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Early recognition of tomato plant leaf diseases is mandatory to improve the

food yield and save agriculturalists from costly spray procedures. The correct

and timely identification of several tomato plant leaf diseases is a complicated

task as the healthy and affected areas of plant leaves are highly similar.

Moreover, the incidence of light variation, color, and brightness changes,

and the occurrence of blurring and noise on the images further increase the

complexity of the detection process. In this article, we have presented a robust

approach for tackling the existing issues of tomato plant leaf disease detection

and classification by using deep learning. We have proposed a novel approach,

namely the DenseNet-77-based CornerNet model, for the localization and

classification of the tomato plant leaf abnormalities. Specifically, we have used

the DenseNet-77 as the backbone network of the CornerNet. This assists

in the computing of the more nominative set of image features from the

suspected samples that are later categorized into 10 classes by the one-stage

detector of the CornerNet model. We have evaluated the proposed solution

on a standard dataset, named PlantVillage, which is challenging in nature

as it contains samples with immense brightness alterations, color variations,

and leaf images with different dimensions and shapes. We have attained an

average accuracy of 99.98% over the employed dataset. We have conducted

several experiments to assure the effectiveness of our approach for the timely

recognition of the tomato plant leaf diseases that can assist the agriculturalist

to replace the manual systems.
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Introduction

In accordance with a report issued by the Food and
Agriculture Organization (FAO) of the United Nations, the
population of humans will undergo a tremendous increase
around the globe to 9.1 billion by 2050. Such an increase in
the number of humans will also raise the demand for food
(Bruinsma, 2009). Meanwhile, the decrease in agricultural land
and the unavailability of clean water will limit the progress
of nutriment amounts. Therefore, there is an urgent demand
for improving food yields by consuming minimum cultivation
space to fulfill the necessities of humans. The occurrence of
several crop abnormalities results in a substantial decline in both
the yield and quality of food. Hence, the timely recognition
of such plant diseases is required as these diseases can affect
the profit of farmers and can increase the purchase cost of
food. Such implications can introduce economic instability in
the markets. Moreover, the plant diseases at their adverse stage
can destroy the crops which can create a starvation scenario
within a region, specifically in low-income countries. Plant
inspections are generally carried out with the help of human
experts. However, this is a cumbersome and time-consuming
activity that relies upon the presence of area experts. These
plant examination procedures are not considered very reliable
and it is practically impossible for humans to inspect every
plant separately (Pantazi et al., 2019). To enhance the quantity
and quality of food, there is a need to timeously and correctly
recognize the various plant diseases which can also force the
farmers into using the costly spray methods. To tackle the
above-mentioned problems of manual processes, the research
community is focusing on the development of automated plant
disease detection and classification systems (Wolfenson, 2013).

The focus of this paper is the recognition of several tomato
plant diseases as tomato has the largest consumption rate,
of 15 kg per capita within a year when compared to other
vegetables such as rice, potato, and cucumber. Moreover, the
tomato crop counts for 15% of the entire vegetable ingestion
globally (Chowdhury et al., 2021). Further, tomatoes have the
highest cultivation rate with an annual growth rate of 170
tons worldwide (Valenzuela and Restović, 2019). The leading
countries for its production are Egypt, India, the United States,
and Turkey (Elnaggar et al., 2018). In a study conducted by the
FAO (Sardogan et al., 2018), the occurrence of several tomato
plant diseases caused a severe reduction in its quantity and most
of the abnormalities originated from the leaves of tomato plants.
It has been observed that such diseases reduce the tomato food
quantity from 8 to 10% annually (Sardogan et al., 2018). Farmers
or agriculturalists can guard against these huge monetary losses
by adopting automated systems which can assist them in the
timely detection of plant diseases and taking proactive measures.
At first, technology experts utilized the methods used in the
field of molecular biology and immunology for locating the
presence of tomato plant leaf diseases (Sankaran et al., 2010;

Dinh et al., 2020). However, these techniques were not fruitful
due to their high processing requirements and dependence
on the expertise of humans. Most agriculturists belong to
poor or under-developed countries where the adaptability
of such an expensive solution is not affordable (Patil and
Chandavale, 2015; Ferentinos, 2018). The rapid progression
in the area of machine learning (ML) has introduced low-
cost solutions for the recognition of tomato plant diseases
(Gebbers and Adamchuk, 2010). Many researchers have tested
the conventional ML methods, such as hand-coded approaches,
in the field of agriculture (Gebbers and Adamchuk, 2010).
The availability of economical image-capturing gadgets has
assisted researchers to take pictures in real-time and then
give intelligent predictions via using ML-based approaches.
Examples of such approaches include K-nearest neighbors
(KNN), decision trees (DT) (Rokach and Maimon, 2005), and
support vector machines (SVM) (Joachims, 1998), which are
heavily evaluated by researchers for plant disease classification.
Such techniques are simple in their architecture and can work
well with a small amount of training data. However, they are
unable to contend with image distortions such as intensity
variations, color changes, and brightness alterations of suspected
samples. Furthermore, the conventional approaches always
impose a trade-off among the classification performance and
processing time (Bello-Cerezo et al., 2019).

The empowerment of DL frameworks has assisted the
researchers in dealing with the problems of conventional
ML approaches (Agarwal et al., 2021d, 2022). Several DL
techniques such as CNN (Roska and Chua, 1993), recurrent
neural networks (RNNs) (Zaremba et al., 2014), and long short-
term memory (LSTM) (Salakhutdinov and Hinton, 2009) have
been found to be reliable in recognizing plant leaf diseases.
The DL approaches are inspired by the human brain and
can learn to discriminate between a set of image features
without relying on the intervention of domain experts. These
frameworks recognize the objects in the same way as humans
by visually examining several samples to accomplish a pattern
recognition task. Because of such properties, the DL approaches
are found to be more suitable in areas of agriculture, including
plant disease classification (Gewali et al., 2018). Several well-
known DL frameworks such as GoogLeNet (Szegedy et al.,
2015), AlexNet (Yuan and Zhang, 2016), VGG (Vedaldi and
Zisserman, 2016), and ResNet (Thenmozhi and Reddy, 2019)
have been thoroughly tested for accomplishing several jobs in
farming, i.e., estimating food yield, crop heads recognition,
fruit totaling, plant leaf disease detection and categorization,
among others. Such approaches show reliable performance by
minimizing the processing complexity as well as by better
analyzing the topological information of the input samples.

Numerous techniques have been evaluated to identify and
classify tomato leaf diseases. However, the reliable and timely
recognition of such abnormality is a complicated job because
of the significant color resemblance between the healthy and

Frontiers in Plant Science 02 frontiersin.org

https://doi.org/10.3389/fpls.2022.957961
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/


fpls-13-957961 September 2, 2022 Time: 14:18 # 3

Albahli and Nawaz 10.3389/fpls.2022.957961

diseased areas of plant leaves (Paul et al., 2020). Furthermore,
the intense changes in the dimension of plant leaves, lightning
conditions, the incidence of noise, and blurring in the input
samples further problematize the disease recognition procedure.
Hence, there is a need for a more reliable system to accurately
perform the plant disease classification process with minimum
time constraints. To deal with these issues, we have introduced a
DL approach, namely the custom CornerNet model. We have
utilized Dense-77 as the backbone of the CornerNet model
for extracting the image features. These are later classified
by the one-stage detection module of the CornerNet model.
We have conducted extensive evaluation over a challenging
dataset and confirm that our approach is proficient in classifying
the numerous types of tomato plant leaf diseases. The major
contributions of the proposed approach are listed as:

1. Modified an object detection approach named CornerNet
for tomato plant leaf abnormality categorization which
improves the classification performance with an accuracy
value of 99.98%.

2. Exhibits robust performance for 10 classes of the tomato
plant leaf diseases because of the empowerment of
the custom CornerNet model to tackle the over-fitted
model training data.

3. A cost-effective solution is presented for the classification
of tomato plant leaf abnormalities which minimizes the
test time to 0.22 s.

4. Efficient localization of diseased regions from the tomato
plant samples due to the better keypoints calculation power
of the Dense-77-based CornerNet model with the mean
average precision (mAP) value of 0.984.

5. In contrast to several new methods, extensive
experimentation has been carried out on a challenging
database named the PlantVillage dataset to exhibit the
robustness of the proposed work.

6. The presented work is capable of correctly identifying the
abnormal area of the tomato plant leaves even from the
distorted samples and under the influence of size, color,
and light variations.

The article is structured as follows: existing studies are
compared in section “Related work,” the details of the
introduced approach are described in section “Materials and
methods,” section “Results” contains the results, and the
conclusion is drawn in section “Conclusion.”

Related work

In this section, we review existing studies that have
attempted to classify tomato plant leaf diseases. Typically,
the approaches for tomato plant leaf disease detection and
classification are either conventional ML-based techniques or

DL frameworks. Hand-coded features computation approaches
with the ML-based classifiers were explored initially for the plant
leaf disease classification. One such framework was presented
in Le et al. (2020) where the suspected images were initially
processed by applying the morphological opening and closing
techniques to remove the undesired objects. Then, the filtered
local binary pattern method, namely the k-FLBPCM, was
used on the processed images to obtain the desired feature
vector. Finally, the SVM classifier was trained on the computed
features for classification. The technique in Le et al. (2020)
improved classification results for the plant leaf diseases but
was unable to show better results on the distorted samples.
Another work, namely Directional Local Quinary Patterns
(DLQP), was introduced in Ahmad et al. (2020) to extract
the keypoints from the input images. The work also used the
SVM classifier on the computed features for categorizing the
several classes of plant leaf diseases. The solution introduced in
Ahmad et al. (2020) was robust in classifying the affected areas
of plant leaves into their respective groups but classification
performance degraded for noisy images. Sun et al. (2019)
proposed an automated solution to quickly locate the diseased
portion of plant leaves. They used the Simple Linear Iterative
Cluster (SLIC) algorithm for distributing the input images
into numerous chunks. Then, for each block of the divided
image, the GLCM approach was used to extract the features
which were later combined and passed to the SVM classifier
for classification. This approach (Sun et al., 2019) performed
well in recognizing the several categories of plant diseases
but suffered from extensive processing complexity. Another
pattern recognition approach was used in Pantazi et al. (2019)
where the input sample was initially segmented via applying
the GrabCut method to locate the region of interest. Then,
the LBP algorithm was applied for keypoints vector estimation.
Finally, classification was carried out with the help of the SVM
classifier. This technique (Pantazi et al., 2019) was proficient
in locating the abnormal area of the plant leaves. However,
detection performance degraded for the samples with intense
noise attacks. Ramesh et al. (2018) proposed a computer-
aided system for the automated detection and classification of
several abnormalities of plant leaves. For feature estimation,
the HOG filter was used on the input samples, and disease
classification was performed using the Random Forest (RF)
technique. This work, elaborated on in Ramesh et al. (2018),
was found to be a lightweight solution for the recognition
of plant leaf diseases but the classification accuracy required
further improvements. Another technique was discussed in
Kuricheti and Supriya (2019) where an ML-based approach was
presented to classify the several abnormalities of the turmeric
plant. In the first phase, the K-means clustering approach
was used on the input sample to locate the area of interest.
The GLCM algorithm was applied to this area to calculate
the feature vector. Finally, the SVM classifier was adopted for
classification using the computed keypoints. The work discussed
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in Kuricheti and Supriya (2019) showed better plant leaf disease
classification results. However, detection performance degraded
for images with large brightness changes. Another handcrafted
feature estimation approach to recognize and categorize crop
leaf diseases was found in Kaur and Education (2021). Several
pattern-based approaches like the GLCM, LBP, and SIFT were
used for feature vector estimation. Then, several well-known
ML classifiers, named the SVM, RF, and KNN, were trained
on the computed features to execute the classification task.
The best results were reported for the RF classifier but the
classification accuracy needed enhancement. A similar solution
was elaborated on in Shrivastava and Pradhan (2021) where
the fourteen color spaces approach was used to extract the
keypoints from the test images with a length of 172. Then,
the calculated keypoints were passed to the SVM algorithm to
classify the samples into their respective classes based on the
detected abnormal plant leaf areas. This solution (Shrivastava
and Pradhan, 2021) provided superior plant leaf disease
categorization results. However, this performance degraded for
samples with significant color and light changes.

Due to the empowerment of DL frameworks and their ability
to better deal with image transformations, researchers are now
employing them for recognizing plant diseases.

The framework in Argüeso et al. (2020) used the DL
technique named Few-Shot Learning (FSL) for recognizing
the affected portions of crops and determining the related
category. The InceptionV3 model was applied to capture the
keypoints of the input image. The SVM classifier was used
to classify the samples using the keypoints, according to the
detected disease. The approach described in Argüeso et al.
(2020) exhibited robust plant disease classification results but
requires extensive data for the model training. Agarwal et al.
(2020b) proposed a CNN framework containing 3 convolution
layers as the feature extractor module before classification. The
framework presented in Agarwal et al. (2020b) was a lightweight
solution for the plant leaf disease classification but performance
degraded for noisy samples. Another lightweight model was
presented in Richey et al. (2020) to be used with cellphones.
The ResNet50 approach was used as the end-to-end framework
to compute the deep features and perform the classification
task. The approach improved the processing complexity for
plant disease classification. However, it was not supported by
all mobile phones due to the memory requirements. Another
framework was depicted in Batool et al. (2020) to classify the
numerous types of tomato crop abnormalities. The AlexNet
model was employed to extract the deep features of the
plant images which were later passed as input to the KNN
approach for the classification of the images into their respective
category. This work was proficient in recognizing the various
categories of tomato plant leaves. However, the KNN algorithm
was a time-consuming approach. Similarly, an approach for
categorizing the tomato plant leaf abnormalities was described
in Karthik et al. (2020) that employed the residual method

to compute the reliable feature set. A CNN-based classifier
was introduced to categorize the samples based on the learned
features of different classes. The approach (Karthik et al.,
2020) classified the samples in the related categories better.
However, it required a large number of samples for training,
which further complicated the model. Dwivedi et al. (2021)
applied the object detection approach named region-based
CNN (RCNN) to automatically detect and localize the diseased
area of grape plant leaves. The approach used the ResNet18
as the feature extractor unit which calculates the keypoints
set from the plant images. In the next phase, the RCNN
framework applied the region proposals approach to locate
the affected portion and determine the associated class. The
solution depicted in Dwivedi et al. (2021) worked well in
recognizing the various diseases of the grape plant but was
unable to generalize well from unseen training data. Another
approach was discussed in Akshai and Anitha (2021) where
several DL frameworks, namely VGG, DenseNet, and ResNet,
were evaluated for the detection and classification of several
types of plant leaf diseases. This approach (Akshai and Anitha,
2021) showed better results for the DenseNet model. Albattah
et al. (2021) proposed an object detection approach, namely
the CenterNet model, for the automated identification and
classification of numerous types of plant leaf diseases. Initially,
the dense model was used for the extraction of the keypoints
set from the input images. These were then used to recognize
the diseased portion of plant samples. This approach (Albattah
et al., 2021) showed better plant leaf abnormality recognition
ability. However, the model needed assessment on a more
challenging dataset. Another DL approach was evaluated in
Albattah et al. (2022) where the EfficientNetV2 model was tested
for the classification of numerous types of plant diseases, that
results in improving the classification performance. In Agarwal
et al. (2021c), a DL approach, namely the VGG16 model, was
used in the classification of tomato leaf diseases. The approach
introduced the concept of model optimization, but the detection
performance required extensive result improvements. Similarly,
other works discussed the model optimization concept for the
plant leaf diseases categorization (Agarwal et al., 2021a,b) but
the recognition results needed improvement. Zhao et al. (2021)
presented a model to recognize numerous tomato plant leaf
abnormalities in which the CNN approach, merged with an
attention mechanism, was utilized. The methodology attained
classification results of 99.24%. Moreover, in Maeda-Gutiérrez
et al. (2020), different DL networks, i.e., Inception V3, AlexNet,
GoogleNet, ResNet-18, and SE-ResNet50 were tested for tomato
plant disease classification. The GoogleNet approach worked
well with classification results of 99.39%. Bhujel et al. (2022)
also proposed a DL model, namely ResNet18, along with the
CBAM for recognizing the tomato plant abnormalities and
achieved an accuracy of 99.69%. The methods in Maeda-
Gutiérrez et al. (2020), Zhao et al. (2021), and Bhujel et al.
(2022) enhanced the tomato plant leaf diseases categorization
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results. However, these works accomplished classification at the
image level and are incapable of identifying the precise diseased
area.

A critical investigation of existing work is outlined in
Table 1, which depicts that there is a performance gap that
requires a more reliable model. This model must be proficient
enough to recognize the numerous categories of tomato plant
leaf disease and minimize the time complexity. In the presented
work, we have tried to cover this gap by proposing a more
accurate and robust approach for tomato plant leaf disease
classification.

Materials and methods

In this section, an in-depth discussion of the proposed
technique for tomato plant leaf disease localization and
classification is presented. The basic motivation of this
framework is to present an accurate and computationally
efficient approach that is empowered to automatically nominate
a representative feature vector independent from executing
any manual examination. Our work comprises two main
steps to accomplish the automated recognition of plant leaf
diseases. First, the images from the PlantVillage dataset are
employed to develop the annotations to correctly identify
the affected portions and their associated classes. Then,
these annotations are used in training the DenseNet-77-based
CornerNet approach. During the test phase, the images from
the test set are used to validate the model’s performance. More
precisely, we have customized the CornerNet model (Law and
Deng, 2019) by introducing the DenseNet-77 network in its
feature extraction unit. The DenseNet-77 approach as the base
network computes the feature vector which is then passed to
the one-stage detector of the CornerNet model to localize and
classify the affected regions into 10 classes. Several standard
evaluation measures are then used to quantitatively measure the
performance of the introduced framework. The detailed model
formulation of our framework is given in Algorithm 1, while
the pictorial demonstrations showing the detailed steps of our
approach are given in Figure 1.

INPUT:

TS, AI

OUTPUT:

Bbx, CustomCoNet, C-score

TS - total no of samples used

for model training

AI - annotated images showing the

diseased area on the tomato plant

leaves

Bbx - rectangular box showing the

diseased region on the output image

CustomCoNet - CornerNet model with

the DenseNet-77 backbone

C-score - confidence score along

with predicted class

SampleSize ← [x y]

Bbx computation

β ← AnchorsCalculation (TS, AI)

CustomCustomCoNet-Model

CustomCoNet ← CornerNetWithDenseNet-77

(SampleSize, β)

[dr dt] ← Distribution of dataset into

train and test sets

The training module for tomato

plant leaf disease detection and

classfication

Foreach image m in → dr

Calculate DenseNet-77-based-

deepFeatures ← df

End For

Train CustomCoNet on df, and measure

network training time as t_d77

β _dense ← EstimateDiseasedPos(df)

V_dense ← Validate_Model

(DenseNet-77, β_dense)

Foreach images M in → dt

(i) Measure features with trained

model C→V_dense

(ii) [Bbx, C-score, class] ←

Predict (C)

(iii) Present output image with

Bbox, class

(iv) η ← [η bbox]

End For

Ap_C ← Test framework C using η

Output_class ← CustomCoNet (Ap_C).

Algorithm 1. Description of steps followed by the proposed work.

Data preparation for model training

The training of the object detection model was based
on annotations development. This was focused on clearly
localizing the affected region from the training samples and their
associated category. Therefore, in the first step, we have used
the images from the training set of the plant samples from the
PlantVillage dataset and used the LabelImg software (Lin, 2020)
for relevant annotation generation. These annotations assist in
exactly outlining the diseased areas of leaves by developing
the bounding box (bbx) around them. The dimensions of the
annotations are saved as an XML file which is later employed for
model training. A few examples of annotated samples are given
in Figure 2.
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TABLE 1 An analysis of existing methods.

Reference Method Accuracy (%) Limitation

Hand-coded approaches

Le et al., 2020 K-FLBPCM + SVM 98.63 The technique lacks the ability to classify distorted plant images.

Ahmad et al., 2020 DLQP + SVM 97.80 This approach is not efficient for noisy images.

Sun et al., 2019 GLCM + SVM 98.50 The technique entails high computational costs.

Pantazi et al., 2019 LBP + SVM 95 This approach is not efficient for noisy images.

Ramesh et al., 2018 HOGs + RF 70.14 The work requires classification result improvements.

Kuricheti and Supriya,
2019

GLCM + SVM 91 The technique lacks the ability to tackle the intensity and color
variations found in the plant images.

Kaur and Education,
2021

SIFT, LBP, GLCM + SVM, KNN, and RF 82.12 The results need further improvements.

Shrivastava and Pradhan,
2021

Color spaces + SVM 94.65. The approach is not robust for unseen data.

DL approaches

Argüeso et al., 2020 InceptionV3 + SVM 91.40 The technique needs further assessment over a more complex
database.

Agarwal et al., 2020b CNN 91.20 The framework is facing the network over-fitting problem.

Richey et al., 2020 ResNet50 99 The approach requires high processing power.

Batool et al., 2020 AlexNet + KNN 76.10 The approach takes a long time to process samples.

Karthik et al., 2020 CNN 98 The work needs huge samples to train the network.

Dwivedi et al., 2021 RCNN 99.93 The approach does not perform well for unseen examples.

Akshai and Anitha, 2021 VGG, ResNet, and DenseNet 98.27 The approach requires high processing power.

Albattah et al., 2021 CenterNet 99.90 The framework needs to be evaluated on real-world examples.

Albattah et al., 2022 EfficientNetV2 99.93 Performance degrades for distorted samples.

Agarwal et al., 2021c VGG16 98.40 The classification accuracy requires improvements.

FIGURE 1

Pictorial depiction of the DenseNet-77-based CornerNet model for the tomato plant leaf diseases classification.

CornerNet model

The CornerNet (Law and Deng, 2019) is a well-known
one-stage object detection model that recognizes the region
of interest (ROI) (the diseased region of the tomato plants
in this case) from the input samples through keypoint
calculation. The CornerNet model estimates the Top-Left (TL)

and Bottom-Right (BR) corners to draw the bbx with more
accuracy when compared to other object detection models
(Girshick, 2015; Ren et al., 2016). The CornerNet framework is
comprised of two basic units: the feature computation backbone
and the prediction module (Figure 1). At the start, a keypoints
extractor unit is used which extracts the reliable feature vector
that is employed to estimate the heatmaps (Hms), embeddings,
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FIGURE 2

Example of annotated images of the tomato plant from the PlantVillage dataset.

offset, and class (C). The Hms give an approximation of a
location in a sample where a TL/BR corner is associated with
a particular category (Nawaz et al., 2021). The embeddings are
used to discriminate the detected pairs of corners and offsets
to fine-tune the bbx position. The corners with high scored TL

and BR coordinates are used to determine the exact position
of the bbx, whereas the associated category for each detected
diseased region is specified by using the embedding distances
on the computed feature vector.

The CornerNet framework shows robust performance in
detecting and classifying several types of objects (Girshick, 2015;
Raj et al., 2015; Redmon et al., 2016; Zhao et al., 2016). However,
the abnormalities of tomato plant leaves have some distinct
characteristics. These include leaves of different shapes and sizes
and high color resemblance in the affected and healthy regions
of plant leaves which complicates the classification procedure.
Moreover, the existence of several image distortions such as
differences in the light, color, and brightness of the samples
and the incidence of noise and blurring effect further increase
the complexity of the tomato plant leaf disease classification
process. Therefore, to better tackle the complexities of samples,
we have customized the CornerNet model by introducing a
more effective feature extractor, namely the DenseNet-77, as
its base network. The introduced base network is capable of
locating and extracting the more relevant sample attributes
which assist the CornerNet approach and enhance its recall
ability in comparison to the conventional model.

The reason for selecting the CornerNet approach for
classifying the diseases of tomato plants in this study is its
capability for effectively detecting objects by utilizing keypoint

approximation in comparison to earlier approaches (Girshick,
2015; Girshick et al., 2015; Liu et al., 2016; Ren et al., 2016;
Redmon and Farhadi, 2018). The framework utilizes detailed
keypoints and identifies the object by employing a one-stage
detector. This eliminates the need to use large anchor boxes
for diverse target dimensions as used in other one-stage object
recognition models, i.e., single-shot detector (SSD) (Liu et al.,
2016), and You Only Look Once (YOLO) (v2, v3) (Redmon
and Farhadi, 2018). Moreover, the CornerNet model is more
computationally robust than the other anchor-based two-stage
approaches, i.e., RCNN (Girshick et al., 2015), Fast-RCNN
(Girshick, 2015; Nazir et al., 2020), and Faster-RCNN (Ren
et al., 2016; Albahli et al., 2021), as these techniques employ two
phases to accomplish the object localization and categorization.
Consequently, the DenseNet-77-based CornerNet framework
efficiently deals with the issues of existing models by presenting
a more proficient network that extracts more nominative sample
features and reduces the computational cost.

Modified CornerNet framework

The base of a model is responsible for identifying and
computing the reliable feature vector that gives the semantic
information and reliable location of a target in an image. The
affected regions of tomato plant leaves are small, therefore
a robust and representative set of keypoints is mandatory
to recognize the diseased portion from complex backgrounds
such as changing acquisition positions, lightning conditions,
noise, and blurring. The conventional CornerNet approach
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FIGURE 3

The pictorial representation of (A) dense block and (B) transition block.

was introduced along with the Hourglass104 as the base
network (Law and Deng, 2019). The major drawback of
the Hourglass104 network is its huge structural complexity.
The larger number of framework parameters increases the
computational burden on the CornerNet model and slows down
the target identification procedure. Further, the Hourglass104
approach is inefficient when computing reliable keypoints for
all types of image distortions, e.g., extensive changes in the
size, color, and orientation of the affected areas (Zhao et al.,
2019). Therefore, we have changed the feature extractor layer
of the CornerNet model to enhance the identification and
categorization performance for tomato plant leaf diseases. To
this end, we have utilized the DenseNet-77 (Huang et al., 2017)
as the base network of the CornerNet model in our proposed
approach.

DenseNet-100 feature extractor
The DenseNet-77 network is a lightweight model from

the DenseNet family and has two major benefits over the
conventional DenseNet approach: first, the number of model
parameters is smaller than the original DenseNet model
(Masood et al., 2021); secondly, the layers within each dense
block (Db) are also reduced to further simplify its structure.
The employed DenseNet-77 model is a shallower framework
compared to the Hourglass104 approach and comprises four
Dbs in total. A detailed demonstration of the architectural

representation of the DenseNet-77 is given in Figure 3.
The DenseNet-77 approach comprises a smaller number of
model parameters (6.2M) in comparison to the Hourglass104
base network (187M). Such architectural settings give it a
computational advantage over the original base network. In
all Dbs, the convolution layers are directly linked and the
computed feature maps from starting layers are communicated
to the subsequent layers. The DenseNet model encourages the
reemployment of the computed features and facilitates the
communication of the computed data in the entire network
structure. This empowers it to deal with the image distortions
effectively (Huang et al., 2017). Table 2 shows the network
depiction of the DenseNet-77 model.

The network consists of numerous Convolutional Layers
(CnL), Dbs, and Transition Layers (TnL). A pictorial depiction
of the Db is given in Figure 3 and is the fundamental part of
the DenseNet framework. In Figure 3, i0 represents the input
layer and k0 depicts the feature maps. Furthermore, Cn(.) is a
compound function containing 3 consecutive actions: a 3 × 3
CnL filter, Batch Normalization (BtN), and ReLU. Each CN(.)
operation produces keypoint maps (k), that are used as input
iN succeeding layers. The employment of all earlier computed
features to the next layers introduces the k × (t−1)+k0 feature
maps at the t-th layer of Db, which increases the feature space
immensely. Hence, the TnL is used between the Db to lessen the
computed features. The TnL is calculated as BtN and 1 × 1 CnL
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and the average pooling layer is represented as ApL, as depicted
in Figure 3.

Prediction module
The feature computation framework consists of two separate

output units that denote the TL and the BR corners estimation
branches, respectively. Each branch unit comprises a corner
pooling layer (CPL) positioned on the top of the backbone to
pool keypoints and produces three results: Hms, embeddings,
and offsets. The prediction module is an improved residual
block (RB) containing two 3 × 3 CnL and one 1 × 1 residual
network, followed by a CPL. The CPL assists the framework to
identify the potential corners. The reduced keypoints are used
as the input into a 3 × 3 CnL-BtN layer and then the reverse
projection is performed. This improved RB is followed by a
3 × 3 CnL which produces Hms, embeddings, and offsets. The
Hms give the approximation of a location in a sample, as a
TL/BR corner, that is associated with a particular category. The
embeddings are used to discriminate between the detected pairs
of corners and offsets to fine-tune the bbx position. A suspected
image can contain more than one affected region, therefore,
embeddings assist the model to determine if the predicted
corner points belong to a single disease class or different
disease classes.

TABLE 2 Description of the DenseNet-77.

Layer DenseNet-77

Size Stride

CnL1 7× 7 cn 2

PoolL1 3× 3max_pooling 2

Db1

 1× 1 cn

3× 3 cn

× 6 1

TnL

CnL2 1× 1 cn 1

PoolL2 2× 2ApL 2

Db2

 1× 1 cn

3× 3 cn

× 12 1

TnL

CnL3 1× 1 cn 1

PoolL3 2× 2ApL 2

Db3

 1× 1 cn

3× 3 cn

× 12 1

TnL

CnL4 1× 1 cn 1

PoolL4 2× 2ApL 2

Db4

 1× 1 cn

3× 3 cn

× 6 1

Classification_layer 7× 7 ApL

FCL

SoftMax

Detection
The CornerNet model is a deep learning framework that

is independent of the selective search and proposal generation
techniques. The test image and the associated annotated sample
are given as input to the trained model. The improved
CornerNet model extracts the corner points for the diseased
area of the tomato plants and computes the associated offsets
to the x and y coordinates, the measurements of bbx, and the
associated class.

Loss function
The employed framework for the detection and

classification of tomato leaf disease is an end-to-end learning
method that practices multi-task loss during the training to
increase its recognition ability and precisely locate affected
leaf regions. The total training loss, designated by Lt, is the
combination of four different losses, given as:

Lt = Ld + αLpl + βLps + γLoff (1)

Here, the Ld signifies detection loss accountable for corner
identification, while Lpl denotes the group loss of group corners
of the same bbx. Moreover, Lps is the corner separation loss used
to separate the corners of different bbx, and Loff is the smooth
L1 loss designated for offset adjustment. The symbols α, β, and
γ are the constants for our approach, with the values of 0.1, 0.1,
and 1, respectively. The mathematical description of the Ld is
given in Eq. 2.

Ld =
−1
R

c∑
j=1

h∑
u=1

w∑
v=1

{
(1− t)∅ log(t) if

(
g
)
= 1

(1− g)ω t∅ log(1− t) otherwise
(2)

In this equation, R is the total number of detected diseased
areas in a given image. For a given image, c, h, and w designate
its total channels, width, and height. Moreover, tjuv indicates the
estimated score at a given position (u, v) for the diseased area of
class (j) in the suspected sample, and gjuv is the related ground-
truth value. The ∅ and ω indicates the model hyperparameters
that govern the influence of every selected point and have the
values of 2 and 4 for our framework, respectively.

In downsampling, the dimension of the output sample is
reduced than the actual sample size. The position (u, v) of the
diseased portion in the test sample is plotted to the position
( u

N , v
N ) in the Hms, where N indicates the downsampling factor.

The remapping of Hms to the actual sample size introduces
precision loss that eventually degrades the IoU performance for
small bbx. To tackle this problem, the offsets for all locations
are computed to fine-tune the corner dimensions as described
in Eq. 3.

Oi = (
ui

N
−

⌊
ui

N

⌋
,

vi

N
−

⌊
vi

N

⌋
) (3)

Here, Oi shows calculated offset, while for corner i, ui, and
vi represents the coordinators of u and v. Furthermore, the
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Loff , employs the smooth L1 method for adjusting the corner
positions and is represented as:

Loff =
1
M

M∑
i=1

SmoothL1Loss(Oi, 0′i) (4)

There could be several affected regions on a single image.
Therefore, several BR and TL corners are nominated. For all
corners, the model estimates an embedding vector to decide
whether a group of BR and TL corners is associated with
the same disease class or different disease classes. For this
purpose, the CornerNet model uses the “pull and push” losses
for framework training and are given as:

Lpl =
1
M

M∑
x=1

[
(elx − ex)

2
+ (erx − ex)

2 ] (5)

Lps =
1

M (M − 1)

M∑
x=1

M∑
y=1, y 6=x

max[0, 1−
∣∣ex − ey

∣∣ (6)

Here, elx shows the TL while the erx denotes the BR corners
for a diseased region x and ex is the average value of erx and erx.
The distance value to declare two detected corners belonging to
different categories is set as 1, while the value of 1 is also 1 for
all experiments.

Results

In this section, we will outline detailed information about
the dataset employed for the detection and classification
of tomato plant leaf diseases. Moreover, the mathematical
description of the used performance measures is also given.
Finally, the results of the extensive experiments that have been
conducted to show the efficacy of the proposed approach for
tomato plant leaf disease recognition will be discussed.

Dataset

We have used the PlantVillage database (Hughes and
Salathé, 2015), a large repository accessible online, to evaluate
the effectiveness of the model in detecting and classifying tomato
leaf diseases. This dataset is comprised of a total of 54,306 images
for 14 crop types. As this study is focused on the diseases of
the tomato plant, we have utilized the tomato plant samples
belonging to 10 different diseases. The main reason to employ
the PlantVillage dataset for our work is that its images contain
severe alterations in the size, chrominance, and position of the
affected leaf regions. Furthermore, the images contain noise,
brightness changes, blurring, and color alterations. An in-depth
demonstration of the employed dataset is elaborated in Figure 4
while a few samples are shown in Figure 5.

Performance measures

For measuring the performance of the custom CornerNet
model in detecting and classifying tomato plant leaf diseases,
we have selected several standard metrics such as accuracy,
mAP, intersection over union (IOU), precision, and recall. The
mathematical description of accuracy and the mAP measure are
given in Eqs 7, 8, respectively, while a graphical demonstration
of precision, recall, and IOU is given in Figure 6.

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

mAP :=
T∑

i=1

AP(ti)/T (8)

Localization results

The distinguishing attribute of a robust plant leaf disease
classification framework is its ability to differentiate among the
different classes of disease. To measure this, we designed an
experiment. To visually elaborate on the detection performance
of the custom CornerNet model, we have depicted the localized
samples from the used dataset in Figure 7. The samples in
Figure 7 clearly show that our technique is quite efficient in
detecting the affected portion of the plant leaves and recognizing
the associated classes even under the incidence of color, size,
light, chrominance, and brightness changes.

The high recall power of the custom CornerNet model
allows it to appropriately identify and categorize the several
classes of tomato plant abnormalities. To numerically show the
robustness of the proposed solution for tomato plant leaf disease
classification, we have used two measures, namely the mAP and
IOU score. These are the standard and most heavily employed
metrics by the research community for object detection models.
The proposed CornerNet model has localized the diseased
portion from the plant samples with mAP and IOU scores of
0.984, and 0.979, respectively, which shows the effectiveness
of our approach.

Classification performance

An efficient plant leaf disease recognition system must be
powerful enough to accurately discriminate among the different
types of diseases. We tested the class-wise performance of the
presented model with the help of several standard metrics
such as precision, recall, accuracy, and F1-score. Initially,
we computed the precision and recall values for the custom
CornerNet model in locating and classifying the 10 categories of
plant leaf abnormalities. We have used the boxplot to show the
obtained results as these plots provide a better understanding of
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FIGURE 4

Details of the tomato plant samples from the PlantVillage dataset.

FIGURE 5

An example of tomato plant leaves samples from the PlantVillage dataset.

FIGURE 6

Visual demonstration of (A) IOU, (B) precision, and (C) recall.

the results by showing the minimum, maximum, and average
values for the employed metrics (Figures 8, 9). The results
reported in Figures 8, 9 show that the introduced approach is
capable of correctly classifying the 10 classes of tomato plant leaf
diseases.

Secondly, we show the calculated F1-score together with the
error rate over the employed dataset and acquired values in
Figure 10. The custom CornerNet model attains the average F1-
score of 99.57% with the maximum and minimum error rates of
0.23 and 0.82%, respectively. The reported values demonstrate
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FIGURE 7

A pictorial depiction of the localized tomato plant leaf diseases samples.

the robustness of the custom CornerNet model in locating and
classifying all classes of tomato leaf disease efficiently.

Additionally, we have measured the class-wise accuracy
values of the proposed technique and the acquired results are
demonstrated in Figure 11. The introduced DenseNet-77-based
CornerNet model attains the accuracy values of % for the
10 disease categories of the tomato plant and confirms the
effectiveness of our approach.

To further validate the class-wise accurateness of the
introduced approach for distinguishing the numerous categories
of plant leaf disease, we have created a confusion matrix
(Figure 12). This plot can show the actual and estimated classes

recognized by a model. The values shown in figure demonstrate
that the custom CornerNet model is proficient at recognizing
all classes of tomato plant leaf diseases due to its higher
recall rate which empowered it to differentiate all categories
reliably.

Comparison with base approaches

In this section, we outline an experiment to compare the
tomato plant leaf disease recognition capability of the improved
CornerNet model against the base networks. We chose
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FIGURE 8

A pictorial depiction of the class-wise precision values obtained for the DenseNet-77-based CornerNet model.

FIGURE 9

A pictorial depiction of the class-wise recall values obtained for the DenseNet-77-based CornerNet model.

several well-known DL frameworks, i.e., GoogleNet, ResNet-
101, Xception, VGG-19, and SE-ResNet50. The comparison
is depicted in Table 3. The performance analysis shown in

Table 3 illustrates that our technique is more accurate than
the peer approaches. The DenseNet-77-based CornerNet model
attains the highest results for the precision, recall, F1-score,
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FIGURE 10

A pictorial depiction of the class-wise F1-score values obtained for the DenseNet-77-based CornerNet model.

FIGURE 11

A pictorial depiction of the class-wise accuracy values obtained for the DenseNet-77-based CornerNet model.

and accuracy measures with the numeric count of 0.9962,
0.9953, 0.9957, and 99.98%, respectively. The second-highest
results are reported by the SE-ResNet50 model with 0.9677,
0.9681, 0.9679, and 96.81% for the precision, recall, F1-score,
and accuracy metrics, respectively. Moreover, the GoogleNet
model attains the lowest results in classifying the leaf diseases
of the tomato plant and attains the scores for precision, recall,

F1-score, and accuracy measures of 0.8716, 0.8709, 0.8712, and
87.27%, respectively. The second-lowest values are attained by
the Xception model with the numeric stats of 0.8825, 0.8814,
0.8819, and 88.16%. The comparison illustrates the effectiveness
of our approach. Specifically, for the precision measurement,
the selected methods have an average value of 0.9050, while
the DenseNet-77-based CornerNet model acquires the value of
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FIGURE 12

Confusion matrix results for tomato plant leaf diseases classification obtained using the DenseNet-77-based CornerNet model.

0.9962 and shows a performance gain of 9.12%. For the recall
and F1-score, the selected models have attained the average
numeric score of 0.9053 and 0.9091, while in comparative
analysis the presented solution has shown the average recall
and F1-score of 0.9953 and 0.9957, respectively. Therefore, we
can demonstrate average performance gains for the recall and
F1-score of 9 and 8.66%, respectively. Moreover, in terms of
accuracy, the base models attain an average value of 90.56%.
The proposed model attains 99.98% accuracy, representing a
performance gain of 9.42%. Furthermore, we outline the time
taken for each model. It should be noted that the proposed
approach shows the minimum test time. The values show the
efficacy of our work to better recognize the several classes of
tomato plant leaf abnormalities. The basic cause of this better
classification performance of the proposed improved CornerNet
model is the employment of the DenseNet-77 model as the
keypoints extractor. This uplifts the model to better select the
image information to identify the affected areas of the plant
leaves and better recognize the associated class.

Performance evaluation with object
detection approaches

We have employed an object detection-based model for the
localization and classification of the tomato plant leaf diseases
and compared the performance of the proposed approach
with other object detection techniques. The major reason for
performing this simulation was to verify the reliability of the

proposed DenseNet-77-based CornerNet model against other
competitor techniques while locating the diseased areas from
the tomato plant leaves under the occurrence of noise, light
alteration, color changes, size variations, etc.

To execute this analysis, we have chosen numerous well-
known object detection approaches, namely the Fast-RCNN
(Girshick, 2015), Faster-RCNN (Ren et al., 2016) YOLO
(Redmon and Farhadi, 2018), the SSD (Liu et al., 2016), and
CornerNet (Law and Deng, 2019) models. To measure the
performance of the model, the mAP metric is used as it is
the standard evaluation measure used by the researchers to
assess the classification performance of the object detection
techniques. Furthermore, we have compared the test time
of models as well to evaluate the time complexities of the
comparative approaches as well. The comparison shows the
efficiency and effectiveness of our approach and is illustrated in
Table 4. The results in Table 4 show that the proposed approach
has the highest mAP score and lowest test time with a numeric
score of 0.984 and 0.22 s, respectively. The second highest
mAP score is the Faster-RCNN model with a numeric count
of 0.884. However, it is computationally inefficient and shows
a time complexity of 0.28 s due to its two-stage classification
network architecture. The SSD model has the lowest mAP score
of 0.883 and a test time of 0.27 s. Furthermore, this approach
does not perform well for very small plant leaf sizes. The
conventional CornerNet model also has less promising results
with a mAP score of 0.883 and a test time of 0.25 s. Whereas,
the DenseNet-77-based CornerNet approach better tackles the
issues of existing object detection approaches for identifying and
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TABLE 3 Comparison with other DL frameworks.

Model Precision Recall F1-score Accuracy (%) Time (second)

GoogleNet 0.8716 0.8709 0.8712 87.27 0.65

ResNet-101 0.8995 0.9013 0.9004 90.13 1.21

Xception 0.8825 0.8814 0.8819 88.16 0.77

VGG-19 0.9039 0.9047 0.9243 90.42 1.56

SE-ResNet50 0.9677 0.9681 0.9679 96.81 0.57

Proposed 0.9962 0.9953 0.9957 99.98 0.22

classifying the numerous categories of the tomato plant leaves
and shows the highest results. The comparison object detection
approaches have an average mAP value of 0.859, compared to
0.984 for the proposed algorithm. Therefore, we have attained
an average performance gain of 12.42% for the mAP metric. The
one-stage detection ability of the proposed approach reduces
the network structure complexity which, in turn, gives it a
computational advantage.

Model evaluation with the
state-of-the-art methods

In this section, we have selected several new approaches
(Tm et al., 2018; Kaur and Bhatia, 2019; Agarwal et al.,
2020a) that worked for tomato plant leaf disease classification
and have used analysis to compare the performance of the
improved CornerNet model with them. For this purpose, we
have utilized three standard measures: precision, recall, and
accuracy. Agarwal et al. (2020a) proposed the EfficientNet model
for the automated detection and classification of tomato plant
leaf diseases and attained an average accuracy value of 91.20%.
Tm et al. (2018) proposed a CNN framework for categorizing
the affected area of plant leaves and demonstrated an accuracy
value of 94%. Similarly, Kaur and Bhatia (2019) employed
a deep learning framework for recognizing the 10 types of
plant leaf diseases with an accuracy rate of 98.80%. Hence,
the comparative analysis is depicted in Table 5 and illustrates
that our work has attained the highest results for all selected
performance measures. From Table 5, it can be viewed that the
techniques in Tm et al. (2018), Kaur and Bhatia (2019), and

TABLE 4 Comparison with other object detection methods.

Models mAP Test time

Fast-RCNN 0.860 0.28

Faster-RCNN 0.884 0.28

YOLOv3 0.842 0.26

SSD 0.830 0.27

Hourglass-based-CornerNet 0.883 0.25

Proposed DenseNet-77-based CornerNet 0.984 0.22

Agarwal et al. (2020a) achieve the precision of 0.90, 0.9481,
and 0.9880, respectively, whereas the introduced improved
CornerNet model obtains the precision of 0.9962. This is the
highest of all the reported numeric scores for the selected works.
The improved CornerNet model gains the largest value of 0.9953
for the recall performance measure, while the approaches in Tm
et al. (2018), Kaur and Bhatia (2019), and Agarwal et al. (2020a)
have recall scores of 0.92, 0.9478, and 0.9880, respectively.
Moreover, with regards to accuracy, the proposed approach
gains the numeric score of 99.98% while the approaches in Tm
et al. (2018), Kaur and Bhatia (2019), and Agarwal et al. (2020a)
have accuracy values of 91.20, 94, and 98.80%, respectively. The
peer works (Tm et al., 2018; Kaur and Bhatia, 2019; Agarwal
et al., 2020a) have the average precision, recall, and accuracy
values of 0.9453, 0.9519, and 94.67%, respectively, as opposed to
0.9962, 0.9953, and 99.97%, respectively, for the presented work.
Therefore, the DenseNet-77-based CornerNet model provides
performance gains of 5.08, 4.34, and 5.30% for the precision,
recall, and accuracy evaluation measures.

The reason for the competent classification results of the
improved CornerNet model is that the techniques in Tm et al.
(2018), Kaur and Bhatia (2019), and Agarwal et al. (2020a) are
quite complex in network structure. This creates a framework
over-fitting problem. The proposed solution is quite simple
in structure and the employment of DenseNet-77 as the base
network further empowered the CornerNet model to nominate
a more reliable set of the sample feature vector. Such a model
setting enhances its recognition ability by eliminating redundant
information and reducing the model complexity. Further, the
one-stage detection and classification ability of the CornerNet
model prevents the framework from over-fitting issues and
enables it to robustly deal with several image distortions like
color, size, brightness, light variation, etc.

TABLE 5 Comparison with the latest studies.

Approach Precision Recall Accuracy (%)

Agarwal et al., 2020a 0.90 0.92 91.20

Tm et al., 2018 0.9481 0.9478 94

Kaur and Bhatia, 2019 0.9880 0.9880 98.80

Proposed 0.9962 0. 9953 99.97
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Conclusion

The manual screening of tomato plant leaf diseases relies
highly on domain experts to detect the detailed information
from the samples under observation. AI-based solutions are
trying to fill this gap by automating the manual screening
system. However, excessive changes in the mass, color, and
size of plant leaves, and the incidence of noise, blurring, and
brightness variations in the images complicate the classification
task. In this work, we have attempted to overcome the existing
issues by proposing a deep learning-based approach namely
the DenseNet-77-based CornerNet model. We have carried
out extensive experimentations on a standard dataset, namely
the PlantVillage, and have confirmed through both the visual
and numeric computations that the proposed approach is both
efficient and effective in recognizing tomato plant leaf disease.
Furthermore, the proposed approach is capable of efficiently
detecting the diseased area of the plant leaves from the distorted
samples containing several image transformations. However, the
approach shows small detection degradation for images with
huge angular variations which will be a major focus of our future
work. Moreover, we plan to test the proposed model on other
plant diseases and evaluate other DL-based frameworks.
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