the ResU-Net model in estimating the tree-crown 
width based on RGB, RGB-CHM, RGB-DSM, EXG, EXG-CHM, 
and EXG-DSM as input images, respectively, is illustrated in 
Figure 5.

A B C D

E F G H

FIGURE 4

Example of tree-crown detection and segmentation. (A) original image; (B) manually delineated result; (C–H) are the crown detection results of 
the ResU-Net model based on the combination of RGB, RGB-CHM, RGB-DSM, EXG, EXG-CHM, and EXG-DSM.

TABLE 3 The accuracy of individual tree-crown detection using different combinations.

Bands 
combinations

Estimate 
number

Correct 
number

Incorrect 
number

Omission 
number IOU /% Precision /% Recall /% F1 score /%

RGB 220 187 33 48 91.06 85 79.57 82.2

RGB-CHM 213 189 24 46 91.38 88.73 80.43 84.38

RGB-DSM 207 182 25 53 89.86 87.92 77.45 82.35

EXG 207 167 40 68 87.07 80.68 71.06 75.57

EXG-CHM 209 172 37 63 88.48 82.3 73.19 77.48

EXG-DSM 197 159 38 76 87.09 80.71 67.66 73.61
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All the results of the six models for estimating tree-crown 
width yielded R2 > 0.70. The tree-crown width estimation based on 
the RGB combinations yielded higher accuracy (R2 > 0.89, 
6.47% ≤ rRMSE ≤ 7.48%). The accuracy based on the EXG 
combinations is lower (R2 < 0.84, 9.15% ≤ rRMSE ≤ 11.51%). 
Among them, the accuracy of estimating tree-crown width using 
the DSM combination was the lowest, while the CHM 
combination produced better results, and the RGB-CHM 
combination achieved the highest accuracy (R2 = 0.9271, 
RMSE = 0.1282 m, rRMSE = 6.47%).

Extraction of tree-crown projection area

The projected tree-crown area estimated by six distinct 
ResU-Net models was compared to the UAV-based crown 
projection area (Figure 6). The accuracy of tree-crown projection 
area estimation based on the RGB combinations (R2 > 0.92, 
9.39% ≤ rRMSE ≤ 11.70%) was higher than that based on the EXG 
combinations (R2 < 0.85, 15.04% ≤ rRMSE ≤ 19.06%). Among 
them, the CHM model was more accurate than the DSM model. 
The model with the RGB-CHM combination produced the 

highest accuracy (R2 = 0.9498, RMSE = 0.2675 m2, rRMSE = 9.39%), 
while the model with the EXG combination produced the lowest 
accuracy, which is comparable to the tree-crown width from the 
UAV imagery. ResU-Net model predictions were lower compared 
to the UAV-based crown width and crown projection area because 
of the overlapping and shading conditions with unclear boundaries.

The ResU-Net model accurately estimated the tree-crown width 
and crown projection area. RGB was more accurate than EXG when 
it came to modeling accuracy. The accuracy is greater when the 
input image of ResU-Net-based RGB or EXG combinations contains 
CHM than when the input image contains DSM. Comparing the 
accuracy of individual tree-crown detection, tree-crown width, and 
projection area between models, the RGB-CHM combination was 
the optimal combination for the ResU-Net model’s detection of tree-
crown width and projection area.

Discussion

This study proposes to use the combined images and elevation 
data from UAV imagery to create datasets for training ResU-Net 
models to automatically extract C. oleifera tree-crown and estimate 

A B C

D E F

FIGURE 5

Linear regressions of tree-crown width between UAV imagery and different ResU-Net models. (A) RGB; (B) RGB-CHM; (C) RGB-DSM; (D) EXG; 
(E) EXG-CHM; (F) EXG-DSM. The dotted line represents a 1:1 match, and the red line represents the trend of the tree-crown width relationship 
based on the ResU-Net model and UAV imagery.
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crown width and crown projection area parameters. The results 
demonstrate that the trained ResU-Net model can detect tree 
crowns and accurately estimate crown width and crown projection 
area. The ResU-Net model has excellent generalizability and high 
stability, allowing it to fulfill the need for C. oleifera tree-crown 
data in agricultural production.

Performance of the model

Individual tree-crown detection
The optimal ResU-Net model based on the RGB-CHM 

combination achieved high accuracy for tree-crown detection 
(precision = 88.73%, recall = 80.43%, F1 score = 84.68%, and 
IoU = 91.38%). Hao et al. (2021) and Braga et al. (2020) used the 
Mask-RCNN model to detect macrophanerophyte canopies, yielding 
F1scores of 84.68% and 86%, which are comparable to the F1-score 
of this study, whereas the IoU values yielded 91.27% and 61% are 
smaller than the IoU of this study, respectively. Jin et  al. (2020) 
reported that the F1-score of 74.04% and accuracy of 79.45% for tree-
crown detection based on U-Net and marker-control watershed 
algorithm, which is lower than the F1 score and accuracy of this study.

Next, this study compares the performance of the ResU-Net 
with the classical watershed algorithm, the U-Net model, the 
U-Net++ model (Zhou et al., 2018), and the DeepLabV3 Plus model 
(Chen et al., 2018) for tree-crown detection (Figure 7). According to 
the crown detection results, the crown detection accuracy based on 
the deep learning method is significantly higher than that of the 
classical watershed algorithm. Since C. oleifera trees are lower and 
there is interference from grass and other tree species, etc., the 
watershed algorithm is less precise. The accuracy of tree-crown 
detection using the ResU-Net model was slightly higher than that of 
the U-Net (precision = 86.18%, recall = 79.57%, F1 score = 82.74%, 
and IoU = 90.75%) and U-Net++ model (precision = 87.50%, 
recall = 77.45%, F1 score = 82.17%, and IoU = 90.96%). Using the 
DeepLabV3 Plus model for tree-crown detection yielded the 
accuracy (precision = 89.41%, recall = 79.72%, F1 score = 84.29%, and 
IoU = 91.85%) comparable to the ResU-Net model. In conclusion, 
the detection accuracy of different network models for tree crowns 
is similar, indicating that the application of deep learning methods 
for extracting C. oleifera tree crowns from UAV visible images is 
universal, and the accuracy is generally high. With the advancement 
of deep learning techniques, we can utilize more robust network 
models for C. oleifera tree-crown detection in the future study.

A B C

D E F

FIGURE 6

Linear regressions of crown projection area between UAV imagery and different ResU-Net models. (A) RGB; (B) RGB-CHM; (C) RGB-DSM; 
(D) EXG; (E) EXG-CHM; (F) EXG-DSM. The dotted line represents a 1:1 match, and the red line represents the trend of the crown projection area 
relationship based on the ResU-Net model and UAV imagery.
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Crown width assessment
The key innovation of this study is to use the ResU-Net model 

and combine images with elevation data to estimate crown width. 
The RGB-CHM combination provided the most accurate 
measurements of crown width (R2 = 0.9271, RMSE = 0.1282 m, 
rRMSE = 6.47%). Few studies combine the ResU-Net model with 
elevation data to estimate the crown width of C. oleifera. 
Consequently, the accuracy of crown width and projection area 
estimation in our study is compared to that of studies employing 
alternative remote sensing techniques. Wu et al. (2021) used the 
optimized watershed with multi-scale markers method to estimate 
C. oleifera crown width yielded R2 = 0.75. Dong et  al. (2020) 
estimated the crown width of apple and pear trees using local 
maximum and marker-controlled watershed algorithms, yielding 
R2 values of 0.78 and 0.68, respectively. Compared to these 
conventional remote sensing techniques (e.g., watershed, local 
maximum algorithms), the present method has greater accuracy 
in estimating crown width, and it can be automated.

Crown projection area assessment
The RGB-CHM combination provided the most accurate 

measurements of crown projection area (R2 = 0.9498, 
RMSE = 0.2675 m2, and rRMSE = 9.39%). Mu et  al. (2018) 
estimated the peach crown projection area using adaptive 
thresholding and marker-controlled watershed segmentation 
with R2 = 0.89 and RMSE = 3.87 m2. Dong et al. (2020) estimated 
the crown projection area of apple and pear trees using local 

maximum and marker-controlled watershed algorithms, 
yielding R2 values of 0.87 and 0.81, respectively. Ye et al. (2022) 
estimated the olive crown projection area using the U2-Net 
model, producing R2 > 0.93, which is comparable to our study. 
However, it yielded MRE = 14.27% higher than our study 
(MRE = 12.23%).

Next, compared to the crown projection area extracted using 
RGB (R2 = 0.9220), R2 increased by 0.0278 with the addition of 
CHM, and by 0.0059 with the addition of DSM, respectively. 
Compared to the crown width extracted using RGB (R2 = 0.8936), 
R2 increased by 0.0335 with the addition of CHM, and by 0.0146 
with the addition of DSM, respectively. As can be  seen, the 
addition of CHM to the model has a greater impact on the 
prediction accuracy of the CW and CPA than the addition of 
DSM. However, the increased value (<0.05) of the model accuracy 
after adding the elevation information is low, because the 
C. oleifera planting areas are mainly hilly with little elevation 
change, and the C. oleifera are shrubs with low tree height. To 
verify the reliability of the experimental results of this study, it is 
necessary to conduct in-depth experiments in a region with a large 
height difference in the future study.

In addition, this study discovered that the accuracy of the 
EXG combinations was lower than that of the RGB combinations, 
indicating that the limited features of EXG (grayscale maps) 
reduce the model’s accuracy (Hao et al., 2021). Therefore, it is 
recommended that adequate features are included in the 
training process.

A B C

E F G
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FIGURE 7

Comparison of tree-crown detection results between ResU-Net and other methods. (A) original image; (B) manually delineated result; (C–G) are 
examples of tree-crown detection using the ResU-Net model, DeepLabV3+ model, watershed algorithm, U-Net model, and U-Net++ model.
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Factors of influence on model 
performance

Accuracy of CHM extraction
The accuracy of canopy height model (CHM) extraction 

influences the model-detected tree crown, the estimated crown 
width, and the crown projection area. To evaluate the accuracy of 
CHM, the UAV-derived tree height estimates were compared with 
field measurements in this study.

In this study, the CHM and the manually outlined tree-
crown vector map were combined. Then, ArcMap  10.7 was 
utilized to extract the maximum value of CHM for each tree-
crown region and estimate the tree height from the UAV 
imagery. For the accuracy of the results, incomplete C. oleifera 
crowns at the image margins were omitted. There were 183 
complete canopies that corresponded to the estimated tree 
height values when measured on the ground. As depicted in 
Figure 8, the correlation between the estimated tree height and 
field measurements was strong, with R2 of 0.7853, RMSE of 
0.2688 m, and rRMSE of 17.64%. The estimated tree heights 
were lower than field measurements, likely due to the high 
density of C. oleifera forests and lack of bare ground, which 
prevented the filtering method from obtaining sufficient 
ground area when DSM was processed. Consequently, the 
digital elevation model (DEM) is higher than the true elevation 
value, whereas the CHM is lower than the true CHM.

Airborne laser scanning (ALS) has a high penetrability and 
is considered the best option for tree detection with high 
accuracy in dense canopy areas (Sankey et al., 2017; Pourshamsi 
et al., 2021). Therefore, orthophotos and ALS can be combined 
as input data when training the model.

Spatial image resolution
The spatial resolution of the image has a significant impact on 

the accuracy of the model’s detection of tree crowns. By comparing 
0.3, 1.5, 2.7, and 6.3 cm spatial resolutions, Fromm et al. (2019) 
determined that the model had the highest average accuracy for 
detecting conifer seedlings when the spatial resolution was 0.3 cm. 
Schiefer et  al. (2020) concluded that, when using five spatial 
resolution images for crown detection, the lower the spatial 
resolution, the lower the model detection accuracy. Studies have 
demonstrated that the higher the spatial resolution, the more 
precise the model’s crown detection. However, when the resolution 
exceeds a certain threshold, it does not improve the accuracy of 
models significantly (Hao et al., 2021). The model’s accuracy is also 
dependent on the size of the tree crowns, and the ratio of the tree-
crown diameter to the spatial resolution is a crucial factor in 
determining the detection accuracy. Yin and Wang (2019) suggested 
that images with a spatial resolution greater than a quarter of the 
crown diameter had the highest accuracy for crown detection; 
however, 0.25 m resolution had the highest accuracy for mangrove 
crowns compared to 0.1, 0.5, and 1 m resolutions. An excessively 
high spatial resolution will generate interference due to excessive 
detail and noise, which is not conducive to model crown detection.

In addition, the measurement error resulting from manual 
delineation and the calculation error of crown parameters will also 
have an impact on the model estimation results. For optimal tree-
crown extraction results, the measurement method must 
be  optimized. The ratio relationship between spatial image 
resolution and tree-crown size must be further investigated in a 
subsequent study.

Conclusion

Combining the ResU-Net model with images that add 
elevation information (CHM or DSM) from UAV imagery can 
effectively and automatically detect C. oleifera tree crowns and 
estimate the crown width and crown projection area, which has 
significant application potential. ResU-Net model with RGB-CHM 
combination outperformed other models with different 
combinations (Precision = 88.73%, IoU = 91.38%, Recall = 80.43%, 
and F1 score = 84.38%). The model’s accuracy using RGB 
combinations was superior to the model’s accuracy using EXG 
combinations. The accuracy of crown width and crown projection 
area estimation is dependent on the input elevation data (DSM or 
CHM), and the model with CHM data is more accurate. In this 
study, the ResU-Net model with RGB-CHM combination 
provided the most accurate estimates of crown width (R2 = 0.9271, 
RMSE = 0.1282 m, rRMSE = 6.47%) and crown projection area 
(R2 = 0.9498, RMSE = 0.2675 m2, rRMSE = 9.39%). In conclusion, 
the combination of the deep learning model ResU-Net and UAV 
images containing elevation information has great potential for 
extracting crown information from C. oleifera. This method can 
obtain high-precision information on the tree crowns of C. oleifera 
trees at a low cost and with a high degree of efficiency, making it 

FIGURE 8

Linear regressions of tree height between the field measurement 
and different ResU-Net models.
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ideal for the precise management and rapid yield estimation of 
C. oleifera forests.
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