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To adapt to variable natural conditions, plants have evolved several strategies to 

respond to different environmental stresses. MicroRNA (miRNA)-mediated gene 

regulation is one of such strategies. Variants, e.g., single nucleotide polymorphisms 

(SNPs) within the mature miRNAs or their target sites may cause the alteration of 

regulatory networks and serious phenotype changes. In this study, we proposed 

a novel approach to construct a miRNA–miRNA crosstalk network in Arabidopsis 

thaliana based on the notion that two cooperative miRNAs toward common 

targets are under a strong pressure to be inherited together across ecotypes. By 

performing a genome-wide scan of the SNPs within the mature miRNAs and their 

target sites, we  defined a “regulation fate profile” to describe a miRNA–target 

regulation being static (kept) or dynamic (gained or lost) across 1,135 ecotypes 

compared with the reference genome of Col-0. The cooperative miRNA pairs 

were identified by estimating the similarity of their regulation fate profiles 

toward the common targets. The reliability of the cooperative miRNA pairs was 

supported by solid expressional correlation, high PPImiRFS scores, and similar 

stress responses. Different combinations of static and dynamic miRNA–target 

regulations account for the cooperative miRNA pairs acting on various biological 

characteristics of miRNA conservation, expression, homology, and stress response. 

Interestingly, the targets that are co-regulated dynamically by both cooperative 

miRNAs are more likely to be responsive to stress. Hence, stress-related genes 

probably bear selective pressures in a certain group of ecotypes, in which miRNA 

regulations on the stress genes reprogram. Finally, three case studies showed that 

reprogramming miRNA–miRNA crosstalk toward the targets in specific ecotypes 

was associated with these ecotypes’ climatic variables and geographical locations. 

Our study highlights the potential of miRNA–miRNA crosstalk as a genetic basis 

underlying environmental adaptation in natural populations.
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Introduction

Plant populations growing under natural conditions are exposed 
to different environmental stresses in the form of a combination of 
various climatic, edaphic, and other abiotic factors (Tripathi et al., 
2019). Adaptation to local conditions has been shown experimentally 
in many organisms (Hereford, 2009). Moreover, the capacity to 
respond to complex environmental stresses is likely to vary among 
species in their degree of phenotypic plasticity and their potential 
for genetic adaptation (Hoffmann and Sgro, 2011). Mean survival 
and lifetime fruit production differed markedly across Arabidopsis 
thaliana ecotypes within the same planting site, suggesting heritable 
variation among source populations in fecundity and viability 
(Fournier-Level et al., 2011). Growing season length, which depends 
on photoperiod, temperature, and rainfall patterns, drastically 
changes even over short geographic distances (Exposito-Alonso, 
2020). Single nucleotide polymorphisms (SNPs) are important 
sequence variations for the diversity among individuals and are 
ubiquitously present in most organisms (Arai-Kichise et al., 2011). 
By investigating SNPs linked to loci experiencing real-time selection 
in different natural environments, Fournier-Level and his colleagues 
(2011) found that the genetic basis of fitness in A. thaliana differs 
dramatically across sites (Fournier-Level et al., 2011). Moreover, the 
maintenance of sufficient standing genetic variation is essential for 
adaptation to rapid climate change (Fournier-Level et  al., 
2011, 2016).

To adapt to different environmental conditions, plants have 
evolved several strategies to cope with varying biotic and abiotic 
stresses. One of such strategies is the microRNA (miRNA)-mediated 
post-transcriptional gene regulation. The plant miRNAs are a class 
of non-coding small RNAs with ~21 nucleotides in length. They are 
processed from the hairpin-structured precursors by DCL1 in the 
nucleus and incorporated into the AGO1 complex to target the 
mRNA (s) in the cytoplasm (Dalmadi et al., 2019). Growing evidence 
shows that miRNAs are key post-transcriptional regulators of gene 
expression and play crucial roles in diverse biological processes to 
cope with varying environmental stresses (Chiou, 2007; Sunkar et al., 
2012; Ferdous et al., 2015; Basso et al., 2019). SNPs within the mature 
miRNAs and their target binding sites may function as the regulatory 
genetic codes influencing the miRNA–target pairs, thus further 
causing the physiological or phenotypic changes (Gong et al., 2012; 
Liu et al., 2013, 2016, 2021). In many cases, one miRNA can target 
more than one gene, suggesting the function complexity of miRNAs. 
One gene can also be regulated by more than one miRNA, thereby 
indicating cooperative control among multiple miRNAs (Xu et al., 
2011). At present, the combinatorial nature of miRNA regulation has 
been detected by using several experimental approaches and is 
widely accepted in multiple species (Vella et al., 2004; Curaba et al., 

2014; Samad et al., 2017; Lai et al., 2019). Therefore, studying the 
cross among miRNAs, rather than the individual miRNA–target 
regulation, can greatly improve our understanding of the potential 
functional effects of the complex interplay between miRNAs.

Different bioinformatics pipelines have been developed to 
infer synergistic regulation among miRNAs based on the genomic 
similarity, co-regulation, co-functionality, co-expression, and SNP 
cooperation of miRNA pairs (Xu et  al., 2017). In genomic 
similarity, Xu et al. (2013) demonstrated that functional synergetic 
miRNA pairs exhibit high seed sequence similarity. Chen et al. 
(2014) analyzed the impacts of the three-dimensional architecture 
of chromatin on the transcriptional regulation of miRNAs. They 
indicated the existence of spatial miRNA–miRNA chromatin 
interacting networks by assembling miRNA pairs that interact 
with each other at the chromatin level. The functional roles of 
miRNAs can be deciphered through their target genes (Fan and 
Kurgan, 2015). Thus, many methods have been developed to 
detect cooperation between miRNAs by identifying miRNA pairs 
that co-regulate at least one target in a statistical framework, such 
as mirBridge (Tsang et  al., 2010), GeneSet2miRNA (Antonov 
et al., 2009), and miRror2.0 (Balaga et al., 2012; Friedman et al., 
2014). Another common assumption is that the genes regulated 
by multiple miRNAs should be functionally associated in terms of 
the co-regulation of targets. Therefore, many methods have been 
proposed to detect miRNA pairs with similar functions based on 
genes regulated. To address the issue, Gene Ontology (GO) 
annotations, pathways, and protein–protein interaction networks 
were used to evaluate the functional similarity among the genes 
regulated by miRNA groups and have been applied in human (Xu 
et  al., 2011; Sun et  al., 2013) and several plants, including 
Arabidopsis (Meng et al., 2015), rice (Banerjee and Mal, 2020), 
and soybean (Xu et al., 2014). Increasing evidence suggests that 
miRNA–mRNA regulation is context-specific. Thus, the 
expression relationships between miRNA and mRNA were 
examined to identify the miRNA–mRNA regulations, before 
constructing the context-specific miRNA–miRNA crosstalk 
network using the methods mentioned above. Furthermore, 
Zhang et  al. (2019) simulated multiple knockouts of miRNAs 
using gene expression data and apply causal inference methods to 
find synergistic miRNA pairs. They found that most of synergistic 
miRNA–miRNA pairs tend to be co-expressed. Co-expression of 
miRNA pairs has been used to filter the identified miRNA–
miRNA pairs (Song et al., 2015; Shao et al., 2019). Alternatively, 
Hua et al. (2014) constructed a coronary artery disease-related 
miRNA–miRNA synergistic network by combining miRNA 
expression profiling data with genome-wide SNP genotype data. 
The method is based on the hypothesis that SNPs in the target 
binding sites of two cooperative miRNA pairs are correlated 
among the human populations. Firstly, the differentially expressed 
miRNAs are identified using coronary artery disease-related 
miRNA expression data. Then, the miRNASNP tool (Gong et al., 
2012) is used to extract the pairs of differentially expressed 
miRNAs and mutant-type target transcripts (the transcripts with 
3′-UTR SNPs) that are gained in the human populations 

Abbreviations: SNP, Single nucleotide polymorphism; miRNA, microRNA; GO, 
Gene Ontology; col-0, Columbia-0; ANOVA, Analysis of Variance; coreg, 
Co-regulation score of two miRNAs toward a target; SS, Both regulatory pairs of 
a miRNA–miRNA crosstalk being static; DD, Both regulatory pairs of a miRNA–
miRNA crosstalk being dynamic; SD, Regulatory pairs of a miRNA–miRNA 
crosstalk being static and dynamic.
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compared with the reference human genome. Finally, logistic 
regression is used to detect the significant interactions between 
3′-UTR target SNPs of differentially expressed miRNAs among 
the human populations. In this way, the miRNA–miRNA 
cooperation pairs are identified based on the associated SNP pairs 
(Hua et al., 2014).

The study by Hua et al. (2014) provides evidence that miRNA 
regulation could be reprogrammed in different human genomes. 
Nevertheless, the method by Hua et al. ignored two critical aspects 
of information embedded in the miRNA–target regulatory process 
across different genomes, which would greatly improve the 
performance: (1) In addition to the variations in the mRNA 
3′UTR, variations in the miRNAs are also important genetic basis 
for the alteration of miRNA–target pairs in different genomes. (2) 
In addition to the newly gained miRNA–target pairs, the miRNA–
target pairs in the reference genome could be completely dropped 
or still kept in other genomes (Gong et al., 2012; Liu et al., 2021).

Arabidopsis thaliana is an established plant model for 
deciphering genetic basis and ecological adaptations owing to its 
world-wide distribution and the availability of genome-wide SNP 
data (Hancock et al., 2011; The 1001 Genomes Consortium, 2016). 
In this study, we proposed a novel approach to identify cooperative 
miRNA pairs in A. thaliana based on the notion that if two 
miRNAs are synergistic to regulate the same target, there will be a 
strong pressure on the two miRNAs to follow the same mode of 
miRNA regulation reprogramming across ecotypes, that is the 
regulation pairs are likely to coexist across ecotypes. The 
constructed miRNA–miRNA crosstalk network is of high quality 
as the synergistic miRNA pairs show co-expression and are 
enriched with miRNA pairs in response to identical types of stress. 
We  also investigated the biological significance of miRNA–
miRNA pairs classified by the crosstalk type toward the common 
targets, both regulation pairs being static (“SS”), both being 
dynamic (“DD”), and one being static while the other being 
dynamic (“SD”). MiRNA–miRNA pairs with various crosstalk 
types present the different biological significance in terms of 
miRNA conservation, expression, homology, and regulatory SNP 
distribution. Finally, we investigated the specific ecotypes in which 
the regulations toward each transcript are gained or lost, and 
proposed that these ecotypes are exposed to similar climatic 
conditions. This is the first report studying cooperative control 
among miRNAs at the level of natural populations of A. thaliana. 
This study may provide further insight into the potential 
functional effects of cooperative miRNAs in the adaptation of 
populations under different environmental conditions.

Materials and methods

miRNA–target regulations in the 
reference genome and across ecotypes

A three-step pipeline was used to generate a population-level 
miRNA–target regulation network. Firstly, A. thaliana Columbia-0 

(Col-0) reference genome sequence (TAIR10 release) and genome 
annotation (Araport11 with the release as June 2016) were derived 
from the TAIR database.1 Four hundred twenty-eight mature 
miRNAs were derived from the miRBase database (release 22; 
Griffiths-Jones, 2004; Kozomara et  al., 2019). The A. thaliana 
variant data set, which contains SNPs and short insertion and 
deletion variants (indels) of 1,135 A. thaliana ecotypes, was 
derived from the 1001 Genomes ftp2 (The 1001 Genomes 
Consortium, 2016). These variants are based on intersection of the 
SHORE and GATK pipeline. The variants at both population 
(1001genomes_snp-short-indel_only_ACGTN.vcf.gz) and 
individual ecotype (folder intersection_snp_short_indel_vcf) 
levels were downloaded. The biallelic variants with one allele in 
only one ecotype (singletons), accounting for 67% total variants, 
were removed (Supplementary Table S1). The average variant 
density is 64.16 variants per kb.

Secondly, miRNA target sites in the A. thaliana reference 
genome and 1,135 ecotype pseudogenomes were predicted. To 
prevent the bias produced by an individual prediction tool and 
obtain more satisfactory results, two plant miRNA target 
identification tools, TargetFinder (Fahlgren et  al., 2007) and 
PsRobot (Wu et  al., 2012) with the default parameters were 
applied. Such a strategy has also been used in several previously 
studies (Gong et al., 2012; Liu et al., 2013; Meng et al., 2015). In 
the reference genome, wild-type mature miRNAs and wild-type 
transcripts were input to the tools. In each ecotype, miRNA and 
transcript sequences were divided into wild type (lacking genetic 
diversity) and corresponding mutant type (presenting genetic 
diversity). Indels occurring in protein-coding sequence may cause 
frameshifts (changing the reading frame) with drastic changes to 
protein sequence and nearly always inactivate proteins. Thus, for 
each ecotype, the miRNAs and transcripts that contain any short 
indels were discarded. There are 0%–0.9% of miRNAs and 0.3%–
24.8% of transcripts containing short indels. The kept miRNAs 
and transcripts only contain SNPs. New sequences of mutant-type 
miRNAs and mutant-type transcripts were retrieved. miRNA 
target sites were re-predicted from wild- and mutant-type 
miRNAs as well as wild- and mutant-type transcripts. Then, 
we defined lost, gained and kept miRNA–target pairs compared 
with the reference A. thaliana genome. If one miRNA–target 
transcript pair was found by both tools in the reference genome, 
but neither by TargetFinder or PsRobot in a ecotype, we defined 
that the miRNA loses the target, because of the presence of SNP(s) 
in the miRNA or target transcript (Formula 1). In contrast, if one 
miRNA–target regulation was predicted by both tools in the 
ecotype, but neither by TargetFinder or PsRobot in the reference 
genome, we defined that the miRNA gains the corresponding 
target transcript in this ecotype (Formula 2). Kept miRNA–target 
regulations were defined as predicted by both tools in the reference 
genome and in the ecotype genome (Formula 3).

1 https://www.arabidopsis.org/

2 https://1001genomes.org/data/GMI-MPI/releases/v3.1/
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(2)

 
Kept regulations ref ref eco eco= Ç( ) + Ç( )T P T P

 
(3)

where Tref and Teco are the miRNA–target transcript pairs predicted 
by TargetFinder in the reference and ecotype genomes, 
respectively. Pref and Peco are the miRNA–target transcript pairs 
predicted by PsRobot in the reference and ecotype genomes, 
respectively.

Thirdly, all miRNA–target regulation relations in 1,135 
ecotypes were combined at the population level. Each edge 
between miRNA and target transcript has a property of fate. A 
miRNA–target pair which is present in the reference genome, may 
be kept in all ecotypes (the general fate = “K” means fate = “k” in 
each ecotype), may be kept (fate = “k”) in some ecotypes but lost 
(fate = “l” in at least one ecotype) in some others (the general 
fate = “KL”), or may be lost in all ecotypes (not found in our data). 
A miRNA–target pair which is not present in the reference 
genome may be gained (fate = “g”) in at least one ecotype (the 
general fate = “G”). The miRNA–target pair with the general fate 
as KL or G represents that it is in a dynamic state of being dropped 
or gained in some ecotypes and is called the “dynamic” regulation, 
whereas the miRNA–target pair with the general fate as K is called 
the “static” regulation.

Construction of miRNA–miRNA crosstalk 
network

The notion for our method is that a cooperative miRNA–
miRNA pair tends to regulate the same target transcript and 
moreover, the two regulatory pairs between miRNA and target 
coexist in natural populations. In other words, if two miRNAs 
cooperatively regulate a target, there will be a strong pressure on 
the two miRNA–target regulatory pairs to be inherited together 
across ecotypes. Therefore, we can detect the presence or absence 
(co-occurrence) of the two regulatory pairs in the regulation fate 
profile. We  defined a regulation fate profile to describe the 
occurrences, in the form of fate, of a certain miRNA–target 
regulation in the set of 1,135 ecotypes (see examples in 
Figures 1A–D): if miRNAi–targett and miRNAj–targett share the 
same regulation fate profiling, it indicates that miRNAi and 
miRNAj cooperatively regulate the targett.

Based on miRNA–target regulation at the population level, 
we initially identified miRNA–miRNA pairs that share a set of at 
least one target (T). Then, we  estimated the extent to which 
miRNAi and miRNAj co-regulate targett ( t T i jÎ ( ), ), which was 
defined as a miRNA–miRNA–target co-regulation motif. 
We considered the ecotypes in which the two miRNAs and the 

target transcript are wild type or mutant type. In order to construct 
the regulation fate profile across ecotypes, we defined fate (i, t) as 
the fate between miRNAi and targett in an ecotype, and fate (j, t) 
between miRNAi and targett. For each shared targett in T(i, j) of 
miRNAi and miRNAj, we designed a co-regulation (coreg) score 
of this co-regulation motif (Formula 4, see examples in 
Figures 1A–D):

( )
( ) ( ) ( )

( )
EcoK , , EcoL , , EcoG , ,

, ,
Eco , ,

+ +
=

i j t i j t i j t
coreg i j t

i j t
 

(4)

where Eco (i, j, t) is the set of ecotypes containing wild- or mutant-
type sequences of miRNAi, miRNAj, and targett. EcoK (i, j, t) is the 
set of ecotypes in which both regulatory pairs of miRNAi–targett 
and miRNAj–targett were kept, i.e., both fate (i, t) and fate (j, t) 
being k. EcoL (i, j, t) is the set of ecotypes in which both regulatory 
pairs were lost, i.e., both fate (i, t) and fate (j, t) being l. EcoG (i, j, 
t) is the set of ecotypes in which both regulatory pairs were gained, 
that is both fate (i, t) and fate (j, t) being g. Thus, coreg (i, j, t) is 
equal to the fraction of ecotypes in which both regulatory pairs 
present the same fates. From the definition, the values of 
co-regulation score are between 0 and 1. Clearly, coreg (i, j, t) = 0 
indicates that the regulatory pairs of miRNAi–targett and miRNAj–
targett have totally different regulation fate profile in all ecotypes; 
on the other hand, coreg (i, j, t) = 1 indicates that the two regulatory 
pairs show the same regulation fate profile. The larger the coreg 
value, the more possibility that miRNAi and miRNAj regulate the 
targett cooperatively. Note that in the case of the general fates of 
both regulatory pairs being KL (Figure 1C), we required that the 
two regulatory pairs were simultaneously lost in at least one 
ecotype, which means EcoL (i, j, t) was not empty, otherwise the 
co-regulation score equals to 0.

For each shared targett in T(i, j) of miRNAi and miRNAj, if the 
co-regulation score coreg (i, j, t) is smaller than a predefined 
threshold, the targett will be  removed from T(i, j). Finally, if 
miRNAi and miRNAj co-regulate at least one shared target, the 
two miRNAs were considered cooperative; otherwise, this miRNA 
pair was deleted from the miRNA–miRNA crosstalk network.

Definition of the crosstalk type for 
miRNA pairs

We called the combination of two miRNAs co-regulating a 
target as a miRNA–miRNA–target co-regulation motif. miRNA–
target regulations were divided to dynamic (the general fate as G or 
KL) and static (the general fate as K) groups based on their general 
fates across ecotypes. Accordingly, we assigned a co-regulation type 
of “dd” (dynamic-dynamic), “ss” (static-static), or “sd” (static-
dynamic) to each co-regulation motif. The co-regulation type of dd 
indicates that the two miRNAs dynamically co-regulate the target 
(both general fates as G or KL, Figures 1C,D), while ss indicates the 
two miRNAs statically co-regulate the target (both general fates as K, 
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Figure 1A). The co-regulation type of sd indicates that one miRNA 
dynamically regulates a target, but the other keeps the regulation 
toward the same target in the reference genome and across ecotypes 
(one general fate as KL and the other as K, Figure 1B).

At the level of miRNA–miRNA crosstalk, we  defined the 
crosstalk type for two miRNAs. If two miRNAs co-regulate 
multiple targets, we calculated the fractions of each co-regulation 
type among the motifs. If a particular co-regulation type belongs 

A

B

C

D

E

FIGURE 1

Calculation of co-regulation (coreg) score based on the regulation fate profiles. (A-D) Four different conditions for calculating coreg score were 
presented. When two miRNAs co-regulate a certain target in the reference genome, loss events in some ecotypes may happen (A) to none 
regulatory pairs (their general fates as “K” and “K”), (B) to only one regulatory pair (“K” and “KL”), or (C) to both regulatory pairs (“KL” and “KL”). 
(D) Two miRNAs may gain a common target in some ecotypes but the two regulatory pairs are not present in the reference genome (the general 
fates as “G” and “G”). In regulation fate profiles, the fate in each ecotype is “k,” “l,” “g,” or “o”. A miRNA–target regulation marked with the fate as “o” 
in an ecotype means this regulation was detected by only one miRNA target prediction tool in this ecotype. We required that in (C), EcoL, the set 
of ecotypes, in which the two regulatory pairs are lost, should not be empty, to make sure the two regulatory pairs were dropped together in at 
least one ecotype. The co-regulation type of a miRNA–miRNA–target motif (“ss”: static-static, “dd”: dynamic-dynamic, and “sd”: static-dynamic) 
was defined according to the general fates of the two regulatory pairs (see Materials and methods). (E) An example showing the definition of the 
crosstalk type for a cooperative miRNA pair. Ath-miR172b-5p and ath-miR172e-5p target 18 common transcripts, 11% (2 out of 18) of transcripts 
are targeted with the co-regulation type of ss and 89% (16 out of 18) of transcripts are targeted with the co-regulation type of dd. We considered 
that ath-miR172b-5p and ath-miR172e-5p cooperatively interact with DD as the crosstalk type, because more than half of the common targets 
are co-regulated with the co-regulation type of dd (see Materials and methods).
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to more than 50% of the co-regulation motifs, it is assigned as the 
crosstalk type to the miRNA pair and written in capitals (see the 
example in Figure 1E). In other words, the crosstalk types of “DD,” 
“SS,” and “SD” for two cooperative miRNAs indicate more than 
half of the common targets are co-regulated with the co-regulation 
type of dd, ss, and sd, respectively.

To investigate the conservation preference of miRNA–miRNA 
pairs with different crosstalk types, randomization tests were 
performed to compare conservations among different crosstalk 
types of edges in the miRNA–miRNA crosstalk network. For each 
kind of crosstalk type, we randomly sampled the same number of 
edges as the observed network that are with this kind of crosstalk 
type. The randomization process was repeated 1,000 times. For 
each kind of crosstalk type, we compared the observed number of 
edges between two miRNAs within and between conservation 
groups to the expected number of edges in 1,000 randomized 
networks. A Z-score was calculated for each conservation group 
pair and each crosstalk type (Formula 5):

 
Z score

SD

observed rand

rand

- =
-X X

 
(5)

where Xobserved  is the number of edges between two miRNAs in 
an conservation group and with a crosstalk type, Xrand  is the 
average number of edges between two miRNAs in the same 
conservation group and with the same crosstalk type in 1,000 
random networks and SDrand  is the standard deviation of the 
numbers of edges from 1,000 random networks. p-values from the 
Z-scores were calculated with the function pnorm() in R software 
(R Core Team, 2014) and adjusted using Benjamini and Hochberg 
correction for multiple hypothesis testing.

Evolutionary age of genes and miRNAs

The evolutionary age of A. thaliana genes was calculated as 
previously described (Defoort et al., 2018). Arabidopsis thaliana 
orthologous gene families were retrieved from PLAZA 5.0 dicots3 
(Van Bel et al., 2018). They are derived from 98 fully sequenced 
species with a wide distribution over different evolutionary 
lineages. This resulted in 11 age groups: Cellular organisms, 
Eukaryota, Green plants/Viridiplantae, Land plants/Embryophyta, 
Vascular plants/Tracheophyta, Seed plants/Spermatophyta, 
Flowering plants/Magnoliopsida, Eudicots, Rosids, Brassicaceae, 
and A. thaliana. Each orthologous group was assigned an 
evolutionary age based on the oldest lineage of all the genes in the 
group, that is the earliest common ancestor of the orthologous 
group. For example, if an orthologous group contains one 
A. thaliana gene, two genes from species in the Brassicaceae 
lineage, and one gene from Selaginella moellendorffii in the 

3 https://bioinformatics.psb.ugent.be/plaza/versions/plaza_v5_dicots/

vascular plant lineage, the age of this A. thaliana gene (or the 
whole orthologous group) is Vascular plants/Tracheophyta. The 
gene families, which have orthologs in other species other than 
A. thaliana were called “conserved genes”. The other genes only 
found in A. thaliana were called “non-conserved genes”. 
We obtained 26,117 (95% in all genes) conserved and 1,329 (5%) 
non-conserved genes.

To identify conserved miRNAs, the 428 A. thaliana miRNAs 
were searched against all the mature miRNAs of other species 
deposited in miRBase (release 22) using BLASTN. We chose the 
hits with E-value ≤0.01, ≥90% of the query and subject sequences 
covered, and ≤2 mismatches allowed. 200 (47%) A. thaliana 
miRNAs satisfying the above criteria were selected as “conserved 
miRNAs” while the other 228 (53%) miRNAs were specific to 
A. thaliana and called “non-conserved miRNAs.” Species in 
miRBase were also classified to the same eleven age groups, just 
like the species classification of protein-coding genes. Evolutionary 
ages of conserved miRNAs were estimated in a similar way as 
shown for protein-coding genes. The data shows that the group of 
Land plants is the oldest age of conserved miRNAs.

Interaction homogeneity and age 
preference

Randomization tests were performed to compare age 
homogeneity among different general fates (K, KL and G) of 
edges in the population-level miRNA–target regulation network. 
1,000 randomize networks were generated by randomly assigning 
each general fate to an edge in the original miRNA–target 
regulation network. The enrichment was calculated using Z-score 
and the p-value were corrected for multiple hypothesis testing. 
For the age homogeneity analysis in the miRNA–miRNA 
crosstalk network, we generated 1,000 randomized networks by 
permuting miRNA identifiers. The randomized networks have 
the same age and degree distributions as the observed network. 
Then, for each age group pair, we compared the observed number 
of interactions between the miRNAs to the expected number of 
interactions. A Z-score and a p-value were calculated based on 
this comparison. p-values were adjusted with Benjamini and 
Hochberg correction.

miRNA expression profile data

We downloaded two miRNA expression profiling data 
produced through Illumina sequencing. The dataset GSE79414 
(Xu et al., 2018) includes miRNA expression values in 27 different 
organ/tissue types, which cover the entire life cycle of A. thaliana. 
The dataset GSE66599 (Barciszewska-Pacak et al., 2015) includes 
miRNA expression values in a wide range of abiotic stress 
responses. Expression levels of miRNAs with their RPM values in 
all samples were downloaded. Expression values in multiple 
replicates for each sample were averaged. Expression values in 
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each sample were log2 transformed. We  combined the two 
datasets and removed miRNAs with expression values in 
<6 samples.

Pairwise Pearson’s expression correlation values between 
miRNAs were calculated and p-values were adjusted using Benjamini 
and Hochberg correction. Differences in the means of correlation 
coefficients among >2 miRNA–miRNA groups were analyzed using 
Analysis of Variance (ANOVA). TukeyHSD post-hoc method was 
used with the Benjamini and Hochberg correction.

Arabidopsis thaliana genes and miRNAs 
in response to stress

We collected A. thaliana stress-responsive genes from five 
databases, PSGDb (Plant Stress Gene Database, 5,589 genes, http://
bis.zju.edu.cn/PSGDb/), STIFDB2 (Stress Responsive Transcription 
Factor Database, 3,150 genes, http://caps.ncbs.res.in/stifdb2/; Naika 
et al., 2013), Plant Stress Gene Database (33 genes, http://ccbb.jnu.
ac.in/stressgenes/frontpage.html), PRGdb 4.0 (Pathogen Receptor 
Genes, 2,819 genes, http://prgdb.org/prgdb4/; Calle Garcia et al., 
2021), and DroughtDB (Drought Stress Gene Database, 101 genes, 
https://pgsb.helmholtz-muenchen.de/droughtdb/; Alter et  al., 
2015). The combined set contains 8,113 stress-related genes in 
A. thaliana involved in the plant tolerance to abiotic conditions 
(excessive or inadequate light, water, salt, temperature, ion and so 
on) and resistance to biotic conditions (insects and pathogen). 
Arabidopsis thaliana miRNAs related to their response to abiotic 
and biotic stress were obtained from PncStress4 (Wu et al., 2020). 
PncStress is a manually curated database of experimentally 
validated stress-responsive non-coding RNAs in plants. 
We obtained 162 A. thaliana miRNAs involved in plant tolerance 
to stresses including 28 abiotic stresses and four biotic stresses from 
77 reports. Each miRNA is associated with one to 18 types of stress.

Climatic data

Thousand one hundred thirty-one A. thaliana ecotypes among 
the 1,135 total ones have the latitude and longitude coordinates, 
which were used to query the WorldClim 2.1 database (released in 
January 2020, http://www.worldclim.org; Fick and Hijmans, 2017) 
for 19 climatic variables at a spatial resolution of 340 km2 (res = 10). 
The data was extracted using the raster package in R software. The 
climatic variables are based on yearly, quarterly, and monthly 
temperature and rainfall values. Principal component analysis of 
the climatic variables was conducted using the FactoMineR library 
in R (Supplementary Figure S1A). The first four principal 
components explained 83.9% of the variation. The first principal 
component was associated with temperature and the second 
principal component with precipitation. Pearson’s correlation 

4 http://bis.zju.edu.cn/PncStress/

coefficients between pairwise bioclimatic variables were calculated 
(Supplementary Figure S1B). In cases where variables were strongly 
correlated with one another, the variable with the most obvious link 
to the A. thaliana ecology was selected. Seven variables were used 
in the analyses, which are temperature seasonality, maximum 
temperature of warmest month, mean temperature of wettest 
quarter, mean temperature of coldest quarter, precipitation of 
wettest month, precipitation of driest month, and precipitation  
seasonality.

We used standard deviation to evaluate whether a group of 
ecotypes experienced similar climatic variables. For a climatic 
variable, the less the standard deviation from the average value, 
the more likely that the group of ecotypes share similar climatic 
values. To get a p-value, we randomly sampled the same number 
of ecotypes as the observed ecotype group, and repeated the 
permutation 1,000 times. The empirical p-value was calculated as 
the fraction of permutations that gave a smaller standard deviation 
value than that of our observed ecotype group. For multiple 
groups of ecotypes, the p-values were adjusted using Benjamini 
and Hochberg correction. A group of ecotypes share a similar 
climatic variable significantly under adjusted p-value <0.05.

Network visualization and topological 
analysis

miRNA–miRNA crosstalk network was visualized in 
Cytoscape with yFiles organic layout (Shannon et  al., 2003). 
Several topological features of the network were calculated using 
the “Analyze Network” tool (Assenov et al., 2008). Node degree 
measures the number of edges linked to a certain node. Node 
betweenness and edge betweenness are defined as the total number 
of nonredundant shortest paths going through a certain node and 
edge, respectively. Qualitatively, nodes with a high degree are 
considered as hubs, nodes with high betweenness are bottlenecks, 
and edges with high betweenness are bridges. To facilitate our 
calculations and discussion, we quantitatively defined hubs as the 
top 15% miRNAs with the highest degree values. Accordingly, 
bottlenecks were defined as the miRNAs that are in the top 15% in 
terms of node betweenness. Bridges are all edges in the top 15% of 
the edge betweenness values. To disentangle the topological and 
functional roles of hubs and bottlenecks, we divided all nodes in 
the network into four classes: hub-bottlenecks, hub- 
nonbottlenecks, nonhub-bottlenecks, and nonhub-nonbottlenecks 
(see the illustration in Supplementary Figure S2).

Functional enrichment analysis of 
miRNAs

For a given miRNA, we first obtained a combined set of target 
transcripts co-regulated by this miRNA and its cooperative 
miRNAs. Then, we  associated this miRNA with biological 
functions based on the functional enrichment analysis of the 
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combined target set. Functional enrichment was conducted using 
clusterProfiler (v3.18.1; Yu et al., 2012; Wu et al., 2021) in R based 
on GO (Ashburner et al., 2000; Gene Ontology Consortium, 2021) 
biological process annotation. Arabidopsis thaliana whole-genome 
transcripts were taken as the reference set. clusterProfiler supports 
up-to-date gene annotation of thousands of species. Finally, 
we performed a REVIGO semantic relevance analysis to extract 
concentrated representative GO terms (Supek et al., 2011).

Data availability

All of the public datasets and tools used in this study were 
listed in Supplementary Table S2.

Results

Static and dynamic miRNA–target pairs 
prefer to different age groups of miRNAs

To systematically delineate miRNA–target transcript regulation 
across multiple ecotypes, we generated a population-level miRNA–
target regulation network using a multi-step method (see Materials 
and methods). It contains 9,036 miRNA–target pairs involving 371 
miRNAs and 6,860 target transcripts encoded by 4,162 protein-
coding genes from 1,135 ecotypes (Supplementary Table S3). For 
the reference genome of Col-0, there are 6,093 miRNA–target pairs 
involving 333 miRNAs and 4,572 target transcripts encoded by 
2,791 protein-coding genes. Among the Col-0 miRNA-target pairs, 
1,229 (20.2%) pairs contain reliable miRNA binding sites, which 
were validated by degradome-seq data (Supplementary Text S1; 
Supplementary Table S3; Supplementary Figure S3). The potential 
gain and loss of miRNA targets were obtained by comparing the 
miRNA–target pairs in the ecotypes with those in the reference 
genome (Formulas 1–3). Each miRNA–target pair was assigned a 
general fate as K for keeping present in the reference genome and 
all ecotypes, KL for presence in the reference genome and some 
ecotypes but absence in at least one ecotype, or G for absence in the 
reference genome but presence in at least one ecotype. The 
miRNA–target pair with the general fate of KL or G is called 
dynamic regulation, and the miRNA–target pair with the general 
fate of K is called static regulation. We obtained 3,813 miRNA–
mRNA pairs with K, 2,280 with KL, and 2,943 with G.

To investigate the general age preference of the miRNA–target 
regulations, we analyzed whether regulations prefer miRNAs and 
transcripts of old or new evolutionary ages (see Materials and 
methods). For miRNA–target pairs with the general fate of K, 
we noted strong preferences of miRNAs from Flowering plants or 
older age groups for targeted transcripts from Brassicaceae or older 
age groups, of miRNAs from Rosids for transcripts from Green 
plants, and of miRNAs from Brassicaceae for transcripts from 
Flowering plants or Rosids (Figure 2A). For miRNA–target pairs 
with the general fate of G, miRNAs from A. thaliana were found to 

prefer to bind conserved transcripts, and miRNAs from Rosids 
preferred to bind transcripts from Vascular plants, Eudicots, or 
Brassicaceae (Figure 2B). For miRNA–target pairs with the general 
fate of KL, miRNAs from A. thaliana and Brassicaceae preferred to 
regulate conserved transcripts from Brassicaceae or older age 
groups. Besides that, we observed a strong preference of miRNAs 
from Eudicots or older age groups for conserved targets from 
Rosids or older age groups (Figure 2C). Hence, the static miRNA–
target pairs, present in the reference genome and all ecotypes (with 
the general fate of K), are enriched between conserved miRNAs and 
conserved target transcripts. However, the dynamic regulatory pairs 
that are absent from the reference genome but gained in some 
ecotypes (with the general fate of G), show a different pattern from 
that of the static regulatory pairs and are overrepresented between 
non-conserved miRNAs and conserved targets. Interestingly, the 
miRNA–target pairs with the general fate of KL presented both 
patterns, in which both non-conserved and conserved miRNAs 
prefer to regulate conserved targets. Obviously, the general fates of 
miRNA–target pairs relate with the conservation of miRNAs, that 
is conserved (relating with the general fates of K and KL) and 
non-conserved (relating with the general fates of G and KL).

The correspondence of dynamic and static regulation fates of 
miRNA–target pairs to miRNAs with different conservation 
leads us to examine the difference in variant density between 
conserved and non-conserved miRNA classes. Since the miRNAs 
that contain any short indel (including short insertion or 
deletion variant) were deleted from the calculation of miRNA 
target prediction, only SNPs were considered in the miRNA 
sequences but both SNPs and short indels could be found in 
their upstream and downstream regions. Variant density of a 
region suggests the number of variants divided by the length of 
the region. We  observed that the non-conserved miRNAs 
exhibited higher variant density than the conserved miRNAs 
(Mann–Whitney test, p-value = 3.9e-27; Supplementary  
Figure S4). The variant density is higher in the non-conserved 
miRNAs than in the upstream and downstream 5-kb regions 
(ANOVA, p-value <0.01), whereas the variant density is lower in 
the conserved miRNAs than in the upstream and downstream 
regions (p-value <2e-10; Supplementary Figure S4). A similar 
result has been reported in human (Han and Zheng, 2013) and 
rice (Liu et  al., 2013). The miRNAs that keep the regulation 
toward target transcripts in the reference genome and the 
ecotypes (the general fate = K) are likely to be  the conserved 
miRNA with a low SNP density. In contrast, the miRNAs that 
gain new targets in some ecotypes (the general fate = G) are 
enriched for the non-conserved ones with a high SNP density.

Quality evaluation of miRNA–miRNA 
crosstalk

We designed a coreg score to estimate the possibility that two 
miRNAs co-regulate a common target based on their regulation 
fate profiles (see Materials and methods; Figures  1A–D). 
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We defined a wide range of coreg thresholds from 0 to 1 in order 
to identify miRNA–miRNA crosstalk across ecotypes. If two 
miRNAs regulate a target with the coreg score smaller than the 
threshold, the target will be removed from the common target set. 
Under each threshold, the initial “unfiltered” miRNA–miRNA 
pairs that share at least one target were divided to two miRNA pair 
datasets, namely the “deleted” miRNA pairs where all common 
targets were removed and the “final” miRNA pairs where at least 
one target was kept. Based on the expression compendium 
combined from the miRNA expression values of diverse organ/
tissue types and abiotic stress responses, average Pearson’s 
correlation coefficients between two miRNAs in the two datasets 

were calculated (see Materials and methods; Figure  3A). The 
average expression correlation coefficients between miRNA pairs 
in the “final” and “deleted” datasets generally increased, suggesting 
that the larger the coreg values are, the higher expression 
correlations the miRNA pairs have. We  observed that the 
expression correlation coefficients in the “deleted” dataset 
increased sharply from 0.18 to 0.24 when the coreg threshold was 
0.85, but the increase slowed down after that. Thus, the coreg 
threshold of 0.85 was set to filter the initial miRNA–miRNA pair 
dataset that share at least one target. The constructed miRNA–
miRNA crosstalk network contains 200 miRNAs and 506 
cooperative interactions which co-regulate 612 transcripts 

A B

C

FIGURE 2

Age preference for miRNA–target regulations. The analysis was conducted for miRNA–target regulations with the general fates as (A) K, (B) G, and 
(C) KL. The observed number of regulatory pairs with the same fate within and between age groups in the real network was compared with the 
expected numbers in 1,000 randomized networks, which were generated by randomly assigning each general fate to an edge in the original 
network. The enrichment was calculated using Z-score (labeled within and between age groups) and the corrected p-value for multiple 
hypothesis testing (see Materials and methods). Overrepresentative results are shown in red and underrepresentative results are in green. The 
miRNAs are on the vertical axis and the target transcripts are on the horizontal axis. The oldest age of conserved miRNAs is Land plants.
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(Figure  4, see detailed node and edge information in 
Supplementary Table S4). The miRNA–miRNA pairs co-regulate 
10.8 transcripts on average with the maximum number of 48 
(Supplementary Figure S5A). Specifically, for 382 (62.4% in 612) 
transcripts, each is co-regulated by only one miRNA–miRNA pair, 
while each of the remaining 230 transcripts is co-regulated by two 
to 105 miRNA–miRNA pairs (Supplementary Figure S5B).

Our network presents scale-free characteristics 
(Supplementary Figure S6A), indicating that most miRNAs are 
poorly connected and a few miRNAs are connected with a 
relatively large number of miRNA partners. The miRNA–miRNA 
synergistic networks in human (Hua et al., 2014; Shao et al., 2019) 
and plants (Xu et al., 2014; Banerjee and Mal, 2020) also show the 
scale-free structure. We  disentangled the topological and 
functional roles of two complementary topological properties, 
namely hubs and bottlenecks (see Materials and methods; 
Supplementary Text S2). Bottlenecks tend to be more important 
mediators for network communication than nonbottlenecks in the 
miRNA–miRNA crosstalk network (Supplementary Figure S6B). 
miRNAs in the network might regulate the transcripts that 
participate in plant developmental process, reproduction, and 
signaling pathways (Supplementary Figure S6C).

To evaluate the performance of our method, we  test the 
identified cooperative miRNA–miRNA pairs in terms of (1) 
expression correlations, (2) PPImiRFS scores, and (3) tendency to 
respond to the same type of stress. It has been revealed that most 
of synergistic miRNA pairs tend to be co-expressed, which may 
help make a rapid response to external disturbances (Zhang et al., 
2019). We compared the expression correlation coefficients of the 
“final” miRNA pairs with those of the “unfiltered,” “deleted” and 
randomized (“random”) datasets. “Unfiltered” dataset contains the 
initial miRNA pairs (818 pairs among 270 miRNAs) that 
co-regulate at least one target before calculating the coreg score. As 
shown in Figure 3B, the mean correlation coefficients of the “final” 
dataset (mean = 0.59 ± 0.02 also shown in Figure 3A, 0.02 is the 
standard error) is significantly higher than those of the other three 
datasets (ANOVA, mean = 0.5 ± 0.02 for the “unfiltered” dataset 
and p-value = 5e-8, mean = 0.24 ± 0.04 for the “deleted” dataset and 
p-value = 8e-13, and mean = 0.1 ± 0.02 for the “random” dataset 
and p-value <2e-16). Expression correlations for the “final” 
miRNA pairs are listed in Supplementary Table S4. Furthermore, 
we classified miRNA–miRNA pairs into three groups according to 
the conservation of miRNAs, and assessed the density of 
expression correlation values in different groups. Except for the 
non-conserved and conserved miRNA–miRNA group, the “final” 
pairs showed a stronger expression correlation than the “deleted” 
and “random” ones (ANOVA, all p-values <0.05; 
Supplementary Figure S7). Previous studies have shown that 
conserved and non-conserved miRNAs have different expression 
patterns in A. thaliana. Conserved miRNAs tend to 
be  constitutively activated while expression of non-conserved 
ones is more organ-specific (Yang et al., 2011; Xu et al., 2018). In 
addition, the expression levels of conserved miRNAs are much 
higher than non-conserved ones across organs/tissues types  

(Xu et al., 2018). These differences in expression patterns between 
conserved and non-conserved miRNAs may account for the 
significant lower expression correlation of the “final” miRNA pairs 
in the conserved and non-conserved group (Mean = 0.1 ± 0.03) 
than those in the other two conservation groups (ANOVA, 
mean = 0.66 ± 0.02 for conserved and conserved pairs and p-value 
<2e-16, mean = 0.58 ± 0.08 for non-conserved and non-conserved 
pairs and p-value = 4e-7; Supplementary Figure S7).

The functional similarity scores of miRNAs in A. thaliana 
have been inferred from the functional similarity of their target 
sets using the PPImiRFS method (Meng et al., 2015). A protein–
protein interaction network with semantic similarity weights of 
edges generated using GO terms was constructed and the 
functional similarity scores were calculated using graph theoretical 
properties (Meng et al., 2015). To verify our results, PPImiRFS 
scores were compared in the above four miRNA–miRNA datasets 
(Figure 3C, PPImiRFS scores for the “final” miRNA pairs are in 
Supplementary Table S4). The average PPImiRFS score of the 
“final” dataset (mean = 0.78 ± 0.01) is significantly higher than 
those of the other three datasets (ANOVA, all p-values = 6.6e-11, 
mean = 0.64 ± 0.01 for the “unfiltered” dataset, mean = 0.41 ± 0.01 
for the “deleted” dataset, and mean = 0.41 ± 0.01 for the “random” 
dataset). There is no difference of PPImiRFS for the miRNA–
miRNA pairs between the “deleted” and “random” datasets 
(Figure  3C). Thus, PPImiRFS clearly verify the utility of our 
method for producing cooperative miRNA pairs.

Meng et al. (2015) reported that the miRNA pairs responding 
to the same type of stress have higher functional similarity than 
the miRNA pairs responding to different types of stresses. 
We gathered a set of 162 miRNAs of A. thaliana, which were 
experimentally verified to be associated with stress responses (see 
Materials and methods; Supplementary Table S2). Firstly, 
we investigated whether our miRNA–miRNA crosstalk network 
is enriched with stress-responsive miRNAs. Compared with the 
162 stress-responsive miRNAs out of the 428 A. thaliana miRNAs 
registered in miRBase, 108 stress-responsive miRNAs were 
identified from our miRNA pairs among 200 miRNAs. Thus, the 
miRNA–miRNA crosstalk network is significantly enriched with 
miRNAs in response to stress (Fisher’s exact test, p-value = 8e-11). 
Notably, 91% (147 out of 162 total ones) of stress-responsive 
miRNAs are conserved, whereas only 20% of the miRNAs that 
have not been reported to respond to stresses, are conserved. 
Thus, stress-responsive miRNAs tend to be conserved (Fisher’s 
exact test, p-value = 2e-50). We further observed that 308 (60.9% 
of 506 total pairs) of our identified miRNA–miRNA pairs 
respond to the same types of stresses, which is significantly 
greater than that in the “unfiltered,” “deleted,” and “random” 
datasets (Figure 3D, stresses shared by the miRNA pairs are also 
listed in Supplementary Table S4). Therefore, the miRNA–
miRNA crosstalk network is enriched with miRNA pairs 
responding to identical stress, indicating they are involved in 
similar functions.

In conclusion, our identified cooperative miRNA pairs tend 
to be highly co-expressed, respond to identical types of stresses, 

https://doi.org/10.3389/fpls.2022.958520
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2022.958520

Frontiers in Plant Science 11 frontiersin.org

and associated with high PPImiRFS scores. The miRNA–miRNA 
crosstalk network is reliable and enriched for genuine positive.

miRNA–miRNA crosstalk preferentially 
occurs between miRNAs of similar age

To assess the interaction preference of miRNA pairs in 
different conservation groups, we  analyzed the conservation 
enrichment in the “final,” “deleted,” and “unfiltered” datasets, and 
then compared with the “random” dataset 
(Supplementary Table S5). The “final” and “unfiltered” datasets 
attract more conserved and conserved miRNA pairs than expected 
by random (Z-test, p-value = 3.9e-7 for the “final” and 
p-value = 4.9e-5 for the “unfiltered”), and are underrepresented 
with miRNA pairs with different conservations, that is conserved 
and non-conserved pairs (Z-test, p-value = 3.1e-22 for the “final” 
and p-value = 1.4e-37 for the “unfiltered”). Furthermore, 

we  analyzed whether cooperative miRNA pairs in the “final” 
dataset prefer to interact within or between age groups. Figure 5A 
shows high Z-scores are found on or near the main diagonal of the 
age group matrix, demonstrating a crosstalk preference toward the 
own age group or to the next age groups.

MiRNAs belonging to the same family show more similar 
functions than the miRNAs of different families, which have 
been supported by the miRNA–miRNA crosstalk networks in 
different species (Xu et al., 2011; Sun et al., 2013; Chen et al., 
2014; Meng et  al., 2015; Shao et  al., 2019). We  inferred the 
relationship between the cooperative miRNA pairs and the 
miRNA families. Our miRNA–miRNA crosstalk network 
contains 284 intra-family miRNA pairs and 222 inter-family 
pairs. Compared with the numbers of all possible intra- and 
inter-family pairs derived from the miRNAs in miRBase, our 
network is enriched with homologous miRNA pairs, that is 
miRNA–miRNA crosstalk within miRNA families (Fisher’s 
exact test, p-value = 1.9e-316). According to the conservation 

A B

C

D

FIGURE 3

Validation of cooperative miRNA–miRNA pairs. (A) Average Pearson’s expression correlation coefficients of the miRNA pairs in the “final” (red line) 
and “deleted” (green line) datasets under a certain coreg threshold (0 ≤ coreg ≤ 1). The coreg threshold of 0.85 (dotted line) was used to filter the 
initial “unfiltered” miRNA pairs that share at least one target transcript. Under this threshold, the correlation coefficient of the miRNA pairs sharply 
increased in the “deleted” dataset. (B) Quality evaluation of the miRNA–miRNA crosstalk network using expression profiles. Correlation coefficient 
values were ranked increasingly for all miRNA pairs in the four datasets: “unfiltered”—the initial miRNA pairs dataset that share at least one target 
transcript (black line), “final”—the miRNA–miRNA crosstalk dataset after filtering the initial dataset using the coreg threshold of 0.85 (red line), 
“deleted”—the miRNA pairs that have no common target under the coreg threshold of 0.85 (green line), and “random”—the randomized miRNA 
pairs with the same topology as the “final” network, and generated by shuffling the node labels while keeping the edges constant (blue line). The 
“final” dataset shows the significantly highest expression correlation coefficient. (C) Evaluation of miRNA pairs using PPImiRFS. PPImiRFS scores 
were ranked increasingly in each dataset. PPImiRFS was used to infer the functional similarity scores of miRNA pairs based on a protein–protein 
interaction network with semantic similarity weights generated using GO terms and graph theoretical properties (Meng et al., 2015). The “final” 
dataset corresponds to the highest PPImiRFS scores. (D) Fraction of the miRNA pairs in response to the identical type of stress. The “final” dataset 
obtained the highest fraction of miRNA pairs responsive to the identical type of stress, and the “deleted” pairs showed the lowest value.

https://doi.org/10.3389/fpls.2022.958520
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2022.958520

Frontiers in Plant Science 12 frontiersin.org

of miRNA members, 48 multiple-member families were 
divided into 26 conserved ones (>50% members are conserved) 
and 22 non-conserved ones (>50% members are 
non-conserved). 88% (23 out of 26) of the conserved families 
contain homologous miRNA pairs that are in our miRNA–
miRNA crosstalk network, whereas the proportion of 
homologous miRNA pairs in the non-conserved families 
decreased to 59% (13 out of 22). In addition, the conserved 

families are of larger size than the non-conserved ones 
(Figure 5B; Mann–Whitney test, p-value = 0.002). Interestingly, 
the miRNA families that contain the largest number of 
cooperative homologous miRNA pairs are conserved families. 
Five conserved families (ath-miR156/157, ath-miR169, 
ath-miR165/166, ath-miR159/319, ath-miR395, and 
ath-miR172) contain 11–93 cooperative homologous miRNA 
pairs, comprising 40% to 100% of all possible intra-family 

FIGURE 4

Global visualization of the miRNA–miRNA crosstalk network. A circle node represents miRNA. Node size is proportional to the degree of miRNAs. 
Bottleneck nodes (the top 15% miRNAs with the highest node betweenness values) are in the gray border. Red nodes indicate conserved miRNAs, 
while green nodes are non-conserved miRNAs. An edge represents crosstalk between two miRNAs. Edges in dotted lines indicate bridges (the 
top 15% edges with the highest edge betweenness values). Edges are colored according to the crosstalk types, which are SS type in black, DD type 
in blue, SD type in orange, and unclassified type in light green.
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member pairs (Supplementary Table S6). These results suggest 
that conserved and non-conserved miRNA families are 
somewhat different: the conserved miRNA families are of 
larger size and therefore contribute more to the crosstalk 
among miRNAs.

Static and dynamic miRNA–target 
regulations contribute to the cooperative 
miRNA pairs acting various biological 
characteristics

To understand how two miRNAs cooperatively interact to 
regulate a group of transcripts across ecotypes, we defined the 
crosstalk type as DD, SS, or SD for each miRNA pair. The example 
showing the definition of the DD crosstalk type between 
ath-miR172b-5p and ath-miR172e-5p was displayed in 
Figure 1E. For ath-miR400 and ath-miR161.2 co-regulating 13 
transcripts, 12 transcripts are co-regulated with an co-regulation 
type of ss across ecotypes and thus SS is considered as the crosstalk 
type between the two miRNAs. As a result, there are 336 SS (gray 
edge in Figure 4), 31 DD (blue edge), 131 SD (orange edge) and 
eight unclassified (green edge) cooperative miRNA pairs in the 
network (Supplementary Table S4).

Since the static miRNA–target regulations are enriched with 
the conserved miRNAs and the dynamic miRNA–target 
regulations favor the non-conserved miRNAs (Figure  2), 
we  investigated the relationship between miRNA–miRNA 
crosstalk types and miRNA conservations. As a result, SS 
cooperative miRNA pairs prefer the conserved and conserved 
pairs (p-value = 2.5e-47), DD miRNA pairs prefer the 
non-conserved and non-conserved pairs (p-value = 4.9e-6), and 
SD miRNA pairs are enriched in the conserved and non-conserved 
pairs (p-value = 1.4e-34), as well as the non-conserved and 
non-conserved pairs (p-value = 5e-9; Supplementary Figure S8; 
Figure 6A). Thus, the conservation pattern of the miRNA pairs 
with different crosstalk types relates well with the conservation 
preference of miRNA–target regulations. Considering that 
conserved and non-conserved miRNA pairs have lower expression 
correlation than the other pairs in the miRNA–miRNA crosstalk 
network (red lines in Supplementary Figure S7), we compared 
expression correlation between the miRNA pairs with different 
crosstalk types. Expectedly, the SD miRNA pairs have the lowest 
expression correlation (mean = 0.27 ± 0.05, ANOVA, p-value 
<1.2e-10; Figure 6B), which is in agreement with their preference 
for non-conserved and conserved miRNA pairs. Interestingly, the 
DD miRNA pairs are better co-expressed than the SS miRNA 
pairs (mean = 0.97 ± 0.02 for DD pairs, mean = 0.63 ± 0.02 for SS 
pairs, p-value = 1.2e-4). In addition, global view of the miRNA–
miRNA crosstalk network and Fisher’s exact tests showed that DD 
(p-value = 3e-6, odds ratio = 12.4) and SS (p-value = 6e-14, odds 
ratio = 4.3) miRNA pairs are more likely to be  homologous 
miRNA pairs, whereas the SD miRNA pairs tend to be in different 
families (p-value = 8e-26, odds ratio = 0.09). Furthermore, 84% 

(281 out of 336 SS ones) SS miRNA pairs respond to the identical 
type of stress and the number is significantly larger than expected 
by random (empirical p-value = 0; see Materials and methods). By 
contrast, only 19% DD pairs and 14% SD pairs respond to the 
identical type of stress (Supplementary Table S7 and see the 
detailed information in Supplementary Table S4). Therefore, the 
miRNA–miRNA pairs responding to the identical type of stress 
favor SS interactions, which may be attributed to the enrichment 
of stress-responsive miRNAs in the conserved ones. In general, the 
cooperative miRNA interactions with different crosstalk types 
present various biological characteristics in terms of miRNA 
conservation, expression, homology, and stress response.

An edge with a high edge betweenness centrality indicates 
that it acts as a bridge-like connector between two subgraph 
clusters. Deletion of the bridge may affect the communication 
between many pairs of nodes through the shortest paths divided 
by the two subgraph clusters (Girvan and Newman, 2002). By 
taking the whole network as the background, we found the SD 
miRNA pairs (orange edges in Figure 4) are enriched for bridge 
edges (dotted edges in Figure  4; Fisher’s exact test, 
p-value = 8.8e-18, odds ratio = 9.5). The majority of SD miRNA 
pairs involve the three hub-bottlenecks, ath-miR5021, 
ath-miR5658, and ath-miR414, that are with the highest degree 
and the highest node betweenness. Another example is two SD 
miRNA pairs, one between ath-miR838 and ath-miR156j, and 
the other between ath-miR838 and ath-miR156h, are bridges 
linking two inter-connected subgraph clusters (Figure  4; 
Supplementary Figure S9). Bridge edges preferentially link two 
bottleneck miRNAs (Fisher’s exact test, p-value = 1e-16), 
emphasizing that the bridges take an important topological role 
in connecting different subgraphs together. In addition, edge 
betweenness values of the cooperative miRNA pairs are 
negatively correlated with their expression correlations 
(Pearson’s correlation, p-value = 2e-11), which is consistent with 
the observation that the SD miRNA pairs have a much lower 
expression correlation than the other types of cooperative 
miRNA pairs in the network (Figure 6B). These suggest that the 
SD miRNA pairs may act as the bridges between two different 
subgraph clusters to enhance their communications.

For the DD miRNA–miRNA crosstalk, the two miRNAs’ 
regulations toward their common targets were gained or 
dropped together in the same ecotypes. We  investigated 
whether the DD miRNA pairs target more stress-responsive 
genes than the miRNA pairs with the other crosstalk types. To 
this end, we  combined five databases of stress-responsive 
genes in plants and obtained 8,113 abiotic and biotic stress-
responsive genes in A. thaliana (see Materials and methods). 
A total of 129 stress-responsive genes are targeted by 
cooperative miRNA pairs in our network 
(Supplementary Table S4). The DD miRNA pairs co-regulate 
the most stress genes compared with the SS (ANOVA, 
p-value = 0.02) and SD (p-value = 9e-8) miRNA pairs. SS-type 
miRNA pairs co-regulate more stress genes than SD miRNA 
pairs (p-value = 3e-9; Figure  6C). The ath-miR854 family 
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members cooperatively regulate five stress genes, including 
AT1G80440 and AT4G37180 encoding transcription factors 
involved in the abiotic stress (drought, cold, and salt) 
responses, AT1G15530 and AT4G23210 as disease resistance 
genes involved in defense response to bacterium, and 
AT3G10630 encoding DP-glycosyltransferase superfamily 
protein. The miRNA expression profiling data produced by 
Barciszewska-Pacak et al. (2015) (GSE66599) showed that the 
ath-miR854 family members were significantly down-
regulated under drought stress and slightly up-regulated 
under high-salinity stress, supporting our result that the 
ath-miR854 members cooperate with each other to regulate 
stress-responsive genes (Supplementary Table S8). Another 
example includes ath-miR172b-5p and ath-miR172e-5p with 
the DD crosstalk type. The two miRNAs co-regulate four 
stress-responsive genes, including AT2G16500 (encoding 
arginine decarboxylase 1, ADC1) involved in response to 
abiotic stresses (cold, drought, ion, and salt), AT5G48410 
(glutamate receptor 1.3, GLR1.3) involved in response to ion 
and light stimuli, AT3G57330 (auto-inhibited Ca2+-ATPase 
11, ACA11) participated in defense response to bacterium, 
and AT2G22950 (auto-inhibited Ca2+-ATPase 7, ACA7). The 
miRNA expression data by Barciszewska-Pacak et al. (2015) 
showed that both ath-miR172b-5p and ath-miR172e-5p were 
significantly up-regulated under drought and high-salinity 
stresses, and also slightly down-regulated under copper 
deficiency, consisting with our finding from the miRNA–
miRNA crosstalk network (Supplementary Table S8).

Case studies for the dynamic state of 
miRNA–target regulations in specific 
ecotypes

Since both mutant-type miRNAs and mutant-type transcripts 
for each ecotype were considered in predicting miRNA–target 
regulations, SNPs within the mature miRNAs or the miRNA 
binding sites on the targets could cause gain or loss of the 
regulatory pairs in specific ecotypes (Gong et  al., 2012). In a 
miRNA–miRNA–target co-regulation motif, SNPs within the 
miRNA binding site on the target could affect both regulatory 
pairs, while SNPs within one miRNA sequence may impact the 
regulation by itself. For the dd co-regulation motifs, in which both 
miRNA–target regulatory pairs are reprogrammed in specific 
ecotypes, are the dynamic state of both regulatory pairs likely to 
be associated with the SNPs within the miRNA binding site on the 
target? For the sd co-regulation motifs, in which only one 
miRNA–target regulation is reprogrammed, is the dynamic state 
of this regulatory pair likely to result from the SNPs within the 
miRNA that dynamically regulates the target? Indeed, 78% of the 
sd co-regulation motifs in our network are disrupted because of 
the SNPs in the mature miRNA sequences, 15% are attributed to 
the SNPs in miRNA binding sites, and the left 7% are associated 
with the SNPs in both kinds of regions. However, among the dd 
co-regulation motifs, 95% are dynamically gained or lost because 
of the SNPs in the miRNA binding sites on targets and only 3% are 
caused by the SNPs in the mature miRNAs (See examples in 
Supplementary Text S3). Therefore, the dynamic state of 

A B

FIGURE 5

Cooperation age preference for miRNA pairs. (A) Cooperation age preference for miRNA pairs. The observed number of cooperative miRNA pairs 
within and between age groups in the real network was compared with the expected numbers in the 1,000 randomized networks with the same 
degree and age distributions (see Materials and methods). The enrichment was calculated using Z-score (labeled within and between age groups) 
and the corrected p-value for multiple hypothesis testing. Overrepresentative results are shown in red and underrepresentative results are in green 
(see the same legend in Figure 2). (B) Distribution of the family size for the conserved (gray bar) and non-conserved (dotted bar) miRNA families. 
The conserved miRNA families are of larger size than the non-conserved ones.
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miRNA–target regulations in the sd and dd co-regulation motifs 
are likely to be  associated with the SNPs within the miRNA 
sequence and the miRNA binding site, separately. miRNA 
regulation could be reprogrammed in different genomes. We then 
investigated the ecotypes, in which the multiple dynamic 
regulations toward each transcript are gained or lost, and 
discussed whether these ecotypes are exposed to similar or diverse 
climatic conditions. Three case studies were also presented 
as follows.

There are 230 transcripts co-regulated by multiple miRNA 
pairs. Among them, 32 transcripts are involved in multiple dd 
miRNA–miRNA–target co-regulation motifs. The dynamic 
regulations toward the 32 transcripts are gained or dropped 
because of the SNPs within the miRNA binding sites on targets. 
Moreover, the multiple dynamic regulations toward each 
transcript are gained or dropped in the same ecotype groups. 

Taking AT5G42040.1 (RPN12B, regulatory particle non-ATPase 
12B) as an example, it is regulated by seven members of the 
ath-miR156 family, constituting 21 dd co-regulation motifs (in the 
left and middle panels of Figure 7A; Supplementary Table S9). All 
of the seven miRNAs gain the target transcript in the same 22 
ecotypes because of the SNP (T-to-A) in the 3′UTR located within 
the miRNA binding site on AT5G42040.1. Among the 22 ecotypes, 
21 ecotypes are distributed in Sweden and the remaining one is in 
Romania (in the right panel of Figure 7A). Interestingly, the 22 
ecotypes are exposed to a very similar temperature and 
precipitation conditions, evaluated with all of the seven climatic 
variables (see Materials and methods; Supplementary Table S9).

In addition, there are 65 transcripts involved in multiple sd 
co-regulation motifs. 27 (42%) transcripts are dynamically 
regulated by at least two miRNAs with fate as KL and the 
dynamic regulations toward these targets are related to SNPs 

A B

C D

FIGURE 6

Biological significance of SS, DD, and SD miRNA–miRNA crosstalk. (A) Z-score distribution of the SS, DD, and SD miRNA pairs in different 
conservation groups. miRNAs are classified into conserved (CS) and non-conserved (non-CS) groups. The observed number of miRNA pairs with 
the same crosstalk type between conservation groups in the real network was compared with the expected number in the 1,000 randomized 
networks, which were generated by randomly assigning each crosstalk type to an edge in the original network (see Materials and methods). The 
enrichment was calculated using Z-score and the corrected p-value for multiple hypothesis testing. The symbol * denotes p-value < 0.01 and ** 
denotes p-value < 0.001. (B) Expression correlation of miRNA pairs with different crosstalk types. Data are represented as the average Pearson’s 
correlation coefficient ± standard error. The symbol * denotes p-value < 0.01, and ** denotes p-value < 0.001 using Analysis of Variance (ANOVA) with 
the Tukey HSD post-hoc method and the Benjamini and Hochberg correction. (C) Number of stress genes co-regulated by the SS, DD, and SD 
miRNA pairs. (D) Distribution of the cooperative miRNA pairs in different ranks of PPImiRFS scores. PPImiRFS scores were sorted increasingly.
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in the miRNA sequences. We observed that the SNPs in the 
multiple miRNAs that dynamically regulate the same target 
lead to a drop of the regulations in different ecotype groups, 
which may have overlaps (20 out of 27 targets) or have no 
overlap (7 out of 27 targets). For instance, AT1G54160.1 
(NF-YA5, a CCAAT-binding transcription factor up-regulated 
by ABA and drought) is regulated by the hub-bottleneck 
ath-miR5658 and 14 members of the ath-miR169 family, 
constituting 36 sd co-regulation motifs (in the middle panel of 
Figure  7B; Supplementary Table S9). Only ath-miR5658, 
ath-miR169d, and ath-miR169g-5p dynamically regulate 
AT1G54160.1 (the general fate = KL), while the other miRNAs 
regulate the target with the general fate as K (in the left panel 
of Figure  7B). The regulation between ath-miR5658 and 
AT1G54160.1 is lost in 32 ecotypes due to the SNP at position 
17 (T-to-A) in ath-miR5658, which leads to the disruption of 
12 corresponding sd-type co-regulation motifs (gray edges in 
the middle panel of Figure  7B) in these 32 ecotypes. The 
regulation between ath-miR169d and AT1G54160.1 is lost in 
another two ecotypes due to the SNP at position 9 (G-to-T) in 
ath-miR169d, which contributes to the disruption of another 
12 sd-type co-regulation motifs (orange edges in the middle 
panel of Figure 7B). The regulation between ath-miR169g-5p 
and AT1G54160.1 is lost in the other two ecotypes due to the 
SNP at position 13 (G-to-A) in ath-miR169g-5p, which results 
in a collapse in the other 12 sd-type co-regulation motifs 
(green edges in the middle panel of Figure 7B). Furthermore, 
the three ecotype groups have no overlap. The 36 ecotypes are 
distributed in Spain, Sweden, Republic of Lithuania, and 
Republic of Estonia (in the right panel of Figure 7B) but are 
exposed to very similar temperature (maximum temperature 
of warmest month, mean temperature of wettest quarter) and 
precipitation (precipitation of wettest month, precipitation of 
driest month, and precipitation seasonality) conditions 
(Supplementary Table S9).

Different SNPs in the same miRNA sequence or in the same 
miRNA binding site probably have distinct effects on the 
miRNA–target regulation across ecotypes. 34 (58% of 65 ones) 
targets were involved in multiple sd co-regulation motifs and 
dynamically regulated by only one miRNA. Different SNPs 
within the miRNA (associated with eight targets) or the 
binding site on the target (associated with four targets) are 
likely to lead to the drop of the dynamic regulation in distinct 
ecotype groups. AT5G41610.1 (ATCHX18, member of Putative 
Na+/H+ antiporter family) is co-regulated by two miRNA–
miRNA pairs, ath-miR780.2 (the general fate = KL) and the 
hub-bottleneck ath-miR5021 (the general fate = K), as well as 
ath-miR780.2 and ath-miR856 (the general fate = K; in the 
middle panel of Figure  7C; Supplementary Table S9). The 
regulation between ath-miR780.2 and AT5G41610.1 is lost in 
eight ecotypes, which is divided to two distinct groups. The 
regulation between ath-miR780.2 and AT5G41610.1 is dropped 
in two ecotypes distributed in United States, which is related to 
two SNPs at positions 1 (T-to-A) and 2 (T-to-G) in the 

ath-miR780.2 sequence. It is also dropped in the other six 
ecotypes distributed in Sweden and Romania, which is related 
to another SNP at the position 6 (C-to-A) in ath-miR780.2. 
Interestingly, the eight ecotypes are distributed  
at similar latitudes (43–57 degrees N; in the right panel of 
Figure 7C), and are exposed to environments sharing similar 
precipitation of driest month and precipitation seasonality 
(Supplementary Table S9).

Discussion

The regulations toward a target may 
be reprogrammed in ecotypes exposed 
to similar climatic conditions

It is worthy to note that the general fate of a certain miRNA–
target regulation across ecotypes compared with its occurrence 
in the reference genome can be  classified as dynamic (the 
general fate as G or KL) or static (the general fate as K) class. 
We observed the dynamic fate in dd miRNA–miRNA–target 
co-regulation motifs is likely to be associated with SNPs in the 
miRNA binding sites on targets, whereas the dynamic fate in sd 
co-regulation motifs is mainly attributed to SNPs in the miRNA 
sequences. Different SNPs in the same miRNA sequence or 
miRNA binding site region may lead to the dynamic miRNA–
target regulation being lost or newly gained in different ecotype 
groups, which have overlaps or no overlap (see the case study in 
Figure 7C). For each of the 32 transcripts that are co-regulated 
via multiple dd co-regulation motifs, the miRNAs are in the 
same miRNA family. Thus, SNPs in the miRNA binding site on 
the target could exert an impact on the fate of nearly all of its 
regulations, being lost or gained in a similar ecotype group (see 
the case study in Figure 7A). In contrast, for 66% of the 65 
transcripts co-regulated via multiple sd-type co-regulation 
motifs, the miRNAs are from different families. SNPs in the 
miRNAs that dynamically regulate the target account for the 
regulations being lost in different ecotype groups (see the case 
study in Figure 7B). By taking the climatic variables of ecotypes 
into account, we found that the co-regulation motifs of a large 
proportion of the transcripts are newly gained, completely 
dropped, or collapsed in a list of ecotypes with similar climatic 
variables (Supplementary Table S10). Taking temperature 
seasonality as an instance, 82% of the targets in multiple dd 
co-regulation motifs and 84% of the targets in multiple sd 
motifs have lower standard deviations of temperature 
seasonality than those of the whole set of 1,131 ecotypes. For 
precipitation seasonality, the proportions are 82% of the targets 
in dd motifs and 90% in the sd motifs. Thus, in spite of the 
differences in terms of miRNA homology and SNP position 
between the dd and sd co-regulation motifs, the dynamic 
regulations toward most of the targets may be reprogrammed 
in a group of ecotypes exposed to similar ambient temperatures 
and/or precipitations.
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DD miRNA–miRNA crosstalk regulates 
more stress-responsive genes than SS 
and SD miRNA pairs

At the miRNA–miRNA crosstalk level, the DD and SS 
cooperative miRNA pairs co-regulate more stress-responsive 
genes than the SD miRNA pairs, and the DD miRNA pairs 
co-regulate the most stress genes (Figure 6C). Previous studies 
have detected signatures of positive selection in many 

stress-responsive genes in plants (Teng et  al., 2017; Bondel 
et al., 2018), which indicates that selective pressure associated 
with the environmental conditions may have caused the rapid 
evolution of genes involved in stress responses. Consistently, 
we  observed that SNPs in the miRNA binding sites on the 
targets account for the dynamic fate of the DD cooperative 
miRNA pairs across ecotypes, in which more than half of the 
targets are co-regulated with a dd co-regulation type. Under 
variable ecological niches, selection largely acts on the stress-
responsive genes, which results in the reprograming of the 
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FIGURE 7

Case studies for the dynamic miRNA regulations toward the targets, that are gained or dropped in specific ecotypes. Three transcripts are shown 
as examples, which are (A) AT5G42040.1 (RPN12B), (B) AT1G54160 (NF-YA5), and (C) AT5G41610.1 (ATCHX18). (Left panel) miRNA–target 
regulations. The targeted transcript is depicted with an orange triangle and the miRNA is depicted with a circle. Directed edges represent miRNA–
target regulations, including dynamic regulations (the general fate = G or KL, red edge) and static regulations (the general fate = K, gray edge). A blue 
circle indicates that the corresponding miRNA dynamically regulates the target, while a white circle represents a static regulation toward the 
target. The red symbol * beside a miRNA or a target denotes the reprogramming of the regulation attributed by the SNP(s) in the sequence. 
(Middle panel) Cooperative miRNA pairs co-regulating a transcript, defined as miRNA–miRNA–target co-regulation motifs. A circle node 
represents miRNA and an edge represents a crosstalk between two miRNAs. There are 21 dd-type, 36 sd-type, and 2 sd-type co-regulation motifs 
targeting (A) AT5G42040.1, (B) AT1G54160.1, and (C) AT5G41610.1, respectively. dd-type co-regulation motifs toward AT5G42040.1 are newly 
gained in the same 22 ecotypes, which is related to an SNP in the target (A). In contrast, sd-type co-regulation motifs are disrupted in non-overlap 
ecotype groups because of the SNPs in (B) different miRNAs sequences or (C) different SNPs in the same miRNA sequence. (Right Panel) Map 
showing the locations (longitude on x-axis and latitude on y-axis) from which the ecotypes employed in each case study originate. The region 
harboring the ecotypes (red dots) is included in a red dashed circle with the number of ecotypes labeled. For each ecotype group, the standard 
deviation values and adjusted empirical p-values of seven bioclimatic variables are listed in Supplementary Table S9.
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miRNA–miRNA cooperative regulation on these genes, that is 
two new miRNA–target pairs being gained or both original 
regulatory pairs being dropped in specific ecotypes.

SD miRNA–miRNA crosstalk may act as a 
“transient” bridge in the network

The SD miRNA pairs have a much lower expression 
correlation than the other types of cooperative miRNA pairs in 
the network (Figure  6B), reminiscent of the transient and 
permanent categories of protein–protein interactions. 
Transient protein interactions are formed only for a short 
period of time and then broken apart easily (in time), or are 
tissue- or cell type-specific interactions (in space), whereas 
permanent protein interactions are maintained through most 
cellular conditions (Perkins et al., 2010; Greene et al., 2015). 
Accordingly, permanent protein interactions have a particularly 
strong relationship with expression, while transient ones do 
not (Jansen et al., 2002; Bossi and Lehner, 2009). Most transient 
and permanent protein–protein interactions are important for 
cellular function (Ghadie and Xia, 2022). The low expression 
correlation between two miRNAs implies that they may 
transiently cooperate. Hence, the SD miRNA pairs may play as 
“transient” bridges between two different subgraph clusters in 
the network.

We found that our SD miRNA pairs have lower PPImiRFS 
scores (Meng et al., 2015) than the other two types of miRNA pairs 
(Figure 6D). The majority of our SD miRNA pairs correspond to 
the top ranked PPImiRFS scores (i.e., about 50% of SD pairs have 
the top 21% of PPImiRFS scores), whereas the DD miRNA pairs 
seldom appear among the top ranks (i.e., 50% pairs have the 
bottom 5% PPImiRFS scores). For instance, 13 miRNA pairs have 
the lowest PPImiRFS scores (from 0.07 to 0.37), among which 
there are 11 SD miRNA pairs. Interestingly, all of the 13 miRNA 
pairs involve ath-miR5021. ath-miR5021, ath-miR5658, and 
ath-miR414 have the highest degrees in our network and link with 
different miRNA families, most of which are with the crosstalk 
type as SD (Figure 4; Supplementary Table S4). Through these 
highly-connected miRNAs, the different clusters could 
communicate each other, demonstrating that these hub miRNAs 
also act as bottlenecks between the network clusters. We revealed 
that bottleneck miRNAs tend to be more important mediators for 
network communication than nonbottlenecks in the miRNA–
miRNA crosstalk network (Supplementary Figure S6B). In terms 
of functional roles, nonhub-bottleneck miRNAs regulate specific 
functions involved in the regulation of signal transduction and 
cellular response to gibberellin and alcohol (Supplementary  
Figure S6C). Hub-bottleneck miRNAs regulate transcripts in 
various functions (functions of ath-miR5021, ath-miR5658, and 
ath-miR414 are listed in Supplementary Table S11). ath-miR5021 
regulates transcripts involved in DNA recombination and repair, 
nucleosome assembly, pollination, leaf morphogenesis, regulation 
of anatomical structure morphogenesis, and glutamine family 

amino acid catabolic process. KEGG enrichment analysis using 
clusterProfiler reveals that ath-miR5021 is significantly enriched 
in the pathway of mismatch repair (adjusted p-value <0.05). 
ath-miR5021 was also identified as a novel miRNA processed in 
A. thaliana sperm cells and pollen (Borges et al., 2011). These 
support our GO biological annotation of ath-miR5021. Although 
the SD miRNA–miRNA crosstalk involving ath-miR5021 
correspond to the lowest PPImiRFS scores, our study reveals that 
ath-miR5021 regulates transcripts in various functions and 
cooperates with different miRNA families, through which these 
miRNA families could communicate in the network.

The global expression data based on the 
Col-0 genome

The expression data used here were produced in the 
background of reference genome Col-0 (Barciszewska-Pacak 
et al., 2015; Xu et al., 2018). Different ecotypes may present 
differential expression of some genes, especially the stress-
responsive genes. Differential expression of a major plant stress 
receptor IRE1 has been detected in A. thaliana ecotypes (Afrin 
et  al., 2020). Gene expression of the dehydrins, encoding 
proteins that help to mitigate the adverse effects of dehydration, 
differs across ecotypes in Norway spruce, which may be related 
to climatic variables, such as precipitation, temperature, and 
day-length (Cepl et al., 2020). In our study, expression profiles 
were used to assess the quality of the miRNA–miRNA crosstalk 
network, and compare the expression correlation between 
miRNA pairs in different groups. Assuming one miRNA is 
differentially expressed in an ecotype compared with the 
reference genome, the miRNA regulation is likely to be changed, 
probably in the form of a new target being gained, an original 
target being lost, or the target being kept but with a changeable 
(increased or decreased) binding affinity. It is interesting that 
the information on differential expression of this miRNA may 
be  reflected by the dynamic fate of its regulations in the 
ecotypes. Therefore, it is reasonable to infer that expression 
profiles based on the Col-0 genome are applicable to the 
analysis in our study.
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