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the plant trans-Golgi network
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Membrane trafficking contributes to distinct protein compositions of organelles 

and is essential for proper organellar maintenance and functions. The trans-

Golgi network (TGN) acts as a sorting station where various cargo proteins are 

sorted and directed to post-Golgi compartments, such as the multivesicular 

body or pre-vacuolar compartment, vacuoles, and plasma membrane. The 

spatial and temporal segregation of cargo proteins within the TGN, which is 

mediated with different sets of regulators including small GTPases and cargo 

adaptors, is a fundamental process in the sorting machinery. Recent studies 

with powerful imaging technologies have suggested that the TGN possesses 

spatially distinct subdomains or zones for different trafficking pathways. In this 

review, we will summarize the spatially and dynamically characteristic features 

of the plant TGN and their relation to cargo protein trafficking.
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Introduction

Membrane trafficking tightly regulates protein localization among organelles and plays 
a fundamental role in numerous biological processes such as cell growth, development, and 
stress responses. It is an evolutionarily conserved system among eukaryotes and consists of 
four fundamental processes: (1) forming transport carriers and sorting cargo proteins on 
donor organelle membranes; (2) transporting the carriers from the donor to the target 
organelles; (3) tethering; and (4) fusing them with the target organelle membrane (Fujimoto 
and Ueda, 2012; Figure 1). These processes are conducted with conserved key regulators 
and effectors, such as ADP-ribosylation factor/Secretion-associated Ras-related (Arf/Sar) 
GTPases, coat proteins, RAB GTPases, and soluble N-ethylmaleimide-sensitive factor 
attachment protein receptors (SNAREs).

First, Arf/Sar GTPases activated by their guanine-nucleotide exchange factor (GEF) 
promote the recruitment of coat proteins on the donor membrane. Coat proteins play 
important roles in cargo protein recognition and membrane distortion (Singh and Jürgens, 
2018; Arora and Van Damme, 2021; Law et al., 2022). RAB GTPases are involved in various 
trafficking events, such as tethering (Saito and Ueda, 2009; Minamino and Ueda, 2019). 
SNAREs mainly function in the last step and can be  divided into two groups: target 
membrane-localized Q-SNAREs and transport carrier-localized R-SNAREs. A specific 
combination of three Q-SNAREs and one R-SNARE is thought to mediate the fusion 
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between the target membrane and transport carrier (Uemura and 
Ueda, 2014).

Biosynthetic trafficking starts in the endoplasmic reticulum 
(ER) where approximately one-third of proteins are synthesized. 
In normal anterograde membrane trafficking, the cis cisterna of 
the Golgi apparatus receives cargo proteins from the ER, whereas 
the trans cisterna sends them to their destinations, including the 
plasma membrane (PM) and vacuoles, via the trans Golgi network 
(TGN; Ito and Boutté, 2020; Figure 2). Therefore, the TGN lies in 
a branch of different trafficking routes and has long been suggested 
to be the site for cargo sorting. Recent studies have revealed that 
the TGN harbors spatially segregated functional subdomains or 
zones for differentially regulated trafficking routes (Heinze et al., 
2020; Shimizu et al., 2021). In this review, we will summarize and 
discuss the recent discoveries that have been made on 
TGN-mediated trafficking.

The trans-Golgi network

The TGN is generally recognized as a membranous structure 
at the trans-side of the Golgi apparatus (Griffiths and Simons, 
1986; Ito and Boutté, 2020), which partially corresponds to the 
compartment previously proposed as the Golgi-associated 
structure that is a part of the ER and forms Lysosomes (GERL) in 

the 1970s or termed the partially coated reticulum (PCR) in 1980s 
(Marty, 1978; Harris and Oparka, 1983; Pesacreta and Lucas, 1984; 
Staehelin et al., 1990). Morphologically distinct types of vesicles 
or multiple coat proteins have been found in the TGN, indicating 
that it is an important site for sorting cargo proteins with different 
destinations (Griffiths and Simons, 1986; Singh and Jürgens, 
2018). Cargo proteins are thought to be  transported from the 
Golgi to the TGN by the process of “cisternal maturation,” which 
has been well-studied in budding yeast (Glick and Nakano, 2009). 
According to this model, the trans-most Golgi cisterna is the cargo 
carrier and matures into the TGN without packing cargo 
molecules into the nascent transport carrier. Therefore, the TGN 
plays an essential role in sorting mixtures of biosynthetic cargo 
proteins with different destinations, which are derived from the 
Golgi apparatus. In partial support of this hypothesis, a knockout 
mutant of a Golgi-localized putative GEF for RAB6 (termed the 
“loss of TGN,” or LOT) was found to impair the biogenesis of the 
TGN, while the Golgi apparatus became over-stacked and 
elongated in Arabidopsis (Jia et al., 2018, 2019).

Interestingly, the plant TGN is a unique compartment that 
also functions as an early endosome where endocytosed molecules 
are first delivered. In a canonical model based on mammalian 
studies, endocytosed materials first reached the early endosome, 
which was physically separated from the TGN. They were then 
recycled back to the PM or redirected to lysosomes (Rohn et al., 

FIGURE 1

Scheme of a single round of membrane trafficking. General process of membrane trafficking involves the vesicle formation and cargo sorting step, 
transport, tethering, and finally fusion. Some components of post-Golgi membrane trafficking are showed as representative regulators. Arf GTPase 
involves in the vesicle formation step. Coat proteins are responsible for the cargo protein sorting and the membrane distortion. RAB GTPase 
tethers the vesicle by interacting its effectors. SNAREs mediate the membrane fusion between the vesicle and the target membrane. This model is 
based on the AP-1/clathrin- or AP-2/clathrin-coated vesicles and may be different for other vesicles, such as AP-3-, AP-4-, or AP-5-coated 
vesicles. AP, adaptor protein; ENTH, epsin N-terminal homology domain; MTV1, MODIFIED TRANSPORT TO THE VACUOLE1.
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2000; Barlow and Dacks, 2018). In plant cells, however, the 
lipophilic fluorescent dye FM4-64, which is gradually internalized 
from the PM by the endocytic machinery, first reached the TGN 
before other endomembrane organelles (Dettmer et al., 2006; Lam 
et al., 2007; Chow et al., 2008). Endocytic cargo proteins, such as 
BRASSINOSTEROID INSENSITIVE1 and REQUIRES HIGH 
BORON1, have also been reported to pass through the TGN 
(Viotti et al., 2010). A recent study involving the budding yeast 
Saccharomyces cerevisiae further reported that endocytosed 
FM4-64 first colocalized with the TGN marker (Day et al., 2018). 
These findings suggest that the TGN functions as an early 
endosome in plants and budding yeast and plays important roles 
not only in biosynthetic trafficking pathways, but also in endocytic 
trafficking pathways (Figure 2).

Spatiotemporal characteristics of 
the TGN

Although the concept of the TGN as the sorting platform in 
post-Golgi membrane trafficking is widely accepted, the 
mechanisms by which the TGN directs multiple sorting events 
remain unknown. To do this, the TGN must pack cargos with 
different destinations into distinct vesicles and/or sort them into 

different subdomains or zones. Recent studies have revealed that 
the TGN harbors at least two distinct domains or zones for 
different trafficking pathways (Heinze et al., 2020; Shimizu et al., 
2021; Figure 3).

In a branch of the post-Golgi trafficking pathways, R-SNAREs 
with different destinations, VAMP721 and VAMP727, localize to 
the TGN. VAMP721 functions in the trafficking to the PM and cell 
plate, whereas VAMP727 mainly functions in the trafficking in the 
vacuolar pathway (Ebine et al., 2008; Kwon et al., 2008; Zhang 
et  al., 2011; El Kasmi et  al., 2013). Recently, we  used super-
resolution confocal live imaging microscopy (SCLIM) to reveal 
that VAMP721 and VAMP727 were spatially segregated as 
subdomains or zones, but not vesicles, within a single TGN 
(Shimizu et al., 2021). The VAMP721-localized subdomains and 
VAMP727-localized subdomains were proposed as the “secretory-
trafficking zone” and “vacuolar-trafficking zone,” respectively. A 
similar segregation pattern was also seen in multiple coat proteins. 
The localizations of TGN-resident coat proteins, including adaptor 
protein complex 1 (AP-1), AP-4, EPSIN1, MODIFIED 
TRANSPORT TO THE VACUOLE1 (MTV1), and clathrin, have 
been investigated by SCLIM or high-resolution Airyscan imaging 
(Heinze et al., 2020; Shimizu et al., 2021). The comprehensive 
analyses revealed that the secretory-trafficking zone was enriched 
with VAMP721, AP-1, EPSIN1, and clathrin, whereas the 

FIGURE 2

Endomembrane system in plant cells. Plant endomembrane system at least consists of the endoplasmic reticulum (ER), the Golgi apparatus, the 
trans-Golgi network (TGN), the multivesicular body/pre-vacuolar compartment (MVB/PVC), the vacuole and the plasma membrane (PM). The 
plant TGN can be further classified into the GA-TGN and the GI-TGN. Putative RAB6-GEF LOT plays a critical role in the TGN biogenesis from the 
TGNs. Microtubule (MT)-binding protein TGNap1 regulates the GI-TGN biogenesis from the Golgi apparatus. The TGN contains cargo proteins 
derived from the Golgi apparatus, which are synthesized in the ER, and sorts these cargos for delivery to their destinations. In other words, the 
plant TGN is a branch point in secretory and vacuolar trafficking. In addition, endocytic vesicles labeled with FM4-64 first reach the GA-TGN. Thus, 
biosynthetic and endocytic trafficking converge at the GA-TGN. The solid arrows and dashed arrows indicate biosynthetic trafficking pathways 
and endocytic/recycling trafficking pathways, respectively. TGN-bypassing pathways are not shown.
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vacuolar-trafficking zone was enriched with VAMP727, AP-4, and 
MTV1. Thus, secretory and vacuolar cargo proteins may be sorted 
via the spatially distinct zones within a single TGN.

In addition to its sub-organellar features, the plant TGN is 
classifiable at the spatiotemporal level. Fast live imaging by 
spinning disk confocal microscopy and 3D reconstruction by 
electron tomography have revealed that the plant TGN can 
dissociate from or associate with the Golgi apparatus (Staehelin 
and Kang, 2008; Viotti et al., 2010; Kang et al., 2011; Uemura et al., 
2014). The canonical and non-canonical modes of the TGN have 
been termed as the Golgi-associated TGN (GA-TGN) and Golgi-
independent TGN (free-TGN/GI-TGN), respectively. The 
detachment of the GI-TGN from the GA-TGN requires TGNap1, 
which likely functions as a linker between the TGN and 
microtubules (Renna et al., 2018). At the component level, the 
GA-TGN harbors VAMP721, or its close homolog VAMP722, and 
VAMP727. In contrast to the GA-TGN, the GI-TGN is enriched 
with VAMP721 and/or VAMP722, but not VAMP727, suggesting 
that the GI-TGN predominantly mediates secretory trafficking to 
the PM (Uemura et al., 2019). In the earlier stages (approximately 
5 min after uptake), endocytosed FM4-64 colocalizes with the 
GA-TGN, AP-1, and AP-4, but not the GI-TGN (Uemura et al., 
2019; Shimizu et al., 2021). These results highlight the importance 

of the GA-TGN as a sorting hub for secretory, vacuolar, and 
endocytic trafficking. The GI-TGN further harbors both AP-1/
clathrin-coated and secretory vesicles, and the ratio of secretory 
vesicles to clathrin-coated vesicles can vary, even within single 
cells (Kang et al., 2011; Shimizu et al., 2021).

Coat proteins at the TGN

Heterotetrameric AP complexes and clathrin are well-
characterized coat proteins and function in post-Golgi membrane 
trafficking. Five AP complexes (AP-1–AP-5) are derived from a 
common ancestral complex and are thought to have been present 
in the last eukaryotic common ancestor (Hirst et al., 2011; Dacks 
and Robinson, 2017). Hence, they are evolutionarily conserved in 
eukaryotes. AP complexes typically consist of two large subunits 
(β and α/γ/δ/ε/ζ), a medium subunit (μ), and a small subunit (σ). 
They sort membrane-bound or transmembrane cargo proteins by 
recognizing and binding to sorting motifs or signals, such as the 
tyrosine motif, dileucine motif, and ubiquitin, which are present 
in the cytoplasmic domains of cargo proteins (Arora and Van 
Damme, 2021; Law et al., 2022). Various AP complexes interact 
with clathrin to form clathrin-coated vesicles. Well-established 

FIGURE 3

Golgi- and TGN-localized coat proteins and R-SNAREs regulate distinct pathways. TGN-localized coat proteins and R-SNAREs exhibit spatially 
distinct distributions. AP-1 (coat), EPSIN1 (coat), clathrin (coat), and VAMP721 (R-SNARE) comprise a subdomain or zone of the GA-TGN, which is 
involved in secretory trafficking. On the other hand, AP-4 (coat), MTV1 (coat), and VAMP727 (R-SNARE) comprise another subdomain or zone on 
the same GA-TGN, which is involved in vacuolar trafficking via the MVB/PVC. It remains controversial whether AP-4-mediated trafficking requires 
clathrin. The former subdomain or zone matures into the GI-TGN. The GI-TGN produces non-coated secretory and clathrin-coated vesicles. 
AP-1/clathrin-coated vesicles may play a role in retrograde trafficking from the GI-TGN. AP-3-coated vesicles may be formed at the trans-cisterna 
of the Golgi rather than the TGN and transport vacuolar cargo proteins, such as VAMP711 and VAMP713, to vacuoles independently of MVB/PVC. 
ER, endoplasmic reticulum; GA-TGN, Golgi-associated TGN; GI-TGN, Golgi-independent TGN; MVB/PVC, multivesicular body/pre-vacuolar 
compartment; PM, plasma membrane; AP, adaptor protein; MTV1, MODIFIED TRANSPORT TO THE VACUOLE1; VAMP, vesicle-associated 
membrane protein.
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examples include AP-1/clathrin-coated vesicles (Park et al., 2013) 
and AP-2/clathrin-coated vesicles (Di Rubbo et al., 2013; Kim 
et  al., 2013; Yamaoka et  al., 2013). Each of the AP complexes 
functions in distinct trafficking pathways in eukaryotes. In 
Arabidopsis, both AP-1 and AP-4 function in the TGN (Park et al., 
2013; Teh et al., 2013; Wang et al., 2013; Fuji et al., 2016).

AP-1 is essential for survival as ap1γ1 ap1γ2 double mutants 
cannot be obtained (Wang et al., 2014). ap1μ2 (major isoform of 
AP-1 μ subunits) mutants have retarded growth and are unable to 
produce progenies (Park et  al., 2013). In contrast to AP-4 as 
described below, AP-1 seems to play roles in a wide range of 
trafficking pathways and localizes to the TGN secretory-trafficking 
zone with VAMP721. For example, secretory invertase and GFP 
are not properly secreted into the extracellular medium, whereas 
the vacuolar proteins sporamin and βFructosidase4 are 
unprocessed in ap1m2-1/hap13-1 protoplasts in Arabidopsis. 
Furthermore, PIN-FORMED2 (PIN2) polar recycling from the 
brefeldin A (BFA) compartment to the PM or vacuoles is 
compromised in ap1m2-1/hap13-1 seedlings. 
BRASSINOSTEROID INSENSITIVE1 recycling from the BFA 
compartment to the PM is also compromised in ap1m2-1/hap13-1 
seedlings (Park et al., 2013; Wang et al., 2013). It has also been 
reported that the AP-1 μ subunit can bind transmembrane 
receptors for vacuolar soluble proteins known as vacuolar sorting 
receptors (VSRs; Park et al., 2013; Gershlick et al., 2014; Nishimura 
et al., 2016). In addition, the trafficking of cytokinesis-specific 
SNARE KNOLLE/SYP111 to the cell plate is severely impaired, 
leading to incomplete cytokinesis (Park et al., 2013; Teh et al., 
2013). Severe growth defects in ap1m2-1/hap13-1 mutants can 
be rescued by expressing functional AP1M2 with the KNOLLE/
SYP111 promoter as well as AP1M2 promoter (Teh et al., 2013; 
Shimada et al., 2018). Interestingly, outermost integument cells of 
the pKNOLLE:AP1M2-GFP-rescued ap1m2-1/hap13-1 seed lack 
AP1M2 expression and exhibit reduced mucilage extrusion and 
its abnormal accumulation in vacuoles. This suggests that AP-1 is 
also involved in the secretory trafficking of macromolecules and 
cargo proteins (Shimada et al., 2018). Furthermore, the disruption 
of AP-1 function has been found to reduce the PM association of 
AP-2, clathrin, and the clathrin adaptor TPLATE complex. This 
impairs clathrin-mediated endocytosis and vice versa (Yan et al., 
2021). Therefore, AP-1/clathrin-mediated trafficking from the 
TGN and AP-2/clathrin-mediated trafficking from the PM couple 
by unknown mechanisms. AP-1 is therefore involved in the 
secretory, vacuolar, and recycling trafficking pathways, although 
it remains unclear how AP-1 can manage such complicated 
sorting events.

Furthermore, we  have assessed the role of AP-1 from the 
spatiotemporal perspective. SCLIM observations have revealed 
that AP-1- and clathrin-labeled compartments leave the GA-TGN 
with SYNTAXIN OF PLANTS61 (SYP61) as components of the 
GI-TGN, while AP-4 seems to stay with the GA-TGN (Shimizu 
et al., 2021). Electron tomography has further revealed that the 
GI-TGN harbors clathrin-coated and secretory vesicles (Kang 
et  al., 2011). These findings suggest that AP-1/clathrin-coated 

vesicles may function in the GI-TGN. Intriguingly, Yan et al. 
recently reported that the TGN-resident SNAREs SYP41 and 
SYP61, but not VHAa1, were significantly dissociated from the 
TGN and mislocalized to the PM in ap1m2/hap13 root cells. This 
suggests that AP-1 is responsible for maintaining the functional 
integrity of the TGN (Yan et  al., 2021). In support of this 
hypothesis, ap1m2-1/hap13-1 mutants have been found to exhibit 
abnormal morphologies in the Golgi and TGN (Park et al., 2013). 
It has also been reported that SYP4s and SYP61 regulate both 
secretory and vacuolar trafficking (Bassham et al., 2000; Uemura 
et al., 2012; Hachez et al., 2014; Lu et al., 2020). These findings 
indicate the possibility that AP-1/clathrin-coated vesicles may 
deliver TGN-resident proteins and missorted vacuolar proteins 
from the GI-TGN to the GA-TGN or Golgi apparatus. Recent 
studies involving budding yeast have further reported that AP-1 
plays a role in the retrograde transport of cargo proteins from 
mature to young Golgi cisternae (Casler et al., 2019, 2022; Casler 
and Glick, 2020). It should be noted that, although the mechanisms 
are unknown, the quantity of GA-TGN-localized proteins seems 
to be maintained at a relatively stable level, as the fluorescence of 
TGN markers, including SYP43 and SYP61, seems to be recovered 
around the GA-TGN region after producing the GI-TGN 
(Uemura et al., 2014; Shimizu et al., 2021).

In a forward genetic screen in Arabidopsis, AP-4 components 
were reported to be  responsible for the vacuolar sorting of 
GFP-CT24, which is an artificial cargo protein with β-conglycinin-
derived vacuolar targeting signals (Fuji et al., 2007, 2016). The 
tonoplast proteins molybdate transporter 2 and natural resistance 
macrophage protein 3 and 4 were missorted to the PM in ap4m 
mesophyll protoplasts (Müdsam et al., 2018). In addition, the μ 
subunit of AP-4 and that of AP-1 mentioned above have been 
found to bind to the tyrosine motifs of VSR1 and VSR2 (Gershlick 
et  al., 2014; Fuji et  al., 2016). Given that the putative cargo 
VAMP727 mainly functions in the multivesicular body (MVB; 
Ebine et al., 2008) and that the VSR-mediated trafficking pathway 
relies on the MVB to deliver cargo proteins to vacuoles, AP-4 
likely functions as a gatekeeper in the pathway from the TGN to 
MVB, although it remains controversial where VSR itself travels 
(Ivanov and Robinson, 2020). MTV1, an accessory protein of 
AP-4, has also been identified as a responsible gene for the 
vacuolar trafficking of the artificial cargo protein VAC2 (Sauer 
et al., 2013). Thus, genetic and biochemical analyses support the 
role of AP-4 in vacuolar trafficking. The question remains as to 
whether plant AP-4 is a component of clathrin-coated vesicles in 
vivo. Coimmunoprecipitation assays have shown that the μ 
subunit of AP-4 immunoprecipitates clathrin heavy chains (Fuji 
et al., 2016; Shimizu et al., 2021). However, SCLIM observations 
of Arabidopsis root cells have shown that AP-4 is segregated from 
clathrin as opposed to AP-1 (Shimizu et  al., 2021). Recently, 
Dahhan et al. characterized the proteome of purified plant 
clathrin-coated vesicles and found that AP-4 was enriched in the 
clathrin-coated vesicle fraction (Dahhan et  al., 2022). Thus, it 
remains controversial whether clathrin is required for plant AP-4-
mediated trafficking in vivo. The way in which AP-4 localizes to 
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the TGN also remains unknown. Although the ARF-GEFs BIG1–
BIG4 and ARF1 have been shown to recruit AP-1 to the TGN 
membrane (Richter et al., 2014; Singh et al., 2018), it is unclear 
which ARF-GEFs and ARFs are required for localizing AP-4 to 
the TGN.

Several vacuolar proteins are transported to vacuoles 
independently of MVB-mediated pathways. A striking example is 
the AP-3-dependent pathway. The vacuolar membrane targeting 
of VAMP711/VAMP713 and PROTEIN S-ACYL 
TRANSFERASE10 is mediated by AP-3 independent of the 
MVB-pathway requiring RAB5 (Ebine et al., 2014; Feng et al., 
2018). Studies in mammalian models have reported that AP-3 
sorts lysosomal cargo proteins in the TGN and endosomes (Peden 
et  al., 2004; Huang et  al., 2019). However, it remains unclear 
whether plant AP-3 constitutes a distinct zone within the TGN 
like AP-1 and AP-4 since the localization of AP-3 is not well 
defined. Fluorescent protein-labeled AP-3 exhibits a relatively 
high degree of colocalization with the Golgi markers WAVE22/
SYP32 and TGN marker VHAa1 (Feng et al., 2017). Studies on 
mammalian cells and the biochemical interactions of plant AP-3 
with clathrin (Zwiewka et  al., 2011) may confuse the precise 
interpretation of AP-3 localization in plant cells. Intriguingly, 
PROTEIN S-ACYL TRANSFERASE10 seems to be retained in the 
Golgi but not TGN in ap3δ mutants, suggesting that AP-3 sorts 
vacuolar cargo proteins at the Golgi apparatus rather than the 
TGN (Feng et  al., 2018). Further investigations on AP-3 
localization will contribute to a better understanding why and 
how vacuolar trafficking is regulated by different components.

Complicated secretory trafficking 
from the TGN

The studies on secretory-trafficking and vacuolar-trafficking 
zones marked with VAMP721 and VAMP727, respectively, appear 
to be oversimplified. For example, there are two different routes 
from the TGN to the PM. The most striking discovery is that the 
polar recycling of PIN1 to the basal PM is regulated by ARF-GEF 
GNOM, whereas the recycling of apical, lateral, and nonpolar PM 
proteins is regulated by RABA2a (Geldner et al., 2003; Li et al., 
2017). In these studies, BFA and Endosidin16, chemical inhibitors 
of membrane trafficking, are used as a powerful tool to dissect the 
different trafficking routes. BFA binds between the GDP-bound 
ARF/SAR and its GEF, thereby blocking a subset of secretion from 
the Golgi and/or TGN and early secretory trafficking from the ER 
to the Golgi (Jackson and Casanova, 2000). Endosidin16 
compromises RABA2A-mediated trafficking from the TGN (Li 
et  al., 2017). It should be  noted that the establishment and 
maintenance of PIN polarity are coordinated by endocytosis and 
polar recycling (Geldner et al., 2003; Men et al., 2008; Kitakura 
et al., 2011; Glanc et al., 2018), as well as the de novo delivery of 
PIN2 (Wattelet-Boyer et al., 2016).

Rodriguez-Furlan et al. recently reported that newly 
synthesized INFLORESCENCE AND ROOT APICES 

RECEPTOR KINASE (IRK) and KINASE ON THE INSIDE 
(KOIN) are sorted at the TGN by different machineries and 
transported to the opposite sides (i.e., outer and inner sides, 
respectively) of the root endodermal PM. These different de novo 
pathways have also been demonstrated using BFA and 
Endosidin16 in combination with or without the protein synthesis 
inhibitor cycloheximide. Trafficking of IRK is compromised with 
BFA but not Endosidin16, whereas that of KOIN is sensitive to 
Endosidin16 but not BFA (Rodriguez-Furlan et  al., 2022). 
Interestingly, the PM targeting of both IRK and KOIN is also 
compromised with Endosidin2 (Rodriguez-Furlan et al., 2022). 
Endosidin2 inhibits exocytosis by binding the EXOCYST subunit 
EXO70A1 that plays important roles in targeted secretion and 
tethering at the PM (Zhang et al., 2016). These results suggest that 
IRK and KOIN are sorted into distinct trafficking pathways at the 
TGN; however, they are regulated by EXOCYST-mediated 
tethering mechanisms on the way to and/or at the PM. As some 
cargo proteins are exported from the TGN by different machinery, 
so some cargo proteins are regulated by distinct tethering and 
SNARE proteins on the target membrane. Plasma membrane-
localized Q-SNAREs SYP121/ PEN1 (PENETRATION1) and 
SYP122 have partially redundant functions, since syp121 syp122 
double mutants display growth defects that are not observed in 
either single mutant (Collins et  al., 2003; Assaad et  al., 2004; 
Zhang et al., 2007). However, mass spectrometry analysis using 
the syp121 and syp122 mutants revealed that SYP121 and SYP122 
mediate the secretion of partially overlapping but distinct sets of 
distinct cargo proteins (Waghmare et al., 2018). Other studies also 
show that K+ channels bind selectively to SYP121 but not SYP122 
(Honsbein et al., 2009, 2011; Grefen et al., 2010). The RABA2a-
dependent and RABE1-EXOCYST-dependent secretory pathways, 
which coexist in Arabidopsis, have been also proposed (Pang et al., 
2022). Given these studies, the secretory-trafficking zone of the 
TGN may further be  classified into the sub-zone level or the 
single-vesicle level.

Discussion

It is now clear that the plant TGN is the central hub of 
secretory, vacuolar, and endocytic trafficking. Accumulating 
evidence suggests that the TGN can be divided into subdomains 
or zones where distinct trafficking events are executed. Such 
subdomain/zone-like segregation has been seen in various 
TGN-localized proteins including coat proteins, SNAREs, and 
tethering factors (Bassham et al., 2000; Chow et al., 2008; Gendre 
et al., 2011, 2013; Boutté et al., 2013; Wattelet-Boyer et al., 2016; 
Ravikumar et al., 2018; Renna et al., 2018; Heinze et al., 2020; 
Shimizu et al., 2021). However, it remains poorly understood how 
these subdomains or zones are organized. Lipid composition of 
the organelle membrane can regulate protein localization and thus 
plays an important role in endomembrane trafficking and diverse 
cellular functions (Bigay and Antonny, 2012; Holthuis and Menon, 
2014; Boutté and Jaillais, 2020). Interestingly, it has been reported 
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that α-hydroxylated-very long chain fatty acid-containing 
sphingolipids are specifically enriched in the immunoisolated 
SYP61-, but not RABA2a-, localized TGN (Wattelet-Boyer et al., 
2016). Pharmacological reduction of very long chain fatty acid-
containing sphingolipids disturbs the polar delivery of PIN2 
(Wattelet-Boyer et al., 2016). Furthermore, α-hydroxylated-very 
long chain fatty acids are involved in regulating the quantity of 
phosphatidylinositol 4-phosphate (PI4P) in the TGN (Ito et al., 
2021). In plant cells, PI4P mainly accumulates at the PM and to a 
lesser extent at the TGN. TGN-localized phosphatidylinositol 
4-kinases pi4kβ1 pi4kβ2 double mutants have the abnormal TGN 
with highly variable sizes of secretory vesicles and exhibit 
pleiotropic growth defects (Preuss et al., 2006; Kang et al., 2011; 
Sašek et  al., 2014; Antignani et  al., 2015; Lin et  al., 2019). In 
Arabidopsis, ARF-GAP VASCULAR NETWORK DEFECTIVE3 
and RABA4b effector PLANT U-BOX13 have been shown to bind 
PI4P and to localize to the TGN (Koizumi et al., 2005; Naramoto 
et al., 2009; Antignani et al., 2015). It has also been reported that 
the mammalian AP-1 complex binds PI4P (Wang et al., 2003). 
Therefore, distinct lipid environments likely serve as platforms for 
organizing subdomains or zones in the TGN, which will 
be  investigated in the near future. To better understand 
sub-organellar features, cutting-edge imaging technologies are 
essential. For example, correlative light and electron microscopy 
will fill the gaps in the current knowledge on morphological 
features and fluorescence-based protein localization (Wang and 
Kang, 2020). In addition, to better understand how cargo proteins 
are sorted into specific TGN subdomains/zones, we  should 
evaluate the association between the organization of trafficking 
zones and cargo flow. Because the passage of cargo proteins is 
transient, it is necessary to establish a pulse-chase-type 
experimental system. Several methods have been proposed and 
successfully applied in other organisms, such as retention using a 
selective hooks system in mammalian cultured cells (Boncompain 
et al., 2012) and a temperature-controlled system in budding yeast 
(Kurokawa et al., 2014). However, such systems have not yet been 
established in plant cells. Given that membrane trafficking appears 

to be intricately regulated during developmental processes and 
environmental changes, it is important to investigate how cargo 
proteins are transported in various conditions.
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