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Sulfur is essential in plants because of its presence in numerous molecules

including the two amino acids, cysteine, and methionine. Cysteine serves

also for the synthesis of glutathione and provides sulfur to many other

molecules including protein cofactors or vitamins. Plants absorb sulfate from

their environment and assimilate it via a reductive pathway which involves,

respectively, a series of transporters and enzymes belonging to multigenic

families. A tight control is needed to adjust each enzymatic step to the cellular

requirements because the whole pathway consumes energy and produces

toxic/reactive compounds, notably sulfite and sulfide. Glutathione is known to

regulate the activity of some intermediate enzymes. In particular, it provides

electrons to adenosine 5′-phosphosulfate reductases but also regulates the

activity of glutamate-cysteine ligase by reducing a regulatory disulfide. Recent

proteomic data suggest a more extended post-translational redox control of

the sulfate assimilation pathway enzymes and of some associated reactions,

including the synthesis of both sulfur-containing amino acids, cysteine and

methionine, and of glutathione. We have summarized in this review the known

oxidative modifications affecting cysteine residues of the enzymes involved.

In particular, a prominent regulatory role of protein persulfidation seems

apparent, perhaps because sulfide produced by this pathway may react with

oxidized thiol groups. However, the effect of persulfidation has almost not yet

been explored.
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Introduction

Sulfate is the major source of sulfur for both aquatic and
terrestrial plants (Takahashi et al., 2011). After absorption,
the first step of the reductive assimilation of sulfate is its
adenylation to adenosine 5′-phosphosulfate (APS), a reaction
catalyzed by ATP sulfurylases (ATPS) (Figure 1; Bohrer and
Takahashi, 2016). In a primary sulfur metabolic pathway,
APS is reduced by APS reductases (APR) which form sulfite
(SO3

2−) at the expense of glutathione. Sulfite is then reduced
to sulfide by sulfite reductase (SIR) (Takahashi et al., 2011).
In the next step, the O-acetyl-serine thiol-lyases (OAS-TL)
promote the formation of cysteine by incorporating sulfide into
O-acetyl-serine formed by serine acetyltransferases (SERAT)
from serine. Both OAS-TL and SERAT are part of the cysteine
synthase complex (Wirtz et al., 2010). In addition to be part
of proteins, an important source of cysteine consumption is
the synthesis of methionine and glutathione. The two-step
synthesis of the glutathione tripeptide requires two ATP-
dependent enzymes, namely glutamate cysteine ligase (GCL/γ-
ECS/CAD2/GSH1) and glutathione synthetase (GSH2) (Müller-
Schüssele et al., 2020). Methionine biosynthesis occurs in three
consecutive reactions catalyzed by cystathionine γ-synthase
(CGS), cystathionine β-lyase (CBL), and methionine synthases
(MS) (Ravanel et al., 1998b). In a secondary sulfur metabolic
pathway, APS phosphorylation catalyzed by APS kinases
(APK) forms phosphoadenosine 5′-phosphosulfate (PAPS)
(Takahashi et al., 2011). PAPS provides sulfur for the synthesis
or modification of several secondary metabolites including
glucosinolates, peptides or hormones in reactions involving
sulfotransferases (SOT). Sulfate conjugation reactions catalyzed
by SOT generate 3′-phosphoadenosine 5′-phosphate (PAP), a
molecule that participates in the organelle-nuclear retrograde
signaling, if not dephosphorylated by the SAL1 phosphatase
(Estavillo et al., 2011).

While many essential steps of the sulfate assimilation and
cysteine, methionine and glutathione biosynthesis pathways
occur exclusively in plastids, a few enzymes present in
the cytosol and mitochondria also come into play, which
necessitates a concerted action between enzymes present
in different subcellular compartments and intracellular
transporters. Moreover, it is critical to coordinate the sulfate
assimilation pathway with the ones for nitrogen assimilation
and carbon dioxide fixation, notably for the synthesis of amino
acids. For this reason, sulfate assimilation, which is highly
regulated by the demand for reduced sulfur, is also notably
dependent on the nitrogen status (Kopriva and Koprivova,
2004). In fact, many genes coding for sulfate transporters and
for enzymes of the primary assimilation pathway are induced
at the transcriptional level by sulfur deficiency whereas reduced
sulfur-containing compounds, such as hydrogen sulfide (H2S),
cysteine, S-adenosyl-methionine (SAM) and glutathione,

exert inhibitory effects at the post-translational level (Kopriva
and Koprivova, 2004; Galili et al., 2016). The inhibition by
glutathione was for instance demonstrated in the case of ATPS,
APR, and GCL. Still, the major regulatory steps of the sulfate
assimilation pathway are at the APR and cysteine synthase level.
Acting at these steps should indeed avoid the accumulation of
sulfite and sulfide, which may otherwise be toxic. As a matter
of fact, APR gene expression or enzyme activity is regulated by
many conditions or treatments in which other genes/enzymes
are not regulated. As the rate-limiting step, it was noticed that
regulation of APR is a good approximation of regulation of the
whole sulfate assimilation pathway (Kopriva, 2006). Concerning
the cysteine synthase complex, regulation occurs notably at
the post-translational level to coordinate the action of SERAT
and OAS-TL depending on the availability of the respective
substrates, sulfide or OAS (Wirtz et al., 2010). Another layer
of regulation that occurs at the post-translational level is the
modification of critical and reactive cysteine residues. This
represents a rapid, efficient and reversible way to shut down
or activate protein activity/function (Couturier et al., 2013).
The thiol group of cysteines reacts with a diverse array of
molecules referred to as reactive oxygen, nitrogen, sulfur,
or carbonyl species, generating various types of redox post-
translational modifications (PTMs) (Couturier et al., 2013).
In addition to regulatory purposes, redox PTMs that prevent
the irreversible oxidation of cysteine residues may be seen as a
protective mechanism. This is particularly true in the context of
stress conditions that generate peroxides. Indeed, by reacting
with peroxides, cysteines will be progressively oxidized to
sulfenic acid state (SOH), to the partially reversible sulfinic
acid state (SO2H) and to the irreversible sulfonic acid state
(SO3H). It is commonly accepted that reaction of sulfenic
acids with reduced glutathione (GSH) or H2S prevents cysteine
overoxidation. This leads respectively to the formation of a
glutathione adduct (S-SG) and of a persulfide group (S-SH), two
reversible modifications referred to as glutathionylation and
persulfidation. Noteworthy, other biochemical reactions lead to
glutathionylation and persulfidation (Zaffagnini et al., 2012b;
Filipovic et al., 2018). Nitrosylation of cysteine residues is
another important redox PTM and nitrosoglutathione (GSNO)
may have a prominent role in plant cells. The reverse reactions,
i.e., reductions, are catalyzed by thiol-disulfide oxidoreductases
belonging to the thioredoxin (TRX) superfamily. In particular,
deglutathionylation is mainly catalyzed by glutaredoxins (GRX),
denitrosylation by GSH and TRX to some extent, whereas both
GRX and TRX seem to be efficient for depersulfidation
reactions in addition to disulfide bond reduction (Rouhier
et al., 2008; Zaffagnini et al., 2016; Moseler et al., 2021). In
this review, we discuss the current knowledge about how
the oxidative modifications of protein thiol groups of the
different enzymes involved in sulfate assimilation pathway
and in cysteine, methionine, and glutathione biosynthesis
regulate sulfur metabolism in plants and provide perspectives
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FIGURE 1

Subcellular localizations and reactions catalyzed by enzymes involved in sulfate assimilation and cysteine, methionine, and glutathione
synthesis. Abbreviations of proteins (in bold) are as follows: ATPS, ATP-sulfurylase; APK, APS kinase; APR, APS reductase; CBL, cystathionine
β-lyase; CGS, cystathionine γ-synthase; GSH1, γ-glutamate cysteine ligase; GSH2, glutathione synthetase; GR, glutathione reductase; MS,
methionine synthase; OAS, o-acetylserine (thiol) lyase; PAPST, phosphosulfate transporter; SERAT, serine acetyltransferase; SIR, sulfite
reductase; SOT, sulfotransferase; SULTR; sulfate transporter. Abbreviations of metabolites are as follows: AMP, adenosine monophosphate; APS,
adenosine 5′-phosphosulfate; OPHS, o-phosphohomoserine; PAP, 3′-phosphoadenosine 5′-phosphate; PAPS, 3′-phosphoadenosine
5′-phosphosulfate; SO4

2-: sulfate, SO3
2-: sulfite, S2

-: sulfide; γ-EC, γ-glutamyl cysteine; X-O-SO3: sulfated compound.

about new levels of redox regulation based on proteomics data
(Supplementary Table 1).

Redox control of cysteine
biosynthesis

Redox regulation at the level of the
first step catalyzed by ATP sulfurylases

In Arabidopsis thaliana, four genes encode plastid-located
ATP sulfurylases (ATPS1–4) with ATPS2 being additionally
expressed in the cytosol (Bohrer et al., 2015). There is an
important diversity in terms of domain organization among
members of this family but ATPS from higher plants are formed
by a single ATPS domain and exist as homodimers (Herrmann
et al., 2015). Noteworthy, chimeric enzymes in which the ATPS
domain is fused with an APS kinase domain exist in human,

fungi and some diatoms (Harjes et al., 2005; Prioretti et al.,
2014).

Concerning the regulation of the expression and activity of
ATPS in plants, it was reported that ATPS activity is increased
by sulfur deprivation and H2O2 treatment in Brassica napus
roots but inhibited by GSH (Lappartient and Touraine, 1996,
1997; Lappartient et al., 1999). Although ATPS isoforms from
terrestrial plants are rather distant from those present in algae
and cyanobacteria and constitute an independent phylogenetic
group, additional evidence for a possible redox control of ATPS
activity come from analyses performed with ATPS from algae
and cyanobacteria. Two phylogenetic clades/classes have been
defined in these organisms (Patron et al., 2008; Prioretti et al.,
2016). A treatment with reduced DTT increased activity of
the previously defined class B ATPS, which are characterized
by the presence of five conserved cysteines, but not of ATPS
from the A class despite they also contain conserved cysteine
residues but at different positions (Prioretti et al., 2014, 2016).
Interestingly, large-scale redox proteomic analyses performed
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in the cyanobacterium Synechocystis sp. showed that ATPS
is glutathionylated and retained on a TRX affinity column
(Lindahl and Florencio, 2003; Chardonnet et al., 2015). Similar
experiments performed in the alga Chlamydomonas reinhardtii
reported that Cys261 of ATS1 could be either nitrosylated
or glutathionylated (Figure 2 and Supplementary Table 2;
Zaffagnini et al., 2012a; Morisse et al., 2014). The effect of
these modifications on protein activity is unknown, but this
cysteine is also present in C. reinhardtii ATS2 and other
microalgal orthologs. The corresponding cysteine in ATPS of
the diatom Phaeodactylum tricornutum has been described to
be sensitive to oxidation by H2O2, as well as several other less
conserved cysteine residues (Rosenwasser et al., 2014). While
higher plant ATPS usually have a single cysteine residue in
the C-terminal region (Cys435 in AtATPS1) which is absent
in algal sequences, similar redox PTMs have been reported
for A. thaliana ATPS. AtATPS1 was found to be prone to
sulfenylation and nitrosylation (Hu et al., 2015; Wei et al.,
2020) and AtATPS2 to glutathionylation (Dixon et al., 2005).
Moreover, ATPS1, 2, and 4 have been reported as persulfidated
(Jurado-Flores et al., 2021). All these modifications may explain
why AtATPS1 was isolated as a TRX target in Arabidopsis leaves

(Marchand et al., 2006). From the 3D structure of Glycine max
ATPS1, the cysteine found at position 434 (corresponding to
Cys435 in AtATPS1) seems exposed at the surface, but the effect
of these different modifications on protein structure or activity
is yet unexplored (Herrmann et al., 2015).

Redox control at the adenosine
5′-phosphosulfate branching point

In the chloroplasts, APS can either be reduced to sulfite by
APR or be phosphorylated to PAPS by APK. The partitioning
of the flux at this step is clearly important for the plant
sulfur metabolism. A sulfate deprivation favors APS reduction
for promoting cysteine, methionine, and glutathione synthesis
whereas the presence of reduced sulfur sources represses APS
reduction in the favor of APS phosphorylation (Takahashi et al.,
1997; Kopriva et al., 2012). To modulate this channeling, redox
switches occur for both APR and APK enzymatic activities
(Jez et al., 2016).

In A. thaliana, the APR family is formed by three genes
coding for chloroplastic proteins. Higher plant APR are

FIGURE 2

Redox post-translational modifications of enzymes involved in sulfate assimilation pathway in the green lineage. In purple, cysteines conserved
in all Arabidopsis isoforms and in at least one isoform from Chlamydomonas reinhardtii (green alga), Physcomitrella patens (Bryophyte),
Selaginella moellendorffii (Lycophyte), Oryza sativa (Monocot), Zea mays (Monocot), Glycine max (Annual eudicot), Brassica oleracea (Biennal
eudicot), Solanum lycopersicum (Perennial), Populus trichocarpa (Perennial), and Vitis vinifera (Perennial). In green, cysteines conserved in all
Arabidopsis isoforms and at least one isoform from other terrestrial plants. In gray, cysteines present in A. thaliana isoform but not conserved in
isoforms from other plants. For nitrosylation (SNO), reversible cysteine oxidation (Rev. ox.) and sulfenylation (SOH), targeted cysteines are
known and they are indicated on the scheme. When targeted cysteines are unknown, the following code applies: ∗, persulfidation; ∗∗, TRX
target; +, glutathionylation. For OAS-TL isoforms, the nomenclature CysA, B and C refers to the text. The scheme is based on the indicated
A. thaliana isoforms, but additional information for missing isoforms in multigene families are found in Supplementary Tables 2,3.
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homodimers with each monomer formed by an N-terminal
domain binding a [4Fe-4S] cluster and bearing the APR activity
and a C-terminal GRX-related domain (Bick et al., 1998;
Kopriva et al., 2002). They usually contain seven conserved
Cys residues, five in the N-terminal domain which include four
iron-sulfur (Fe-S) cluster ligands and a catalytic residue and
two in the GRX-like domain (Figure 2 and Supplementary
Table 2). While the Fe-S cluster is critical for activity, its role for
the reaction mechanism remains unclear (Carroll et al., 2005).
Other cysteines are mandatory as well. Indeed, the first catalytic
step involves the transfer of sulfate from APS to the active
cysteine residue (Cys322 in AtAPR1) forming a covalent
S-sulfo-cysteine intermediate. Sulfite is then released upon
reduction of this intermediate that is mediated by GSH and
the cysteines of the CxxC motif (Cys385 and 388 in AtAPR1)
present in the C-terminal GRX-like domain. Whether the first
nucleophilic attack is performed by GSH or the first cysteine
residue of the CxxC motif remains debated. In the light
of this proposed catalytic mechanism, some previous results
about redox modulation of APR seem counterintuitive. Indeed
the catalytic efficiency of APR was described as activated by
oxidation, either in vitro using glutathione disulfide (GSSG)
or in vivo in response to ozone and paraquat, and inactivated
upon reduction (Bick et al., 2001). Based on gel filtration
analysis and site-directed mutagenesis, it was suggested that
a disulfide bond joined two monomers at least in AtAPR1
(Kopriva and Koprivova, 2004). However, recombinant proteins
used were often devoid of the Fe-S cluster which is problematic
because four cysteine residues now become possibly reactive
and blur the conclusions. Hence, besides biochemical evidence
for the reduction of the intramolecular disulfide formed in the
C-terminal domain of APR by GSH, additional evidence for
other redox regulatory mechanisms remain scarce. Consistently,
redox proteomics studies did not point to much redox PTMs
except that AtAPR1, 2, and 3 could become persulfidated under
S-sufficient media (Aroca et al., 2017; Jurado-Flores et al., 2021).

Four APK proteins exist in Arabidopsis, APK1, 2, and 4
locate in plastids whereas APK3 is in the cytosol (Mugford
et al., 2009). APK activity is repressed under sulfur-deficient
conditions (Maruyama-Nakashita et al., 2006). AtAPK1 is a
homodimeric enzyme both in the reduced and oxidized form
but the catalytic efficiency of the reduced form is enhanced
by a factor 17 (Ravilious et al., 2012; Jez et al., 2016). An
intermolecular disulfide bond formed between Cys86 and
Cys119 was visible in AtAPK1 structure (Ravilious et al., 2012).
The redox potential (Em value around – 250 mV at pH 7) is
consistent with the observed reduction by GSH. It was proposed
that disulfide formation alters catalytic efficiency by affecting
the dynamic movements of the N-terminal loop (Ravilious
et al., 2012). Both cysteines are conserved in most chloroplastic
orthologs from terrestrial plants whereas only Cys119 is present
in the cytosolic AtAPK3 or in algal representatives (Figure 2
and Supplementary Table 3). This might not be the only

redox switch for this protein since four other cysteine residues
are well conserved in APKs from terrestrial plants. While the
targeted residue(s) is(are) unknown, AtAPK1 and AtAPK4 are
likely subject to persulfidation (Aroca et al., 2017; Jurado-Flores
et al., 2021). Moreover, a partially conserved cysteine (Cys245 in
AtAPK1) was found nitrosylated (Hu et al., 2015). The activity
of a rice APK, but not of variants mutated for the corresponding
Cys86 and Cys119 of AtAPK1, is decreased in vitro in
the presence of GSSG, suggesting protein glutathionylation
(De-zhen et al., 2016). In accordance, C. reinhardtii APK was
detected in a proteomic study focusing on glutathionylation
(Zaffagnini et al., 2012a). This suggests that glutathionylation of
one of these cysteine residues may be an intermediate toward the
formation of the intermolecular disulfide in isoforms possessing
both cysteines. Overall, these described redox PTMs may explain
why C. reinhardtii APK was identified as a TRX-target as well
(Pérez-Pérez et al., 2017).

Redox regulation at the level of the
secondary sulfur metabolic pathway

While SOT represent the largest protein family among
sulfate-assimilating proteins, their biochemical and functional
characterization still lags behind and this is also true for the
associated regulation mechanisms. Among the 18 Arabidopsis
SOT, there are two conserved cysteines (positions 199 and
270, AtSOT1 numbering) (Klein and Papenbrock, 2004). Based
on an AtSOT1 structural model generated by alphafold, both
cysteines are too far away for predicting any redox regulation
mechanism involving an intramolecular disulfide. However,
unlike Cys270, Cys199 is surface-exposed, which may fit the
observation that about half of the SOT were retrieved in the
recent persulfidome analyses. So far, a possible effect of these
modifications remains unclear.

The SAL1 phosphatase, which is located both in chloroplasts
and mitochondria, regulates PAP levels by dephosphorylating it
to AMP. In A. thaliana, PAP accumulates notably in response
to drought and high light stresses. It was shown that the
SAL1-PAP pathway is important for the organelle-nuclear
retrograde signaling in this context. The redox inactivation of
SAL1 promotes the transport of PAP from chloroplasts (and
mitochondria) via PAPST transporters to the nucleus where it
inhibits exoribonuclease-mediated RNA metabolism (Estavillo
et al., 2011; Chan et al., 2016). This allows the transcriptional
reprogramming necessary for stress tolerance. The Arabidopsis
SAL1 possesses four cysteines at positions 21, 119, 167, and
190 (Figure 2 and Supplementary Table 3). Under oxidative
stress conditions such as high light or drought, AtSAL1 is
partially inactivated in a redox-dependent manner. Using SAL1
recombinant protein treated with reduced or oxidized forms
of DTT and glutathione, it appeared that Cys119 is involved
in an intermolecular disulfide bridge that led to the formation
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of a dimeric form and that this would favor the formation of
an additional intramolecular disulfide bridge between Cys167
and Cys190 (Chan et al., 2016). In vitro glutathionylation with
GSSG leads to glutathionylation of Cys119 and to the formation
of the Cys167–Cys190 intramolecular disulfide (Chan et al.,
2016). Unlike Cys119, both Cys167 and Cys190 are conserved
in terrestrial plants, although Cys190 is shifted by 7 amino acids
in monocots. Other interesting information are the observation
that SAL1 is also subject to persulfidation (Aroca et al., 2017;
Jurado-Flores et al., 2021) and to S-nitrosylation of Cys119
which is adjacent to an Asp residue (Asp118), a combination
that is particularly suitable for S-nitrosylation (Hu et al., 2015).

Redox regulation at the level of the
primary sulfur metabolic pathway

Sulfite reductase is a 70 kDa enzyme that catalyzes the
reduction of sulfite into sulfide. It binds a [4Fe-4S] cluster
covalently linked to a siroheme as redox centers and uses
ferredoxin as an electron donor. In Arabidopsis, SIR is encoded
by a single, essential gene and is described as a “bottleneck”
in the sulfate assimilation pathway (Khan et al., 2010). In
order to protect cells against sulfite toxicity, SIR expression is
rapidly upregulated in Arabidopsis and tomato in response to
higher sulfite content, and accordingly SIR activity increases
(Yarmolinsky et al., 2013). SIR transcripts are also upregulated
after cold stress and methyl viologen treatment in maize
(Xia et al., 2018). Using proteomic approaches, SIR has been
identified as a TRX target in wheat seeds (Wong et al.,
2004) and in Synechocystis (Lindahl and Florencio, 2003). Five
cysteine residues are conserved in SIR sequences and four
of them serve as Fe-S cluster ligands. In fact, an additional
partially conserved Cys468 is targeted by sulfenylation (Wei
et al., 2020). As for most other enzymes of the pathway,
SIR may be persulfidated, but neither the cysteine affected
nor the effect on activity have been explored (Figure 2 and
Supplementary Table 2).

Cysteine synthesis takes place in plastids, cytosol, and
mitochondria with the combined action of OAS-TL and SERAT
isoforms that form a hetero-oligomeric complex referred to as
cysteine synthase (Wirtz et al., 2010). In Arabidopsis, there are
four OAS-TL isoforms: OAS A1, A2, B, and C (Jost et al., 2000),
the cytosolic isoform OAS A1 being the main contributor for
cysteine biosynthesis (López-Martín et al., 2008). The proteins
have been identified in numerous redox proteomic data as
having a quite large variety of redox PTMs. Both OAS A1 and
OAS C have been described as targets of TRX (Marchand et al.,
2006; Yoshida et al., 2013), OAS C as a target of GRX (Rouhier
et al., 2005), while OAS A1, OAS B, and OAS C have been
reported as being persulfidated (Jurado-Flores et al., 2021). In
these cases, there is no information about the cysteines involved.
Other reported modifications occur on three cysteines. Because

these cysteines have very different numbering depending on
the isoform, we refer to CysA for the cysteine that is present
only in the N-terminal part of organellar OAS-TL (OAS B and
OAS C), whereas CysB and CysC represent the two cysteine
residues that are conserved in all Arabidopsis OAS-TL. In OAS
A1 and OAS A2, only CysC (Cys42) may be oxidized both by
nitrosylation and sulfenylation (Figure 2 and Supplementary
Table 2; Hu et al., 2015; Wei et al., 2020). In OAS B, CysB
(Cys98), and CysC (Cys112) could be sulfenylated (Huang et al.,
2019; Wei et al., 2020). In OAS C, the three cysteines may be
subject to redox PTM. CysA (Cys99) and CysB (Cys136) can
be reversibly oxidized but the modification is unknown (Liu
et al., 2014; Nietzel et al., 2020) whereas CysC (Cys150) could be
sulfenylated (Wei et al., 2020). The fact that CysC is sulfenylated
in all OAS together with the observed persulfidation of three
OAS isoforms may suggest a two-step mechanism in which
sulfenylation precedes persulfidation, i.e., when sulfenic acids
react with H2S.

Five genes encode SERAT in A. thaliana. SERAT1;1, -3;1,
and -3;2 locate in the cytosol, SERAT2;1 in chloroplasts and
SERAT2;2 in mitochondria (Kawashima et al., 2005; Watanabe
et al., 2018). The mitochondrial SERAT2;2 is responsible of
80% of SERAT activity (Watanabe et al., 2008). SERAT3;1 and
-3;2 are unable to bind OAS-TL (Kawashima et al., 2005).
SERAT2;1 is also part of a chloroplastic complex named COPS
(containing cyclophilin 20-3, OAS B, 2-cysteine peroxiredoxins
A/B, and SERAT2;1). The action of this COPS module, involved
in plant acclimation to high light stress, is influenced by
redox stimuli and oxylipin signaling (Müller et al., 2017).
A feedback inhibition by cysteine decreased SERAT1;1 and
-3;1 activity but appeared to have no impact on the three
other SERAT isoforms (Kawashima et al., 2005). In fact, these
two isoforms, as well as SERAT 2;2, have been reported to
be persulfidated (Jurado-Flores et al., 2021). All Arabidopsis
SERAT, except SERAT1;1, have been detected in sulfenylomes
(Figure 2 and Supplementary Table 2; Huang et al., 2019;
Wei et al., 2020). AtSERAT2;1, -3;1, and -3;2 are sulfenylated
on the same conserved cysteine (Cys150 in AtSERAT2;1,
Cys122 in AtSERAT3;1, and Cys159 in AtSERAT3;2), whereas
AtSERAT2;2 is sulfenylated on two cysteines that are not
conserved among Arabidopsis SERAT. As for OAS-TL, it
may be that sulfenylation and persulfidation of SERAT are
intimately connected.

Redox control of glutathione
biosynthesis and reduction

Glutathione synthesis occurs in two steps. GCL/GSH1 is
exclusively located in plastids in higher plants and encoded by
a single gene in A. thaliana whereas A. thaliana glutathione
synthetase (GS/GSH2) is expressed in both plastids and cytosol
(Wachter et al., 2005). Currently, it is documented that

Frontiers in Plant Science 06 frontiersin.org

https://doi.org/10.3389/fpls.2022.958490
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-958490 August 16, 2022 Time: 12:24 # 7

de Bont et al. 10.3389/fpls.2022.958490

the major redox control for these enzymes is a feedback
inhibition exerted by GSH on GCL (Meyer and Fricker, 2002).
Even though GSH2-catalyzed reaction is not considered as a
limiting step, it may be regulated in some specific context
and organisms. Indeed, A. thaliana GSH2 is the target of
several redox PTMs that could impact its activity and thus
modulate glutathione biosynthesis, i.e., sulfenylation (Wei
et al., 2020) and nitrosylation (Hu et al., 2015) of Cys134
and persulfidation (Figure 3 and Supplementary Table 4;
Aroca et al., 2017; Jurado-Flores et al., 2021). However,
Cys134 is only partially conserved and there is actually no
strictly conserved cysteine in GSH2 from terrestrial plants.
Moreover, the activity of GSH2 in roots of Arabidopsis
seedlings treated with H2O2 was not affected, unlike GCL
(Hicks et al., 2007).

Concerning GCL, while two disulfides bonds (Cys186–
Cys406 and Cys349–Cys364, Arabidopsis GCL numbering)
are present in orthologs from Rosids, only the first one is
involved in the redox modulation of the enzyme activity
(Hothorn et al., 2006; Hicks et al., 2007; Gromes et al., 2008).
The two additional cysteine residues present in A. thaliana
GCL do not seem to be oxidatively modified despite being
surface-exposed. In fact, among these six cysteines, only
one (Cys349) was identified as a target of nitrosylation (Hu
et al., 2015) and sulfenylation (Wei et al., 2020). A possible
persulfidation is also reported but the targeted cysteine(s)

not identified (Aroca et al., 2017; Jurado-Flores et al., 2021).
Noticeably, the Cys364 is not conserved in GCL from several
plant species. In terms of redox control, reduction of the
Cys186-Cys406 disulfide bridge considerably decreases protein
activity (Hicks et al., 2007; Gromes et al., 2008). Oxidized
GCLs form homodimers, both in vitro and in vivo, which
dissociate into monomers upon reduction (Hothorn et al.,
2006; Gromes et al., 2008; Yang et al., 2019). However, using
variants that do not dimerize, it has been recently described
that homodimer formation of GCL is not required for enzyme
activation (Yang et al., 2019). Intriguingly, Cys186 and Cys406
are not present in GCL sequences from some green algae
(Gromes et al., 2008). Moreover, despite possessing the residue
corresponding to Cys186 and Cys406, some phylogenetically
related proteobacterial GCLs do not dimerize upon oxidation
and their activity is not impacted by a treatment with reduced
DTT (Gromes et al., 2008). In conclusion, this negative
feedback loop associated with the above-described thiol-based
switch mechanism seems to have been evolutionary favored
by the confinement of GSH biosynthesis and of the GCL
enzyme in the plastidial compartment of some photosynthetic
organisms but not all (or get lost or replaced in some of
them).

The reduction of GSSG into GSH is catalyzed by glutathione
reductases (GR) using NADPH as an electron donor. Two
GR genes are present in A. thaliana. GR1 is present in

FIGURE 3

Redox post-translational modifications of enzymes involved in glutathione biosynthesis pathway in the green lineage. In purple, cysteines
conserved in all Arabidopsis isoforms and in at least one isoform from Chlamydomonas reinhardtii (green alga), Physcomitrella patens
(Bryophyte), Selaginella moellendorffii (Lycophyte), Oryza sativa (Monocot), Zea mays (Monocot), Glycine max (Annual eudicot), Brassica
oleracea (Biennal eudicot), Solanum lycopersicum (Perennial), Populus trichocarpa (Perennial), and Vitis vinifera (Perennial). In green, cysteines
conserved in all Arabidopsis isoforms and at least one isoform from other terrestrial plants. In gray, cysteines present in A. thaliana isoform but
not conserved in isoforms from other plants. For nitrosylation (SNO), reversible cysteine oxidation (Rev. ox.) and sulfenylation (SOH), targeted
cysteines are known and they are indicated on the scheme. When targeted cysteines are unknown, the following code applies: ∗, persulfidation.
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the cytosol and peroxisomes and GR2 in mitochondria and
chloroplasts (Müller-Schüssele et al., 2020). In Arabidopsis,
only the plastidial GR2 is essential (Marty et al., 2019). This
is likely due to the existence of intracellular GSH transporters
and of some alternative back-up reducing systems. Not much
is known about a possible redox control at this step and
the reason may be that an efficient GSH reduction system
is constitutively needed. A GR from rice was reported as
being S-nitrosylated in a catalase mutant (noe1) which displays
elevated level of H2O2 that promotes NO production (Lin et al.,
2012). Moreover, pea chloroplastic and cytosolic GRs can be
S-nitrosylated in vitro by GSNO, but it did not impact their
activity (Begara-Morales et al., 2015). The poplar GR2 was
retained on an affinity column with a bound poplar GRX C4
C30S variant (Rouhier et al., 2005). Arabidopsis GR1 and GR2
possess 8 and 9 cysteines respectively but only the two catalytic
cysteines at position 73 and 78 in AtGR1 are strictly conserved
and Cys73 was reported as being subject to nitrosylation
(Figure 3 and Supplementary Table 4; Hu et al., 2015). The

reason why there might be no effect on GR activity is that the
nitrosylated cysteine could be resolved into a regular disulfide
by the second cysteine. The AtGR1 and AtGR2 isoforms may
also be subject to cysteine persulfidation both in leaves and
roots (Aroca et al., 2017; Jurado-Flores et al., 2021). GR1 and
GR2 have both been identified in roots but only GR1 displays
more persulfidation in a N-starved medium compared to a
N-sufficient medium.

Redox control at the level of
methionine biosynthesis

Enzymes catalyzing the two first steps of methionine
synthesis, i.e., CGS and CBL, are present only in chloroplasts
and are encoded by a single gene while MS are encoded
by three genes, with two isoforms being expressed in
the cytosol (MS1 and MS2) and one in chloroplasts
(MS3) (Figure 1; Ravanel et al., 1998b). The chloroplastic

FIGURE 4

Redox post-translational modifications of enzymes involved in methionine biosynthesis pathway in the green lineage. In purple, cysteines
conserved in all Arabidopsis isoforms and in at least one isoform from Chlamydomonas reinhardtii (green alga), Physcomitrella patens
(Bryophyte), Selaginella moellendorffii (Lycophyte), Oryza sativa (Monocot), Zea mays (Monocot), Glycine max (Annual eudicot), Brassica
oleracea (Biennal eudicot), Solanum lycopersicum (Perennial), Populus trichocarpa (Perennial), and Vitis vinifera (Perennial). In green, cysteines
conserved in all Arabidopsis isoforms and at least one isoform from other terrestrial plants. In gray, cysteines present in A. thaliana isoform but
not conserved in isoforms from other plants. For nitrosylation (SNO), reversible cysteine oxidation (Rev. ox.), S-cyanylation (SCN) and
sulfenylation (SOH), targeted cysteines are known and they are indicated on the scheme. When targeted cysteines are unknown, the following
code applies: ∗, persulfidation; ∗∗, TRX target.
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isoform is likely required for the de novo methionine
synthesis whereas cytosolic isoforms are most probably
involved in the regeneration of Met from homocysteine
(Ravanel et al., 2004).

The CGS is a pyridoxal 5′-phosphate (PLP)-containing
homo-tetramer that uses o-phosphohomoserine (derived
from aspartate) and cysteine as substrates for cystathionine
biosynthesis (Ravanel et al., 1998a). Compared with bacterial
CGS, plant CGS have an N-terminal extension (amino acids
77-87) that displays a regulatory role (Hacham et al., 2002).
While it does not seem required for its enzymatic activity,
overexpression of a truncated version of Arabidopsis CGS that
lacks this N-terminal region in Nicotiana tabacum transgenic
plants highlighted both a strongly altered development and an
impaired Met metabolism. The authors concluded that PTMs
may occur at the level of this N-terminal region. The regulatory
role of the N-terminal region of CGS has also been described
upon induction of folate deficiency in Arabidopsis (Loizeau
et al., 2007). Regarding possible thiol regulatory switches
happening at this step, it is worth noting that A. thaliana CGS
displays eight cysteines in its mature part (two cysteines are
in the chloroplastic targeting sequence) but only three are
conserved in enzymes of the green lineage (Cys334, Cys344, and
Cys352) (Figure 4 and Supplementary Table 5). So far, only
Cys334 was identified as subject to reversible oxidation and as
a target of sulfenylation (Liu et al., 2014; Wei et al., 2020). It
is now needed to study the impact of these modifications on
protein activity.

The CBL primarily catalyzes the cleavage of cystathionine,
producing homocysteine, pyruvate, and ammonia. Similar to
CGS, A. thaliana CBL is a PLP-dependent homo-tetramer
(Ravanel et al., 1996). Concerning redox PTMs, one of the two
cysteines conserved in CBLs from the green lineage analyzed is
prone to nitrosylation (Cys417) (Figure 4 and Supplementary
Table 5; Hu et al., 2015). The protein has been also found to be
targeted by persulfidation but the cysteine is unknown (Jurado-
Flores et al., 2021). Nevertheless, if any, the regulatory role of
these PTMs has not been described yet.

Methionine synthases catalyze the final reaction in the
methionine biosynthesis pathway, i.e., the transfer of a methyl
group from 5-methyltetrahydrofolate to homocysteine, thus
generating tetrahydrofolate and methionine. A. thaliana
possesses three genes, At5g17920, At3g03780, and At5g20980
respectively named MS1, MS2, and MS3. These are all
cobalamin- or vitamin B12-independent enzymes. The
structural analysis of the monomeric A. thaliana MS1
indicates that two cysteines (Cys649 and Cys733) and one
histidine (His647) bind a zinc atom that is required for activity
(Ferrer et al., 2004). The A. thaliana MS isoforms have a
variable number of cysteine residues, but only three of them are
conserved, including the two zinc-binding cysteines (Figure 4
and Supplementary Table 5). Unlike, the C. reinhardtii ortholog
of Arabidopsis MS3 which was detected as glutathionylated or

nitrosylated (Zaffagnini et al., 2012a; Morisse et al., 2014), no
redox PTM was identified for the chloroplastic Arabidopsis MS3
itself in such specific proteomic studies. Still, it was identified as
TRX or GRX targets (Wong et al., 2004; Rouhier et al., 2005).
The cytosolic MS1 was also immobilized on an affinity column
grafted with a variant for a cytosolic TRX h (Yamazaki et al.,
2004). Both cytosolic and plastidial MS from C. reinhardtii were
also identified as TRX partners (Pérez-Pérez et al., 2017). In
addition, four cysteines of AtMS1 and AtMS2, not all conserved
but including the zinc-binding Cys733, have been described
to be subject to sulfenylation (Huang et al., 2019; Wei et al.,
2020), two of them to nitrosylation (Hu et al., 2015) and one
to S-cyanylation (García et al., 2019). The latter modification
was detected in extracts from an A. thaliana mutant for a
mitochondrial β-cyanoalanine synthase (CAS-C1) that is
normally able to detoxify hydrogen cyanide. In conclusion,
it seems that the redox control exerted on the methionine
synthesis pathway mostly occurs at the level of MS proteins.

Conclusion

It is known since some time that regulatory redox
switches control sulfur allocation between the primary and
secondary routes of sulfur assimilation in Arabidopsis and
other plants, notably under oxidative stress conditions during
which there is an increased demand for reduced sulfur
to support cysteine and glutathione synthesis. Accordingly,
both APR and GCL in the primary metabolic pathway are
activated upon oxidation whereas the activity of enzymes
that are part of the secondary pathway, APK and SAL1,
is attenuated. This results in directing APS into cysteine,
methionine and glutathione synthesis and away from synthesis
of PAPS. We provide here additional evidence, notably from
redox proteomic approaches that most if not all enzymatic
steps of the reductive sulfate assimilation and of methionine
synthesis pathways may be controlled by oxidative modification
of the enzymes, primarily protein persulfidation but also,
disulfide bond formation, protein sulfenylation, nitrosylation,
and glutathionylation to a lesser extent. These redox PTMs
sometimes affect cysteines that are strictly conserved, at least
in the photosynthetic organisms analyzed here, suggesting
that the mechanism may be conserved and physiologically
relevant in a wide range of species. However, they are also
example of modifications that affect specific or different cysteine
residues, notably in isoforms from angiosperms. This may
indicate that additional layers of regulation exist as compared
with cyanobacteria, microalgae or non-vascular plants as
often observed for other metabolic pathways. It is obvious
that identifying an oxidative modification and the targeted
cysteine is insufficient and case-by-case studies have to be
performed to decipher the impact on enzyme activity. The
apparent prominent regulatory role of persulfidation may
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be consistent with the fact that H2S is produced by SIR in
the frame of the reductive assimilation steps. Under oxidative
conditions, sulfide could react with oxidized thiol groups,
particularly sulfenic acids. Accordingly, a comparative study of
sulfenylation and persulfidation reveals that sulfenylome and
persulfidome overlap by approximately 80% (Aroca et al., 2021).
Hence, persulfidation may represent a protective mechanism
operating during oxidative stress conditions. Alternatively,
it may constitute a regulatory mechanism that would help
controlling protein function/activities in order to adjust the
plant response to sulfate availability in case of oxidative stress
(Wang et al., 2021). Incidentally, sulfide would be restituted
upon persulfide reduction by a dithiol reductant.
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