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As a promising method, unmanned aerial vehicle (UAV) multispectral remote

sensing (RS) has been extensively studied in precision agriculture. However,

there are numerous problems to be solved in the data acquisition and

processing, which limit its application. In this study, the Micro-MCA12 camera

was used to obtain images at different altitudes. The piecewise empirical

line (PEL) method suitable for predicting the reflectance of different ground

objects was proposed to accurately acquire the reflectance of multi-altitude

images by comparing the performance of the conventional methods. Several

commonly utilized vegetation indices (VIs) were computed to estimate

the rice growth parameters and yield. Then the rice growth monitoring

and yield prediction were implemented to verify and evaluate the effects

of radiometric calibration methods (RCMs) and UAV flying altitudes (UAV-

FAs). The results show that the variation trends of reflectance and VIs are

significantly different due to the change in component proportion observed at

different altitudes. Except for the milking stage, the reflectance and VIs in other

periods fluctuated greatly in the first 100 m and remained stable thereafter.

This phenomenon was determined by the field of view of the sensor and

the characteristic of the ground object. The selection of an appropriate

calibration method was essential as a result of the marked differences in the

rice phenotypes estimation accuracy based on different RCMs. There were

pronounced differences in the accuracy of rice growth monitoring and yield

estimation based on the 50 and 100 m-based variables, and the altitudes

above 100 m had no notable effect on the results. This study can provide a

reference for the application of UAV RS technology in precision agriculture

and the accurate acquisition of crop phenotypes.
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Introduction

The precise, economical, and dynamic gathering of
farmland information in time is critical for boosting agricultural
economic development and reducing labor costs (Wang et al.,
2021). Rice (Oryza sativa L.) being a significant global staple
food crop, its growth status and yield level have always been of
great concern (Wan et al., 2020; Duan et al., 2021). Exact and
pre-harvest growth monitoring and yield prediction of rice is
of much value for the implementation of field measures, policy
formulation, and price judgment (Zheng et al., 2019; Wan et al.,
2020).

Manual investigation and measurement in the fields are
frequently used methods for collecting rice yield and phenotypic
data. This includes labor- and time-intensive work with great
uncertainty (Yang et al., 2017). Furthermore, some phenotypic
parameters can only be gained by destroying the samplings,
resulting in the interruption in obtaining growth parameters in
the later periods (Zhao et al., 2021). Rice yield formation is a
process of dynamic accumulation, which is associated with both
vegetative and reproductive growth periods (Wan et al., 2020).
Therefore, it is essential to continuously monitor the growth
status of rice (Yue et al., 2019).

In contrast, the prominent merit of remote sensing (RS)
is that a large area can be covered and the phenotype
information can be obtained in a non-destructive way
(Franch et al., 2021). The development of the RS technique
makes it possible to forecast the crop yield in advance. At
present, the prediction accuracy of satellite RS has reached
a relatively high level (Li et al., 2014; Huang et al., 2015;
Franch et al., 2021). However, the images derived from
satellites generally have some insurmountable shortcomings.
For example, the resolution is rarely up to centimeter level,
and the occlusion of clouds is serious. Hence, the flexibility
of getting plant phenotype information on time is limited.
Moreover, the scale of satellite RS cannot meet the practical
application needs in precision agriculture like the small plots
in southern China (Peng et al., 2019). In recent years,
unmanned aerial vehicle (UAV) RS technology has become
a hot content in the field of agricultural research. The UAV
provides a convenient tool for emerging sensors to obtain
unparalleled images with high time–space–spectral resolution
(Maes and Steppe, 2019).

The low-altitude UAV-based RS technology is of high
significance to precision agriculture owing to its high efficiency,
low cost, and macro size (Deng et al., 2018b; Han et al., 2019).
Different types of sensors have also been applied to different
scenes. For example, hyperspectral cameras were exploited to
estimate crop leaf area index (LAI), leaf chlorophyll content,
and leaf nitrogen content (Delegido et al., 2010; Xie et al.,
2014; Raj et al., 2021). Thermal infrared sensors were utilized
to retrieve the temperature and water status of the olive
tree canopy (Noguera et al., 2020) and help to predict the

soybean yield (Maimaitijiang et al., 2020). Moreover, the UAV-
based LiDAR sensors were recently employed to determine the
height of different crops (ten Harkel et al., 2020). Although
they showed unique performance in precision agriculture,
there are some difficulties in practical use. On the one hand,
for the current UAVs, the weights of the sensors exceed
the standard ones, which makes the flight difficult to last
for a long time. On the other hand, these sensors are very
expensive, and few people can afford the high cost. As non-
quantitative RS equipment, the visible sensor (RGB camera)
based on broadband is often used in precision agriculture due
to its acceptable price and convenient operation. However, on
account of the limitation of the number of bands and difficulty
in calibration, it is generally applied to provide canopy height
information and describe color changes (Deng et al., 2018b).
Multispectral sensors cannot only meet the cost requirements
but can also obtain high-resolution multispectral images,
including red-edge and near-infrared (NIR) bands sensitive
to vegetation growth (Huang et al., 2018). Therefore, the
multispectral camera has great potential in precision agriculture.
Vegetation indices (VIs) based on multispectral images have
been extensively used in crop growth monitoring and yield
prediction (Deng et al., 2018b; Gong et al., 2018; Duan et al.,
2019).

For multispectral sensors, the premise of extracting accurate
RS phenotype information is to obtain high-precision canopy
spectral reflectance data. The observed reflectance data of the
same ground object by different multispectral sensors are often
different. The main reasons are as follows: (i) equipment and
methods used for radiometric calibration (without considering
the influence of the atmosphere), (ii) observation geometry,
and (iii) differences in spectral response functions of different
sensors in the corresponding bands (Deng et al., 2018a,b).
When the multispectral sensor, observation target, and time are
determined, the main factors affecting the observed reflectance
are radiometric calibration methods (RCMs) and observation
angles. In practical application, UAV control is flexible and
changeable, resulting in flight altitudes ranging from dozens to
hundreds of meters. Different flight altitudes will not only lead
to changes in RS image resolution but also to differences in the
observation angles of the same target. Currently, there are few
reports on this aspect. Therefore, the impacts of UAV flying
altitudes (UAV-FAs) on multispectral data are worth discussing.

In this study, the multispectral images derived from different
UAV-FAs in some experiments (including different types of
ground objects, different fertilizer gradients, and multi-cultivar
rice experiments) were obtained to (i) compare the accuracy of
reflectance and VIs achieved by different RCMs and put forward
a unified calibration method suitable for the accurate acquisition
of reflectance of different objects, (ii) analyze the variation trend
and causes of reflectance and VIs at different UAV-FAs, and
(iii) evaluate the effects of different RCMs and UAV-FAs on rice
growth monitoring and yield prediction.
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Materials and methods

Experimental area

This study involved three experimental areas, including
Ezhou City, Hubei Province (30◦22′31′′N,114◦44′50′′E),
Lingshui County, Hainan Province (18◦31′47′′N, 110◦03′35′′E),
and Wuhan University Friendship Square, Hubei Province
(30◦31′48′′N, 114◦21′20′′E), China.

Four experiments (named Tests 1, 2, 3, and 4) were
conducted in this study. Test 1 was carried out from February
to April 2018. A total of 42 rice plots including 42 cultivars
were set up, and each plot covered an area of approximately
40 m2. Except for different rice cultivars, the fertilization
level and drainage and irrigation management were the same.
For more details, see Jiang et al. (2019). Test 2 included
three repetitions and four nitrogen gradients (0, 120, 180,
and 240 kg/ha) and was conducted from February to April
2018. Two rice cultivars and 24 plots were randomly arranged,
of which each plot was about 30 m2. Black plastic film was
laid between plots with different gradients to isolate water
and fertilizer. Test 3 was the small rice plot experiment with
an area of 1 m2 of each plot and was conducted from July
to September 2018. Multiple plots were selected to conduct
the multi-altitude experiments. One rice cultivar was planted
in each plot at an interval of 10 cm. In addition to their
respective control variables (cultivar and nitrogen fertilizer),
other field management measures (irrigation, weeding, pesticide
application, etc.) were implemented under the guidance of
professionals. The main purpose of Test 4 was to study some
ground objects different from rice (grassland, smooth, and
rough slabstone) for comparative analysis and to increase the
universality of the results. We randomly selected and marked
17 locations, including grassland and slabstone, as the research
objects on 23 July 2021.

Field data acquisition

In Test 1 and Test 2, rice growth parameters including
LAI, above-ground biomass (AGB), and canopy chlorophyll
content (CCC) at different growth durations (tillering, jointing,
booting, heading, and milking stages) were measured directly or
calculated indirectly.

The LAI (unitless) was measured by using LAI-2200C (LI-
COR, Lincoln, Nebraska United States) at dusk or dawn. Three
repeated measurements were conducted for each rice plot, and
the mean value was treated as the plot-level LAI. Each repetition
result is a reading of 10 random measurements (1 above and
10 below the rice canopy) with a 270◦ view cap. The LAI value
obtained in this way can be regarded as the green LAI (LAIgreen)
due to the strong correlation with the manually measured value
(R2 = 0.87, P < 0.001) (Liu et al., 2017).

The SPAD (unitless) values, which were often used to reflect
the chlorophyll content level of leaves (Uddling et al., 2007),
were measured using SPAD-502 meter (Spetrum Technologies,
Inc., Plainfield, IL, United States). At each growth stage of rice,
10 plants in every plot were selected to measure the SPAD
values of four upper fully expanded leaves (SPADupper) at multi-
locations (Peng et al., 1993), and the average was treated as the
plot-level SPAD.

AGB (in g/m2) was collected by destructive sampling. Three
hills of plants were dug and taken back to the laboratory
for drying. All samples with the underground parts removed
were dried at 80◦C until multiple weighing values remained
constant. The plot-level AGB was the product of dry weight and
density of samplings.

The CCC (in g/m2) was calculated by exploiting the product
of LAIgreen and SPADupper (Baret et al., 2007) to diagnose
the canopy nitrogen content (Gitelson et al., 2005; Liu et al.,
2017) and assess the total canopy-scale productivity of rice
(Inoue et al., 2016).

The rice yield (in g/m2) was surveyed by sampling 100 plants
in each plot. The final rice yield of the plot was the average
weight of spikes after threshing and drying multiplied by the
transplanting density.

At different stages, the ASD Field Spec 4 spectrometer
(Analytical Spectral Devices Inc., Boulder, CO, United States)
was adopted to collect rice canopy spectra under cloudless
and windless conditions. The multiple and multipoint
measurements were implemented daily from 10:00 to 14:00
with a field-of-view (FOV) of 25◦, and the results of five points
and 10 measurements at each point were averaged to get the
plot-level spectra.

Unmanned aerial vehicle multispectral
image collection

The Micro-MCA camera fixed on the UAV (Duan et al.,
2021) with a gimbal was utilized to obtain the multispectral
images from 11:00 to 13:00. Twelve independent camera lenses
(the image size of 1,280 × 1,024 pixels, with the horizontal
and vertical FOV of 38.26 and 30.97◦) were equipped with
central bands of 490–950 nm. The visible to NIR bands widely
employed in precision agriculture were covered (Kimes et al.,
1981). The details of UAV multispectral data acquisition are
shown in Table 1.

Data processing

The noise, vignetting, distortion correction, and band-to-
band alignment of multispectral images were determined in
the PixelWrench 2 software (Xu et al., 2019). Subsequently,
three RCMs were applied to compare the reflectance conversion
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TABLE 1 The details of multispectral images for four experiments in Hubei and Hainan Provinces.

Experimental
name

Study
site

Number of
plots

Date of UAV images
collection (DAT/day)

UAV flying altitude (m) Growth stage of rice

Test 1 Hainan 42 2018/02/02 (25) 100, 150, 200, 250 Tillering stage

2018/02/26 (49) Jointing stage

2018/03/11 (62)

2018/03/18 (69) Booting stage

2018/04/01 (83) Heading stage

2018/04/26 (108) Milking stage

Test 2 Hainan 24 2018/02/02 (27) 50, 100 Tillering stage

2018/02/20 (45)

2018/03/03 (56) Jointing stage

2018/03/11 (64)

2018/03/25 (78) Booting stage

2018/04/01 (85) Heading stage

2018/04/26 (110) Milking stage

Test 3 Hubei Multiple 2018/08/15 (52) 60, 70, 80, 90, 100, 110, 120, 130,
150, 170, 190, 210, 230, 250

Tillering stage Jointing stage
Booting stage Heading stage

Milking stage

Test 4 Hubei 17 2021/07/23 60, 70, 80, 90, 100, 110, 120, 130,
150, 170, 190, 210

−

accuracy from the original digital number (DN) values. In this
process, eight calibration targets (covering different reflectance
ranges: 3, 6, 12, 24, 36, 48, 56, and 80%) with stable reflectance
were laid within the imaging range of the UAV to obtain the
reflectance of the target ground object. The eight 1.2 × 1.2 m
grayscale calibration panels were fabricated using a specific lot
of coated fabric for Tetracam Inc.

The conventional empirical line (EL) method was
extensively employed when only two calibration targets
were used for its straightforward, simple, and effective
implementation (Smith and Milton, 1999; Laliberte et al.,
2011; Wang and Myint, 2015). Since the fact that the increased
number of observation targets could improve the accuracy and
reliability of calibration was proved (Tucker, 1979), multiple
calibration panels were utilized to obtain the reflectance by
the EL method (Xu and Huang, 2008; Duan et al., 2019, 2021;
Wan et al., 2020). However, in many vegetation scenes, it
was found that the calibrated reflectance values of visible
bands were negative, especially in blue and red bands (Deng
et al., 2018b). In practice, it is worth noting that the linear
relationship between reflectance and radiance does not always
exist (Stow et al., 1996). Therefore, non-linear models need
to be considered during the radiometric calibration. The
subband empirical line (SEL) method was proposed to solve
the problem of negative reflectance (Deng et al., 2018a,b). In
the SEL method, different bands were divided into two groups
(red, green, and blue bands with low reflectance and red edge
and NIR bands with high reflectance), and the power and linear
models were used for the reflectance calibration, respectively.
The SEL method only studied the scene of vegetation’s low

reflectance in visible bands and did not consider other objects
with high reflectance in these spectral regions. Moreover,
the case of multiple calibration panels was ignored in the
SEL method. In addition, the comparison of the linear and
power models in visible bands with high reflectance was not
performed. In this study, the piecewise empirical line (PEL)
method was put forward to construct a general calibration
method for reflectance acquisition of different types of objects.
In all experiments, images obtained at a height of 100 m
were selected for radiometric calibration comparison. The
transformation relations of these three RCMs are shown in Eqs.
(1–3).

y = a1 · xi + b1 (1)

y =

{
a2 · x

b2
i i = 1, 2, 3, 4, 5, 6, 7

a3 · xi + b3 i = 8, 9, 10, 11, 12
(2)

y =

{
a4 · xi y ≤ 0.03
a5 · xi + b5 y > 0.03

(3)

where y is the reflectance after radiometric calibration, x
is the DN value of different bands, i is the number of
bands from 1 to 12, and the constants a and b are the
corresponding slopes and intercepts of the fitted lines from the
used calibration targets.

To compare the accuracy of the measured spectra using
the ASD spectrometer (RASD) with the UAV multispectral
reflectance (RMCA), the RASD needs to be convolved by the
spectral response function of the MCA camera (MCA-based
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equivalent reflectance, RMCA−ASD). The conversion of spectral
reflectance was calculated by Eq. (4).

Rj =
∫
e
s RASD · Sj(λ)dλ
∫
e
s Sj(λ)dλ

(4)

where Rj is the RMCA−ASD, λ is the wavelength, Sj(λ) is the
spectral response function of band j, and e and s are the starting
and ending wavelengths of band j, respectively.

The plot-level canopy reflectance of rice derived from
UAV images was obtained by defining a rectangular region
of interest (ROI). For different UAV-FAs, the reflectance
was acquired by adjusting the number of pixels in the
ROI of the responding image according to the resolution.
Additionally, several VIs, such as RVI (Jordan, 1969), NDVI
(Tucker, 1979), NDRE (Gitelson and Merzlyak, 1994), VARI
(Gitelson et al., 2002), EVI2 (Jiang et al., 2008), CIrededge
(Gitelson et al., 2003), CIgreen (Gitelson et al., 2003), MCARI
(Daughtry et al., 2000), and WDRVI (Gitelson, 2004),
frequently applied to rice growth monitoring and yield
prediction were computed.

Methods and evaluation

In practical multispectral images, each pixel is usually a
mixed pixel. The fluctuation in the reflectance of the mixed
pixel can be regarded as the changes in the components
(called endmember) and proportions of these components
(called abundance). Mixed pixel decomposition is a process
of calculating the abundance of each component by using the
least-square method under the condition that the reflectance
of the mixed pixel and each endmember is known. The fully
constrained least-square linear spectral mixture (FCLS-LSM)
model was employed in this study to obtain the abundance
of endmembers of multispectral images derived from different
UAV-FAs with the constrained conditions of Eqs. (5–6) (Gong
et al., 2018; Duan et al., 2019).

R =
n∑

i=1

AiRi + e (5)

0 ≤ Ai ≤ 1;
n∑

i=1

Ai = 1 (6)

where R is the reflectance of the mixed pixel, Ai is the abundance
of the endmember i, Ri is the reflectance of the endmember i, n
is the number of the endmembers, and e is the error.

The prediction models of rice growth parameters and yield
were constructed using linear regression and three machine
learning algorithms of SVR, RFR, and ANN (Ashapure et al.,
2020). The accuracy was described quantitatively by R2, RMSE,
and RRMSE (Duan et al., 2021). In addition, the mean relative
percent error (MRPE) and RMSE were utilized to analyze and

compare the effects of three RCMs. The relevant expressions for
calculation are as follows:

MRPE =
1
n

n∑
i=1

∣∣∣∣ ŷ− y
y
× 100

∣∣∣∣ (7)

RMSE =

√∑n
i=1(ŷ − y)2

n
(8)

RRMSE =
RMSE

ȳ
(9)

where y, ŷ, and ȳ are the observed, estimated, and measured
mean values, respectively. n is the number of samples. In the
RCM evaluation, y is the RMCA−ASD.

Results

Accuracy comparison of reflectance
and vegetation indices based on three
radiometric calibration methods

The reflectance of rice canopy
The RMCA−ASD of rice canopy during the whole growth

period in Test 1 and Test 2 was used to compare with the
RMCA based on three RCMs (EL, SEL, and PEL). Since the
differences among RCMs mainly lie in the visible and red-edge
(700 nm) bands, these bands will be discussed emphatically.
The accuracy comparison of several typical bands (490, 550,
670, and 700 nm) in Test 1 was shown as an example. As
can be seen in Figure 1, each row represents a band and each
column a RCM. In general, compared with EL, the accuracy
of SEL- and PEL-based reflectance was improved at different
stages (closer to the 1:1 line), particularly pronounced in the
jointing, booting, and heading stages. In these periods, the
rice canopy reflectance obtained based on EL was significantly
underestimated, and even negative values appeared in the
bands of 490 and 670 nm. In addition, the SEL- and PEL-
based reflectance showed similarities. Furthermore, it was also
found that SEL and PEL had a better ability to predict rice
reflectance at the milking stage in the bands with low reflectance
(490 and 670 nm), while EL and PEL had higher accuracy at
tillering stage in the bands with relative high reflectance (490,
670, and 700 nm).

The MRPE and RMSE were computed to quantitatively
evaluate the performance of three RCMs in the reflectance
prediction of 12 bands in Test 1 and Test 2. It can be seen from
Table 2 that EL has a strong reflectance prediction ability in
720 nm and NIR bands (MPRE < 30% in Test 1 and < 15% in
Test 2). In contrast to EL, SEL, and PEL improved the reflectance
accuracy of 490, 670, and 680 nm by about 37–66% in Test 1
and 45–61% in Test 2. There is no more than a 5% accuracy
difference among the three RCMs in 550 nm. PEL achieved
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FIGURE 1

Comparison of RMCA and RMCA−ASD in Test 1: (A) 490 nm and EL; (B) 490 nm and SEL; (C) 490 nm and PEL; (D) 550 nm and EL; (E) 550 nm and
SEL; (F) 550 nm and PEL; (G) 670 nm and EL; (H) 670 nm and SEL; (I) 670 nm and PEL; (J) 700 nm and EL; (K) 700 nm and SEL; and (L) 700 nm
and PEL.

the highest prediction accuracy in each band. Compared with
SEL, PEL was slightly improved (less than 5%). Thus, in the
estimation of canopy reflectance in the whole growth period
of rice, the performance of SEL and PEL was significantly
better than that of EL, but the accuracy improvement difference
between SEL and PEL was limited.

The reflectance of grassland canopy and
slabstone

The grasslands and slabstones were selected to obtain
the RMCA and RMCA−ASD simultaneously to evaluate the
performance of the three RCMs in the reflectance predictions

of different ground objects. The prediction accuracy of EL and
PEL is identical for the observed slabstones due to the fact that
the reflectance of each band is not less than 3%. It could be found
in Table 3 that EL had a good prediction effect on the reflectance
of grassland canopy and slabstone at 720 nm and NIR bands. For
grassland, in the low reflectance bands (490, 670, and 680 nm),
the performance of PEL was consistent with that of rice. The
reflectance accuracy of PEL was significantly higher than that
of EL and slightly stronger than that of SEL. However, in the
bands of 550, 570, and 700 nm, the results of EL and PEL were
similar and significantly better than SEL. For slabstone, EL (PEL)
performed better than SEL in each compared band.
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Vegetation indices of rice and grassland
canopy

The VIs calculated based on RMCA and RMCA−ASD of rice
and grassland were compared to analyze the influence of RCMs.
Here, only the accuracy comparison of RVI, NDVI, VARI,
EVI2, CIgreen, MCARI, and WDRVI was analyzed because the
red-edge indices (NDRE and CIrededge) were a combination of
720 nm and NIR bands, and the comparison of the three RCMs
was not involved. The results presented in Table 4 demonstrated
that the accuracy of VIs based on the three RCMs was consistent
with the accuracy of reflectance. The PEL had the highest
accuracy, and the accuracy of SEL and PEL was significantly

higher than that of EL. However, CIgreen in Test 4 showed higher
precision of PEL and EL than SEL.

Responses of reflectance and
vegetation indices to varying UAV
flying altitudes

The variation of reflectance with UAV flying
altitudes

In Test 3, the edge rice plots in the multispectral images at
different stages were used to analyze the responses of reflectance

TABLE 2 Statistical results of reflectance accuracy of different RCMs in Test 1 and Test 2.

Band (nm) MRPE (%) RMSE

EL SEL PEL EL SEL PEL

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

490 98.825 76.489 34.306 25.430 32.287 21.616 0.021 0.019 0.010 0.010 0.009 0.009

520 50.052 52.625 23.816 27.923 21.619 24.966 0.021 0.019 0.013 0.014 0.011 0.013

550 26.362 28.312 25.075 25.223 22.955 24.663 0.019 0.017 0.020 0.016 0.018 0.016

570 35.310 42.234 28.813 24.158 24.423 22.241 0.021 0.019 0.020 0.016 0.017 0.014

670 99.697 66.812 37.191 23.124 35.888 21.598 0.020 0.018 0.013 0.014 0.012 0.014

680 84.679 81.757 38.470 23.502 37.775 20.608 0.020 0.019 0.014 0.015 0.013 0.014

700 31.522 37.495 24.926 30.032 20.724 28.137 0.023 0.023 0.020 0.025 0.016 0.020

720 18.582 13.865 – – – – 0.033 0.023 – – – –

800 20.010 8.771 – – – – 0.096 0.042 – – – –

850 22.698 8.967 – – – – 0.113 0.043 – – – –

900 20.196 8.463 – – – – 0.102 0.040 – – – –

950 27.343 11.631 – – – – 0.1218 0.046 – – – –

The method with the best performance is represented by bold values.

TABLE 3 Statistical results of reflectance accuracy of different RCMs in Test 4.

Band (nm) MRPE (%) RMSE

EL SEL PEL EL SEL PEL

Grassland Slabstone Grassland Slabstone Grassland Grassland Slabstone Grassland Slabstone Grassland

490 69.603 29.806 44.919 36.096 42.607 0.032 0.043 0.021 0.053 0.020

520 72.858 35.562 56.752 42.594 51.435 0.052 0.053 0.041 0.064 0.037

550 24.709 24.070 32.618 30.082 24.709 0.024 0.043 0.032 0.053 0.024

570 34.446 25.030 35.849 31.071 34.446 0.030 0.043 0.031 0.05 0.030

670 50.253 24.224 42.061 29.463 41.636 0.029 0.049 0.025 0.059 0.025

680 64.741 26.298 48.397 31.021 43.571 0.040 0.052 0.030 0.063 0.027

700 32.783 23.615 38.850 29.056 32.783 0.038 0.050 0.045 0.063 0.038

720 6.630 20.1980 – – – 0.016 0.044 – – –

800 4.390 17.735 – – – 0.017 0.045 – – –

850 3.354 17.295 – – – 0.014 0.047 – – –

900 5.445 16.326 – – – 0.025 0.046 – – –

950 5.034 24.287 – – – 0.022 0.074 – – –

The method with the best performance is represented by bold values.
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TABLE 4 Statistical results of VI accuracy of different radiometric calibration methods in Test 1, Test 2, and Test 4.

Error Model Experiment RVI NDVI VARI EVI2 CIgreen MCARI WDRVI

MRPE (%) EL Test 1 99.517 4.967 99.321 11.993 42.889 90.532 72.578

Test 2 99.329 9.860 75.488 11.935 53.042 59.763 90.445

Test 4 123.900 18.678 84.619 16.780 46.732 36.054 812.925

SEL Test 1 31.765 2.091 10.084 9.157 33.601 26.437 41.533

Test 2 36.040 6.761 43.082 10.999 46.632 23.116 89.540

Test 4 79.514 15.648 56.319 14.237 67.477 36.914 744.887

PEL Test 1 26.365 2.063 6.174 8.908 30.327 25.573 45.383

Test 2 31.712 6.535 29.949 10.961 44.635 19.798 88.321

Test 4 77.054 15.342 31.483 13.984 46.732 31.009 727.275

RMSE EL Test 1 80.744 0.075 2.490 0.135 5.778 0.022 0.322

Test 2 78.783 0.090 0.339 0.080 4.505 0.008 0.257

Test 4 9.663 0.135 0.217 0.089 1.360 0.010 0.347

SEL Test 1 13.386 0.040 0.091 0.100 3.460 0.004 0.102

Test 2 7.529 0.075 0.137 0.075 3.517 0.005 0.156

Test 4 5.341 0.112 0.133 0.075 1.946 0.010 0.270

PEL Test 1 11.002 0.038 0.062 0.099 3.099 0.004 0.101

Test 2 7.428 0.075 0.090 0.074 3.426 0.004 0.155

Test 4 5.201 0.110 0.081 0.074 1.360 0.008 0.264

The method with the best performance is represented by bold values.

and VIs to UAV-FAs. In the same sensor and photographing
mode, the resolution of the UAV-induced image was determined
by the UAV-FAs. The UAV images of different scales (60–250 m)
were converted according to the resolutions, and then the sizes
of the ROI were calculated to represent the same study area.
The mean value of all pixels within the ROI was taken as the
plot-level reflectance.

It can be found from Figure 2 that the variation trend of
rice reflectance (including visible to NIR bands) with UAV-FAs
in different periods differs significantly. At the tillering stage
(Figure 2A), the reflectance of the NIR bands (800, 850, 900, and
950 nm) decreases obviously with UAV-FAs, but the reflectance
of the visible (490, 520, 550, 570, 670, and 680 nm) and red-
edge bands (700 and 720 nm) shows a slight rise at first and
then a slow decline. At the jointing stage (Figure 2B), in general,
the variation trend of reflectance with UAV-FAs in all bands is
similar to that at the previous stage, while in the visible and red-
edge bands, the reflectance changes more violently within the
first 100 m. At the heading stage, the variation in the reflectance
of different bands is more gentle than at the jointing stage.
Specifically, the variation in the reflectance of visible bands is
slightly slow within the first 100 m, and the variation in the
reflectance of NIR and red-edge bands is weakened (Figure 2C).
At the milking stage, the reflectance of each band changes
relatively steadily (Figure 2D).

The variation of vegetation indices with UAV
flying altitudes

The changes in VIs with UAV-FAs in different periods are
shown in Figure 3. It can be seen that almost all VIs show

similar trends in different periods. At the tillering, jointing, and
heading stages, VIs change sharply within 100 m with UAV-
FAs, but become stable after 100 m. This is consistent with the
variation in the reflectance of the visible bands with UAV-FAs.
In addition, VIs at the milking stage are nearly unaffected by
UAV-FAs. With the growth of rice, the variation in VIs gradually
weakens within the first 100 m, that is, the most significant
changes occur at tillering and jointing stages, then weaken
significantly at the heading stage, and remain almost unchanged
at the milking stage.

Analysis of contributing factors to reflectance
variation with UAV flying altitudes

The FCLS-LSM model was used to analyze the reasons
for the changes in reflectance obtained from the same area
observed at different altitudes. Taking the edge plot at the
jointing stage as an example, after six kinds of endmembers
(light leaf, shaded leaf, light water, shaded water, light soil, and
shaded soil) were selected and measured, the spectral curve
of each endmember (Figure 4A) was obtained by convolution
of the spectral response function of Mini-MCA12 camera. As
shown in Figure 4A, in the NIR bands, the reflectance of rice was
much higher than that of the background, but the opposite was
true in the visible bands. The abundances (i.e., proportions) of
different endmembers were acquired through unmixing, and the
reflectance changes were described through the combinations of
different endmembers (Figure 4B). The NIR band attenuation
factor was defined as the sum of all background abundances
(light water + shaded water + light soil + shaded soil), and
the visible band enhancement factor was calculated by the
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FIGURE 2

Variation in reflectance of rice with different UAV-FAs at (A) tillering stage; (B) jointing stage; (C) heading stage; and (D) milking stage.

combination of background abundances (light water + light
soil + shaded soil – shaded water). The results in Figure 4B
demonstrate that below 100 m, the visible band enhancement
factor gradually increases with UAV-FAs, after which it remains
stable. The NIR band attenuation factor increases with UAV-FAs
until it changes slowly after 170 m. This shows no difference
with the variation trend of NIR-band reflectance at the jointing
stage (Figure 2B). Thus, as the background ratio increases, the
reflectance of the NIR bands decreases, while the reflectance of
the visible bands increases.

The observation angles of the same rice plot at different
UAV-FAs are shown in Figure 4C. It can be seen that with the
increase of UAV-FAs, the view zenith angle (VZA) of the same
observation area gradually decreases. At a certain flight altitude,

the edge-plot VZA of the image is equal to half of the FOV,
so the distance from the study plot to the UAV in the vertical
direction (d) can be calculated, and the variation in VZA at
different UAV-FAs can be simulated according to the changing
flight altitudes (H). The results in Figure 4D indicate that when
the flight altitude rises from 50 to 100 m, the VZA drops sharply,
and the trend gradually slows down after 100 m. The plot in this
study is not located at the extreme edge of the image. Hence, the
VZA at 100 m will shift to the right in Figure 4D, which is close
to the stable state. At this point, the observation is closest to the
orthotopic position.

Thus, observations at different altitudes are observations at
different angles. The different proportions of the rice canopy
and background observed at different angles, as well as the
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FIGURE 3

Variation in VIs with different UAV-FAs: (A) RVI; (B) NDVI; (C) NDRE; (D) CIred edge; (E) CIgreen; and (F) WDRVI.

differences in the proportion of light and shaded leaves in the
canopy, make the observed reflectance of the rice plot show the
characteristics of bidirectional reflection.

Impact of different radiometric
calibration methods and UAV flying
altitudes on rice growth monitoring

Different RCMs will produce large differences in reflectance
and VIs (Figure 1 and Table 4). Thus, it is necessary to evaluate
the impact of such differences in rice growth monitoring to
guide practical applications. The EL-based reflectance often
appears as outliers in the red bands, and the derived VIs
will exceed the normal range (e.g., NDVI greater than 1).
CIgreen without red bands was selected to analyze the impact
of different RCMs. To avoid the influence of bidirectional
reflection, the 100 m images in Test 1 and Test 2 were
used as the base map for calculating the CIgreen. The linear
regression models for estimating LAI, AGB, and CCC of rice
are shown in Table 5. It turns out that the PEL performs
better than EL and SEL methods in Test 1 and Test 2. In
Test 1, the differences in LAI, AGB, and CCC prediction
errors based on three RCMs are approximately 8, 2, and
10%, respectively. In Test 2, these differences are about 2%.
In general, the PEL method has a stable advantage in rice
growth monitoring.

As for the impact of different UAV-FAs on rice growth
monitoring, the UAV-based images were processed by the PEL
method. The results in Table 6 demonstrate that the differences
in prediction results of rice growth parameters caused by UAV-
FAs were more pronounced in Test 2 (50 and 100 m). In Test 1
(100–250 m), the differences in LAI, AGB, and CCC prediction
errors based on different UAV-FAs were approximately 1, 2, and
1%, respectively. While in Test 2, these differences were about 8,
2, and 3%, respectively. The difference in LAI estimating results
was the most significant.

Impact of different radiometric
calibration methods and UAV flying
altitudes on yield prediction

When analyzing the influence of different RCMs on yield
prediction in a single stage, the images derived from an altitude
of 100 m in Test 1 and Test 2 were selected. Moreover, the
CIgreen was also utilized to correlate with the yield of different
stages. Quantitative evidence shown in Figure 5A indicates
that the PEL reveals a better correlation with the yield at each
stage in Test 1 and Test 2, particularly at the heading stage
(significance changes).

The Pearson correlation coefficient between rice yield and
PEL-based VIs at different UAV-FAs in Test 1 and Test 2
are shown in Figure 5. The darker and larger the colored
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FIGURE 4

The changes caused by different UAV-FAs: (A) Reflectance of different endmembers in the rice field; (B) mixed pixel decomposition results; (C)
schematic diagram of UAV observation angle change at different altitudes, α is the VZA and H is the UAV flying altitude; and (D) the changes in
edge-plot FOV with the increase of UAV-FAs.

rectangles in the heat map, the stronger the correlation. It
can be found that, as a whole, there was little difference in
the correlation between VIs and yield at different altitudes
in Test 1, but there was a significant difference in Test 2
at each stage. Indices with the strongest correlation with the
rice yield at booting (EVI2) and heading stages (WDRVI)
were selected for quantitative comparison. The linear regression
models for predicting rice yield using PEL-based VIs at booting
and heading stages in Test 2 are shown in Table 7. It can be seen
that the difference in yield prediction errors based on 50 and 100
m altitudes is about 2%.

As for the yield estimation of multi-variety rice, VIs in
the whole period in Test 1 was used for yield prediction by
the machine learning methods (SVM, RFR, and ANN) with
10-fold cross-validation because the relationship between VIs
and yield was not directly linear. Each model was run 10
times as a result group, and an analysis of variance (ANOVA)

was conducted to analyze the differences among individual
groups. CIgreen and NDVI are employed in the differential
analysis of RCMs and UAV-FAs, respectively. As shown in
Figure 6, the averaged value of R2 with the same lowercase
letters (a, b, and c) is not significantly different by Tukey’s
test at a significance level of 5%. It turns out that the SEL-
and PEL-based yield estimation accuracy is significantly higher
than that of EL using RFR and ANN. The three RCMs share
little difference when using SVM (Figure 6A). The RFR is
proved to be the best predictor using the PEL method, and
the performance of the three machine learning methods share
little difference using EL and SEL methods (Figure 6B). The
results in Figure 6C demonstrate that the altitude above 100
m has no significant effect on yield prediction. However, there
are some differences between the results of different yield
estimation methods (Figure 6D). The RFR has the highest
prediction accuracy in multi-period rice yield estimation at
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100–250 m altitude. Consequently, different RCMs and UAV-
FAs have some impacts on single- and multi-period rice
yield estimation.

Discussion

The comparison and selection of
radiometric calibration methods

In precision agriculture, the selection of RCMs and the
evaluation of reflectance accuracy are often ignored (Jiang
et al., 2019; Rosas et al., 2020; Wan et al., 2020). The results
presented in Figure 1 and Tables 2, 3 show that the EL

method is suitable for the conversion of high reflectance (e.g.,
the slabstone and the rice at the tillering stage), while the
SEL method can obtain more accurate low reflectance (e.g.,
the grassland and the rice at jointing, booting, and heading
stages). Therefore, the PEL method was proposed to combine
the advantages of EL and SEL and to automatically obtain high-
precision reflectance for different ground objects using multiple
calibration panels. In the visible bands, SEL is useful for the
low reflectance of the vegetation itself. However, when plants
are mixed with high reflectance background (such as soil), the
performance of SEL is worse than that of EL. When vegetation
almost covered the background (e.g., rice and grassland with
a closed canopy), the ability of SEL to obtain low reflectance
is highlighted, while the PEL can automatically perform

TABLE 5 The linear regression models for monitoring rice growth parameters based on three RCMs in Test 1 and Test 2.

Experimental name RCMs Regression equation R2 RMSE RRMSE%

Test 1 EL LAI = 0.2138× CIgreen + 2.1213 0.6159 1.1894 24.43

SEL LAI = 0.3392× CIgreen + 1.2471 0.7714 0.9175 18.84

PEL LAI = 0.3360× CIgreen + 1.0176 0.8364 0.7772 15.96

EL AGB = 31.8780× CIgreen + 58.2600 0.6283 258.5627 47.60

SEL AGB = 38.2660× CIgreen + 46.7340 0.5478 267.8949 49.32

PEL AGB = 39.6540× CIgreen + 3.7036 0.6534 255.5819 47.05

EL CCC = 8.7479× CIgreen + 96.1880 0.5419 56.6725 27.16

SEL CCC = 14.7750× CIgreen + 50.8720 0.7689 40.2487 19.29

PEL CCC = 14.3360× CIgreen + 44.2940 0.8001 37.4370 17.94

Test 2 EL LAI = 0.2944× CIgreen + 0.6926 0.8350 0.8195 18.38

SEL LAI = 0.3210× CIgreen + 0.6811 0.8026 0.8755 19.63

PEL LAI = 0.3390× CIgreen + 0.4682 0.8533 0.7820 17.53

EL AGB = 42.1860× CIgreen + 30.6610 0.4654 271.4445 48.08

SEL AGB = 45.0950× CIgreen + 31.0940 0.4403 277.7335 49.20

PEL AGB = 47.5830× CIgreen + 4.9777 0.4690 270.5139 47.92

EL CCC = 11.9540× CIgreen + 28.8210 0.8588 30.9864 17.05

SEL CCC = 13.2190× CIgreen + 26.1690 0.8492 31.5024 17.33

PEL CCC = 13.9210× CIgreen + 17.8800 0.8975 27.5072 15.13

The method with the best performance is represented by bold values.

TABLE 6 The linear regression models for monitoring rice growth parameters based on different UAV-FAs in Test 1 and Test 2.

Experimental name UAV-FAs (m) Regression equation R2 RMSE RRMSE%

Test 1 100 LAI = 0.3360× CIgreen + 1.0176 0.8364 0.7762 15.94

150 LAI = 0.3539× CIgreen + 0.9984 0.8546 0.7318 15.03

200 LAI = 0.3421× CIgreen + 0.9721 0.8317 0.7874 16.17

250 LAI = 0.3554× CIgreen + 0.8772 0.8411 0.7649 15.71

100 AGB = 39.6540× CIgreen + 3.7036 0.6534 162.6172 36.55

150 AGB = 43.5090× CIgreen – 4.7125 0.6363 165.2271 36.81

200 AGB = 38.6880× CIgreen + 6.2879 0.6133 171.7673 38.60

250 AGB = 40.1870× CIgreen + 1.6108 0.6130 171.8381 38.62

100 CCC = 14.3360× CIgreen + 44.2940 0.8001 37.4370 17.94

150 CCC = 14.6560× CIgreen + 48.3090 0.8103 35.0322 17.07

200 CCC = 15.0250× CIgreen + 37.4670 0.8430 33.1784 15.90

250 CCC = 15.5450× CIgreen + 34.0210 0.8455 32.9088 15.77

Test 2 50 LAI = 0.2788× CIgreen + 0.8889 0.7761 1.1150 25.00

100 LAI = 0.3390× CIgreen + 0.4682 0.8533 0.7820 17.53

50 AGB = 39.5530× CIgreen + 55.1480 0.4301 280.2471 49.64

100 AGB = 47.5830× CIgreen + 4.9777 0.4690 270.5139 47.92

50 CCC = 11.4960× CIgreen + 34.5720 0.8228 33.9458 18.67

100 CCC = 13.9210× CIgreen + 17.8800 0.8975 27.5072 15.13
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FIGURE 5

Impact of different RCMs and UAV-FAs on yield prediction: (A) Pearson correlation coefficient between rice yield and CIgreen based on three
RCMs in Test 1 and Test 2; (B) Pearson correlation coefficient between rice yield and VIs at different UAV-FAs in Test 1 and Test 2 (∗∗∗, ∗∗, and ∗

represent the significant correlation at the 0.001, 0.01, and 0.05 levels, respectively).

pixel-to-pixel reflectance conversion and obtain high-precision
vegetation and background reflectance. This paves the way for
analyzing the reflectance changes at different UAV-FAs.

The existing study shows that the accuracy of VIs derived
from different sensors does not directly depend on the accuracy
of reflectance (Deng et al., 2018b). That is to say, for different
sensors, when the accuracy of reflectance is higher, it is not
necessary that the accuracy of VIs should also be higher.
The reasons are as follows: (i) the accuracy of reflectance of
each band is different, (ii) bandwidths or central bands are
different, and (iii) the reflectance is affected by the weather.
However, in this study, the accuracy of VIs of the same sensor
depends on its accuracy of reflectance. The results presented
in Table 4 demonstrate that SEL- and PEL-based VIs (except

CIgreen in Test 4) are more accurate than those based on EL in
Test 1, Test 2, and Test 4. The accuracy of EL-based CIgreen is
higher than that of SEL in Test 4 due to the accuracy of the
reflectance. The reflectance of 550, 570, and 700 nm of grassland
in Test 4 has a higher accuracy based on EL (PEL) than SEL.

The response of reflectance and
vegetation indices to different UAV
flying altitudes

The vegetation canopy reflectance shows anisotropic
characteristics with the change of incidence and observation
angles, which is generally described by the bidirectional
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TABLE 7 The linear regression models for predicting rice yield at booting and heading stages in Test 2.

Growth stage UAV flying altitude (m) Regression equation R2 RMSE RRMSE%

Booting stage (03/25) 50 Yield = 3186.2660× EVI2 - 2002.0312 0.3859 124.7462 15.4756

100 Yield = 5475.6664× EVI2 - 3455.1211 0.5177 110.5548 13.7151

Heading stage (04/01) 50 Yield = 1337.1689×WDRVI - 120.3483 0.3165 131.6050 16.3265

100 Yield = 2867.1955×WDRVI - 1007.9788 0.5170 110.6357 13.7251

FIGURE 6

R2-values of multi-stage rice yield prediction using machine learning methods with different RCMs or UAV-FAs: (A) Comparison of different
RCMs and same machine learning methods using CIgreen; (B) comparison of same RCMs and different machine learning methods using CIgreen;
(C) comparison of different RCMs and same UAV-FAs using NDVI; and (D) comparison of same UAV-FAs and different machine learning
methods using NDVI.

reflection distribution function (BRDF) (Roy et al., 2016). The
BRDF characteristics of vegetation canopy mainly depend on
the following factors: (i) the optical characteristics of leaves and
ground background; and (ii) canopy structure characteristics,
including LAI, leaf inclination, canopy geometry, density, and
distribution (Qiu et al., 2021). The changes in rice canopy
reflectance with UAV-FAs at the same stage are mainly caused
by the difference in the observation angles (Figure 6C).

The reflectance of rice at different altitudes and growth
stages was obtained with high accuracy using PEL methods.

The results in Figure 2 show that the reflectance variation
in the different bands of rice at diverse UAV-FAs shares
significant differences at different growth durations. To analyze
the sensitivity of different bands to UAV-FAs, the reflectance
curves of rice at the altitudes of 60–250 m in different periods
are shown in Figure 7. The sensitivity is expressed as the ratio
of the standard deviation (STD) of spectral reflectance at all
altitudes to the reflectance (STDR) in the orthophoto direction
(approximately substituted by the reflectance at 250 m). It can
be seen that the variation range and sensitivity (STDR) of
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FIGURE 7

Reflectance spectral curves of rice at different altitudes and stages (STD represents the standard deviation of spectral reflectance at all altitudes
and STDR is the ratio of the STD to the reflectance at 250 m): (A) Tillering stage; (B) jointing stage; (C) heading stage; (D) milking stage.

reflectance in NIR bands are more obvious than that in visible
bands at the tillering stage (Figure 7A). This was due to the effect
of water on the tillering stage, resulting in reduced sensitivity of
visible bands (Gatebe and King, 2016). At the jointing, heading,
and milking stages, the reflectance variation range of NIR bands
is greater than that of visible bands, but the sensitivity is less
than that of visible bands (Figures 7A–D). At these stages,
the anisotropy effect of reflectance is the strongest in the red
band (STDR > 0.1). In the NIR bands, the leaf absorption of
vegetation is weak, and the reflectance and transmittance are
high, which makes the multiple scattering effects inside the
canopy stronger and reduces the anisotropy of vegetation in
these bands, while the strong absorption of chlorophyll makes
the anisotropy stronger in the red bands (Sandmeier et al., 1998).
Therefore, the change of reflectance is distinctly weakened at
the heading and milking stages because the appearance of the
panicle makes the canopy not easy to be penetrated by light.

The FCLS-LSM model was used to analyze the changes
in the components of multispectral images of paddy fields at
the jointing stage. The results in Figure 4B showed that the
fluctuations in the proportion of rice leaves and soil background,
and the ratio of light and shaded leaves in the canopy are the

reasons for the changes in canopy reflectance. The enhancement
and attenuation factors in the visible bands change significantly
before 100 m and then tend to be stable, while the NIR band
attenuation factors keep unchanged after 170 m, because in the
NIR bands, the reflectance of rice is much greater than that of the
background (Figure 4A). In addition, the NIR bands have strong
penetration, and the reflectance will decrease significantly as
long as the background increases slightly. In the visible bands,
the reflectance gap between the background and rice is relatively
small, and the weak change of the background proportion will
not lead to a drastic response of the reflectance. It can also be
found in Figure 4D that after 100 m, the VZA variation of
the plot at the edge of the image gradually becomes flat with
the change of altitudes, which also proves that there is little
fluctuation in the different components of the multispectral
images after 100 m, and the edge plot at this altitude is close
to the orthophoto direction. Therefore, the variation in the
reflectance of different bands with UAV-FAs is related to the
reflectance of the backgrounds.

The fluctuation in the reflectance will cause a change in
VIs. It is found in Figure 3 that the variation trend of VIs and
reflectance of visible and red-edge bands in different periods
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FIGURE 8

Boxplot for the comparison of VIs based on different RCMs and UAV-FAs: (A) CIgreen based on different RCMs in Test 1; (B) CIgreen based on
different RCMs in Test 2; (C) NDVI based on different UAV-FAs in Test 1; (D) NDVI based on different UAV-FAs in Test 2.

are consistent, appearing that the VIs change significantly
within 100 m at tillering, jointing, and heading stages, and
remain unchanged beyond 100 m. The main reason for this
phenomenon is that the reflectance of NIR bands is generally
taken as the numerator in the calculation of VIs, while the
reflectance of visible and red-edge bands can be taken as the
denominator. Therefore, small changes in the denominator will
eventually be amplified, and the influence of numerator changes
will be much smaller.

Effects of radiometric calibration
methods and UAV flying altitudes on
the accurate acquisition of rice
phenotypes

The VIs derived from the combination of reflectance in
different bands have proven to be a good indicator to monitor
crop growth and predict the yield (Deng et al., 2018b; Hassan
et al., 2019; Luo et al., 2020). For crop growth monitoring
(like LAI, AGB, and chlorophyll content), a multi-stage model

is acceptable (Li et al., 2020). Both single-period and multi-
period models are useful for yield estimation (Gong et al., 2018;
Wang et al., 2019; Wan et al., 2020; Duan et al., 2021). Machine
learning is the most widely used method in multi-period crop
yield prediction. In this study, rice growth monitoring (multi-
stage) and yield prediction (single and multi-stage) were carried
out to verify and evaluate the effects of RCMs and UAV-FAs.

The results in Table 5 and Figure 5A indicate that the
PEL method holds the highest accuracy in LAI, AGB, CCC
estimation, and single-stage yield prediction. The comparison
of CIgreen based on the three RCMs is shown in Figures 8A,B.
It can be seen that the EL-based CIgreen is different from the
others (including range and distribution). Hence, the selection
of appropriate RCMs has a very notable impact on precision
agriculture (Deng et al., 2018b).

The results of different UAV-FAs presented in Tables 6, 7
and Figure 5 show that the altitude change above 100 m has
no conspicuous impact on growth parameter estimation and
yield prediction. The variables based on 50 and 100 m have
a great influence on single-period yield prediction and have a
relatively weak impact on growth simulation. Of course, the size
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and number of plots in Test 2 are less than those in Test 1.
This reduces the impact of altitude to a certain extent because
the plots in Test 2 are closer to the center of the image. The
comparison of NDVI based on different UAV-FAs is shown in
Figures 8C,D. The range and shape of NDVI based on 100–
250 m are similar, and the difference between 50 and 100 m
is prominent. At low altitudes, NDVI is larger and more easily
saturated, which reduces the accuracy of the estimation model.

It is also crucial to select different machine learning methods
for yield estimation with multi-period variables. For example,
SVM can cover up the difference in yield estimation caused by
different RCMs, while RFR and ANN can show the superiority
of SEL and PEL (Figure 6A). The impact of different RCMs is
also reflected in whether the advantages of machine learning
methods can be highlighted: there is no significant difference in
the estimation accuracy of the three machine learning methods
when EL and SEL are used, while the accuracy of RFR is
significantly higher than that of other methods when PEL is used
(Figure 6B). Therefore, RCMs and machine learning methods
have a mutual influence on yield estimation results, which
should be paid attention to in the selection. The altitude change
above 100 m does not have a significant impact on the multi-
period yield estimation results (Figure 6C). The yield estimation
accuracy of RFR is the highest, and there is no significant
difference between SVR and ANN (Figure 6D).

Compared with the vertical downward observation at high
altitude, the vegetation directional reflectance obtained by RS
at low altitude contains abundant information on vegetation
canopy structure. Therefore, more attention should be paid to
the extraction of crop phenotype information from low-altitude
images, particularly for sensors with large FOV.

Conclusion

Multispectral reflectance can be affected by RCMs and UAV-
FAs. In this paper, the reflectance derived from different RCMs
was compared, and accurate reflectance at different altitudes was
obtained. It was found that the EL and SEL methods performed
well in the prediction of high reflectance and low reflectance,
respectively. The PEL method combining the advantages of EL
and SEL showed the highest accuracy in rice growth monitoring
(LAI, AGB, and CCC estimation) and yield prediction. In
addition, the selection of machine learning methods would have
a certain impact on multi-period rice yield estimation. Due to
the differences in observation angles caused by UAV-FAs, the
proportion changes of light and shaded rice and background
made the reflectance fluctuate at different altitudes, which
was apparent at tillering and jointing stages, and weakened at
heading and milking stages. Likewise, VIs also showed certain
variation rules, changing violently within 100 m and then
remaining stable. The experimental data showed that the results
of rice growth monitoring and yield prediction (using single

and multi-period variables) differed significantly at different low
altitudes (50 and 100 m) and shared little difference at high
altitudes (100, 150, 200, and 250 m). The specific altitude value
is determined by the FOV of the sensor and the characteristic
of the ground object. In future work, more attention will be
paid to the acquisition of crop phenotype information from low-
altitude multispectral images as a result of the inclusion of more
canopy structure information.
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