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Early Leaf Spot (ELS) caused by the fungus Passalora arachidicola and Late Leaf 

Spot (LLS) also caused by the fungus Nothopassalora personata, are the two 

major groundnut (Arachis hypogaea L.) destructive diseases in Ghana. Accurate 

phenotyping and genotyping to develop groundnut genotypes resistant to Leaf 

Spot Diseases (LSD) and to increase groundnut production is critically important 

in Western Africa. Two experiments were conducted at the Council for Scientific 

and Industrial Research-Savanna Agricultural Research Institute located in 

Nyankpala, Ghana to explore the effectiveness of using RGB-image method as 

a high-throughput phenotyping tool to assess groundnut LSD and to estimate 

yield components. Replicated plots arranged in a rectangular alpha lattice design 

were conducted during the 2020 growing season using a set of 60 genotypes 

as the training population and 192 genotypes for validation. Indirect selection 

models were developed using Red-Green-Blue (RGB) color space indices. Data 

was collected on conventional LSD ratings, RGB imaging, pod weight per plant 

and number of pods per plant. Data was analyzed using a mixed linear model 

with R statistical software version 4.0.2. The results showed differences among 

the genotypes for the traits evaluated. The RGB-image method traits exhibited 

comparable or better broad sense heritability to the conventionally measured 

traits. Significant correlation existed between the RGB-image method traits and 

the conventionally measured traits. Genotypes 73–33, Gha-GAF 1723, Zam-ICGV-

SM 07599, and Oug-ICGV 90099 were among the most resistant genotypes to 

ELS and LLS, and they represent suitable sources of resistance to LSD for the 

groundnut breeding programs in Western Africa.
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Introduction

Groundnut is a nutritious crop with high protein (12% to 
36%) and oil (36% to 54%) content and an important food crop 
worldwide. Groundnut seed also plays a crucial role in providing, 
vitamins, minerals, unsaturated oil and plant protein for many 
people in Ghana (Gaikpa et al., 2021). The nutritional value of 
groundnut renders it an essential component in the diet of rural 
people in Northern Ghana, as it complements the protein intake 
requirement in their mostly cereal-based diet. Daily consumption 
of groundnut contributes immensely to reducing protein 
deficiency and malnutrition in this country. In addition to 
increasing food and nutritional security, groundnut plays a pivotal 
role in the life of small-holder farmers in Ghana as a suitable 
vehicle for making improvements in the areas of poverty 
alleviation (Tyroler, 2018). In spite of its numerous benefits, 
cultivation and productivity of groundnut in Ghana and the world 
is largely hindered by numerous biotic factors (Oppong-Sekyere 
et al., 2015). Early Leaf Spot (ELS) caused by the fungus Passalora 
arachidicola previously known as Cercospora arachidicola and 
Late Leaf Spot (LLS) also caused by the fungus Nathopassalora 
personata, known previously as Cercosporidium peronatum 
(Denwar et  al., 2021) diseases represent major destructive 
groundnut diseases. For example, LLS can cause loss in yield 
between 30 to 70% for susceptible varieties under disease 
conducive environmental conditions (Mugisha et al., 2004; Singh 
et al., 2011). The challenge to feed the growing human population 
in the face of numerous factors that limit the quality and quantity 
of groundnut production such as ELS and LLS diseases is an uphill 
task. Both ELS and LLS reduce the available leaf area for 
photosynthesis and therefore leads to defoliation and yield loss. 
Groundnut breeders are making efforts to screen large numbers 
of accessions for the development of ELS and LLS resistant 
varieties. Conventionally, ELS and LLS assessment in breeding 
programs includes visual scoring of disease severity. Nonetheless, 
this approach is error-prone, i.e., it depends on the evaluator 
experience and ability to capture small genotypic differences, it is 
time-consuming, and may not be able to capture adequately the 
physiological status of the plant (Araus, 2018). Repeatedly, the 
conventional methods for LSD screening have been reported as 
difficult to capture genotypic differences due to the partial and 
polygenic nature of these diseases (Dwivedi et al., 2002). Because 
of this, they may reduce rather than improve the efficacy of the 
marker-assisted selection. Unfortunately, many of the plant 
breeding programs in developing countries mostly rely on only 
conventionally recorded phenotypic data before transcribing the 
data into usable forms (Rife and Poland, 2015). Such data 
collection methods are expensive and laborious (Araus, 2018; 
Awada et al., 2018). Less experience evaluator will take a longer 
time to arrive at ELS and LLS as compare to imaging. Moreover, 
even if it is an experience person doing the scoring, because of the 
subjective nature of visual scoring, it is difficult to give the same 
score to the same plot scored at different time points either by the 
same rater or a different rater. Red-Green-Blue (RGB)-image 

technique therefore offers the chance to standardized ELS and LLS 
measurements and provides a better way to objectively quantify 
leaf spot severity than the visual method.

Similarly, in Ghana and other African countries, the breeding 
programs are in critical need for innovative techniques to improve 
yield and quality of groundnut. Application of RGB-image 
method, i.e., the science of making measurements from 
photographs, for automatic phenotyping may overcome the flaws 
of the current conventional phenotyping methods. RGB-image 
method saves significant time, decreases the cost of data collection, 
and offers the benefits of non-destructive measurements, regular 
assessment, accurate observations and direct storage of data 
(Araus, 2018). RGB-image method has been successfully used as 
a powerful evaluation tool for screening drought tolerance and 
yield in winter wheat in Texas (Balota et al., 2007), groundnut in 
Virginia, United States (Balota and Oakes, 2017), and groundnut 
LSD in Egypt (Omran, 2017). However, the effectiveness of 
RGB-image method for groundnut ELS and LLS selection in 
Ghana is yet to be exploited. The objective of this study was to 
explore the effectiveness of using RGB-image method as a high-
throughput phenotyping tool for the assessment of groundnut 
LSD and yield in a breeding program in Ghana.

Materials and methods

Location of experiments, groundnut 
genotypes, and experimental design

Two experiments were conducted between June 2020 and 
October 2020 at Nyankpala, located in the Tolon district of 
Northern region of Ghana. Nyankpala is located at 09° 25′ 41″ N, 
00° 58′ 42″ W, and altitude of 183 m above the sea level. The soils 
of the experimental site belong to Ferric Luvisols of the Tingoli 
series with a brown color, moderately drained, and free from 
concretions (Atakora and Kwakye, 2016). The Northern region of 
Ghana is characterized by a relatively dry climate with unimodal 
rainfall ranging between 900 and 1,200 mm annually (Savanna 
Agricultural Research Institute, 2012; Ndamani and Watanabe, 
2014). The rains start in May and end in October with the highest 
rainfall occurring in August and September. The rest of the year 
(November to May) are dry with a small number of scattered 
precipitations in November (Savanna Agricultural Research 
Institute, 2012; Ndamani and Watanabe, 2014). The first 
experiment included 60 medium duration groundnut genotypes 
(Table  1) selected from the African Groundnut Germplasm 
Collection (AGGC) for leaf spot resistant and yield phenotyping. 
The medium duration groundnut genotypes complete their life 
cycle within 100–120 days after sowing. A 6 × 10 rectangular alpha 
lattice design with three replications was used. Each replication 
contained six (Balota and Oakes, 2017) blocks with 10 single row 
plots of 2 m length in each block. The second experiment consisted 
of 192 short duration groundnut genotypes (Supplementary Table 1) 
selected from the AGGC also for leaf spot resistant and yield 
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screening. Short duration groundnut genotypes complete their life 
cycle within 85–100 days after sowing. The genotypes were 
arranged in an 8 × 24 rectangular alpha lattice design with three 
replications. Each replication contained eight (Denwar et al., 2021) 
blocks with 24 single row plots of 2 m length in each block.

Data collection

Conventional measurements of LSD and yield
Both ELS and LLS mostly occur together in Ghana. An 

effort was made to distinguish ELS and LLS. It was possible to 
distinguish the two diseases easily because of the physical 
appearance of their spots (Figure 1). Symptoms of ELS are dark 
brown, yellow halo and sub-secular lesions on groundnut 
leaves whiles symptoms of LLS are darker, more circular lesions 
on the leaves and usually without yellow halo (Tshilenge-
Lukanda et al., 2012). The severity of ELS and LLS infections 
was scored at 70, 80, 85 and 95 days after planting (DAP) based 
on their unique symptoms using the scale described by 

Subrahmanyam et al. (1995; Figure 2; Table 2). Genotypes with 
leaf spot scores from 1 to 3 were suggested to be  resistant, 
genotypes scoring 4 to 6 were regarded as moderately resistant, 
and genotypes scoring 7 and above were considered susceptible 

TABLE 1 List and countries of origin for 60 medium duration groundnut genotypes used for leaf spot resistant and yield phenotyping.

Number Genotype Country Number Genotype Country

1 CHINESE Ghana 31 MZG-ICGV-SM 03530:201909 Mozambique

2 GhaII-YENYAWOSO:201909 Ghana 32 MZG-PAN-09001:201909 Mozambique

3 ICGV 99247 Ghana 33 MZG-ICGV-SM 01513:201909 Mozambique

4 Gha-Nakpanduri 1:201909 Ghana 34 MZG-PAN-13006:201909 Mozambique

5 Gha-ICGV 07286:201909 Ghana 35 Nig-TAIMAN-9:201909 Niger

6 Gha-ICGV 15017:201909 Ghana 36 Nig-ICGVIS 07957:201909 Niger

7 Gha-ICGV-IS 13081:201909 Ghana 37 Nig-ICGVIS 79103:201909 Niger

8 GhaII-ICGV-91287:201909 Ghana 38 Nig-T-DT2-2016:201909 Niger

9 GhaII-ICGV-13009:201909 Ghana 39 Nig-ICGVSM 99502:201909 Niger

10 Gha-ICGV 00005:201909 Ghana 40 Nig-ICGV 87003:201909 Niger

11 Mwi-ICGV SM 5521:201909 Malawi 41 Nig-ICGVIS 07997:201909 Niger

12 Mwi-ICGV SM 99594:201909 Malawi 42 Nig-T-EM1-2016:201909 Niger

13 Mwi-Baka:201909 Malawi 43 Nig-ICGV 91324:201909 Niger

14 Mwi-ICGV-SM 03519:201909 Malawi 44 Nig-ICGVIS 07890:201909 Niger

15 Mwi-ICGV SM 08528:201909 Malawi 45 Sen-ICGV 96894:201909 Senegal

16 Mwi-ICG 14788:201909 Malawi 46 Sen-SERENUT 10R:201909 Senegal

17 Mwi-ICGV SM 09524:201909 Malawi 47 Sen-Fleur 11:201909 Senegal

18 Mwi-ICGV SM 07533:201909 Malawi 48 Tog-HG08:201909 Togo

19 Mwi-ICG 6057:201909 Malawi 49 Tog-HG98:201909 Togo

20 Mwi-CNG 1545:201909 Malawi 50 Tog-HG07:201909 Togo

21 Mwi-ICGV-SM 08565:201909 Malawi 51 Tog-HG65:201909 Togo

22 Mal-ICIAR 19 BT:201909 Mali 52 Oug-ICGV SM 06518:201909 Uganda

23 Mal-ICGV 86015:201909 Mali 53 Oug-ICGV SM 05650:201909 Uganda

24 Mal-ICGVIS 13825:201909 Mali 54 Oug-ICGV SM 08577:201909 Uganda

25 Mal-ICGV 86024:201909 Mali 55 Oug-ICGV SM 03590:201909 Uganda

26 Mal-ICG 81:201909 Mali 56 Oug-KadonokhoX3590 Tan:201909 Uganda

27 Mal-ICGVIS 07947:201909 Mali 57 Oug-AWI 0802 RED UG:201909 Uganda

28 Mal-86,124:201909 Mali 58 Oug-ICGV SM 99555:201909 Uganda

29 MZG-JL-24:201909 Mozambique 59 Oug-ICGV SM 07593:201909 Uganda

30 MZG-ICGV-SM 03520:201909 Mozambique 60 Zam-ICGV-SM-06637:201909 Zambia

A B

FIGURE 1

Lesions of ELS and LLS on infected leaves surface, represented by 
(A,B), respectively.
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(Gaikpa et al., 2021). Calculation of Area Under The Disease 
Progress Curve (AUDPC) was done for ELS and LLS from the 
severity scores of each plot using the formula: 

AUDPC y y x t t
i
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, where Yi is the level 

of disease severity score at a point in time, t(i + 1)-ti is the 

number of days between two successive scores (Shaner and 
Finney, 1977).

Observations were recorded on the number of pods per plant 
(Pods/PLT), i.e., at the physiological maturity, pods obtained from 
five harvested plants were individually counted and averaged. Pod 
weight per plant (PW/PLT) was also performed at the 
physiological maturity, when pods from five plants were dug 
manually and hand-stripped, cleaned from soil, then air dried to 
constant weight, and pod weight was taken using an electronic 
scale (KERN®, PCB 10000–1; Balingen, Germany).

Red-green-blue imaging
The images were captured on the same days as the visual LSD 

ratings. A Samsung Galaxy NX300 digital camera that captures 
20.3 mega-pixels was used to take images of individual plots. The 
camera was held horizontally in landscape mode over the plots at 
an angle of 90° and kept at a height of 80 cm above the plant 
canopy for all the imaging whiles facing the sun to avoid any 
shadow on the pictures. The camera was set to the “auto” mode to 
allow automatic adjustments for sharpness, brightness and hue 
(H) depending on the light available. Green area (GA = H 
60–120°), greener area (GGA = H 80–120°), H angle, and crop 
senescence index [CSI = (100*(GA-GGA)/GA); Gracia-Romero 
et al., 2018] were extracted using Breedpix 2.0 option from the 
CIMMYT maize scanner 1.16 plugin (http://github.com/george-
haddad/CIMMYT open software; Copyright 2015 Shawn Carlisle 
Kefauver, University of Barcelona); produced as part of Image J/
Fiji (open source software; http://fiji.sc/Fiji; Schindelin et al., 2012; 
Rueden and Eliceiri, 2017). Both GA and GGA measures the 
number of green pixels on an image. However, the GGA removes 
green tones that are yellowish from and, accordingly, differentiates 
leaf senescence and active photosynthetic biomass more accurately.

Data analysis

Data analysis was performed using the mixed linear model with 
R statistical program, version 4.0. 2 (R Core Team, 2018). This was 
carried out to identify the variability among genotypes for particular 
traits. Pearson correlation was computed and visualised among the 
parameters using the Agricolae package in R (Wei et al., 2017) to 
determine the correlation among the studied parameters.

Genotypic and phenotypic variances and 
coefficients of variation

Genotypic variance

Estimation of Genotypic Variance (VG) was done using the 

formula: VG =
-( )MSG MSE

r
, where MSG is the mean squared 

of genotype, MSE is the mean squared of the residual (error) and 
r is the number of replications (Walle et al., 2014; Oteng-Frimpong 
et al., 2017).

A B C

D E F

FIGURE 2

Examples of severity levels of leaf spot diseases used for visual 
rating of groundnut plots in this experiment [A–F represent 
scores 1, 3, 5, 6, 7, and 9, respectively, on the leaf spot scale by 
Subrahmanyam et al., 1995].

TABLE 2 Leaf spot severity rating scale used in this study [from 
Subrahmanyam et al. (1995)].

Score Leaf spot disease

1 No disease

2 A few, small necrotic spots on older leaves

3 Small spots, mainly on older leaves; sparse sporulation

4 Many spots, mostly on lower and middle leaves; disease evident

5 Spots easily seen on lower and middle leaves; moderate 

sporulation; yellowing and defoliation of some lower leaves

6 As for rating 5, but spots sporulating heavily

7 Disease easily seen from a distance; spots all over the plant; 

defoliation of lower and middle leaves

8 As for rating 7, but heavy defoliation

9 Plants severely affected; 50%–100% defoliation
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Phenotypic variance

Calculation of phenotypic variance (VP) was done using the 

formula: VP = +VG
MSE

r
, where VG is the genotypic variance, 

MSE is the mean squared of the residual (error) and r is the 
number of replications (Walle et  al., 2014; Oteng-Frimpong 
et al., 2017).

Genotypic coefficient of variation

The formula  

Genotypic coefficient of variation
VG

X
GCV( ) = ´100  was 

used to calculate genotypic coefficient of variation with x 
representing the grand mean of the trait in question (Walle et al., 
2014; Oteng-Frimpong et al., 2017). GCV values were categorized 
as low for less than 10%, moderate for between 10 and 20% and 
more than 20% as high (Deshmukh et al., 1986).

Phenotypic coefficient of variation

Calculation of phenotypic coefficient of variation (PCV) 

was also carried out using the formula PCV = ´
VP

X
100 , 

where x is the grand mean of the trait of interest (Walle et al., 
2014; Oteng-Frimpong et  al., 2017). PCV values were 
categorized as low for less than 10%, moderate for between 
10% and 20% and more than 20% as high (Deshmukh 
et al., 1986).

Estimated broad sense heritability (H2)
Estimation of broad sense heritability was done using the 

formula H 2 =
VG

VP
, where VG and VP, respectively, represents 

the genotypic and phenotypic variances (Allard, 1999). Broad 
sense heritability was categorized as low for less than 30%, medium 
for 31%–60% and 61% and above as high (Johnson et al., 1955).

Expected genetic advance
Calculation of expected genetic advance (EGA) was 

performed using the formula: GA = (K) бP H2 where GA is the 
expected genetic advance, K is the selection differential (2.06 at 
5% selection intensity) and бA is the phenotypic standard 
deviation (Shukla et al., 2006).

Genetic advance as percentage
The genetic advance as percentage (GAM) the of mean was 

calculated as: GAM
GA

X
= æ
è
ç

ö
ø
÷´100  (Shukla et al., 2006). GAM 

was categorized as low for less than 10%, moderate for between 10 
and 20% and more than 20% as high (Johnson et al., 1955).

Results

ELS and LLS reaction

The area under disease progress curve was used to understand 
the incidence and progression of ELS and LLS diseases among the 
groundnut genotypes using leaf spot severity scores taken at 70, 
80, 85, and 95 DAP. However, the best associations with the 
traditional measurements were at 95 DAP, for which we primarily 
present here the data recorded at 95 DAP. The genotypes 
exhibited different levels of resistance to ELS and LLS diseases. 
For the medium duration population, the area under disease 
progress curve for ELS_AUDPC ranged from 32 for genotype 
73–33 to 73 for Sen-DOK IT with a mean of 57 (Table 3). In the 
case of LLS_AUDPC, 73–33 again obtained the least score of 54 
while genotype Oug-ICGV SM 06525 obtained the highest score 
of 145 with 106 as the mean of all genotypes. The results for the 
early duration population indicated that the genotype Mal-ICGV 
02271:201909 had the lowest AUDPC score of 39 while Nig-ICGV 
91324:201909 scored 66, which was the highest value 
(Supplementary Table 2). The mean AUDPC score for ELS among 
the genotypes was 58. Genotype Sen-SERENUT 10R:201909 
scored 111 showing the lowest AUDPC for LLS, and 
Nig-TX903838:20190 had the highest AUDPC score of 204. The 
mean AUDPC score for LLS for all genotypes was 167.

Yield

Genotypic differences were observed for the pod weight 
plant-1 (PW/PLT) and number of pods plant-1 (Pods/PLT). 
Among the genotypes, Mal-ICG 14630 had the lowest PW/PLT of 
5.5 g, and Zam-ICGV-SM-07599 the highest of 17.5 g. The 
population mean was 10.5 g plant-1 (Table 3). For the Pods/PLT, in 
the medium duration population, genotypes Sen-HUAYU 33 and 
Sen-DOGO_Chin 1 had 10 pods plant-1as the lowest value, while 
Gha-GAF 1723 and Gha-ICGV 07390 had 19, the highest number 
of pods; 14 pods plant-1 was the mean of all genotypes. Among the 
early duration population, Oug-DOK 1 RED UG:201909 had the 
lowest PW/PLT of 5.1 g, whiles Gha-ICGV-IS 13144:201909 
exhibited the highest of 18.9 g; the population mean was 8.7 g 
plant-1 (Supplementary Table 2). Oug-DOK 1 RED UG:201909 
also produced the least number of pods, 8 pods plant-1, and 
Mal-ICGVIS 13827:201909 obtained the highest number of 21 
pods plant-1. The population mean was 12 pods plant-1.

Variance components, coefficient of 
variation, and broad sense heritability

Genotypic (Ϭ2g) and phenotypic (Ϭ2p) variance and coefficient 
of variation (GCV, FCV), broad sense heritability (H2), expected 
genetic advance (EGA) and genetic advance as percentage of the 
mean (GAM) for the traits estimated in this work are presented in 
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TABLE 3 Genotypic response of different RGB-image method and conventionally rated early and late leaf spot (ELS, LLS) in groundnut at 95 days 
after planting.

Genotype CSI_95 GA_95 GGA_95 Hue_95 PW/PLT 
(g) Pods/plant ELS_

AUDPC
LLS_

AUDPC

73–33 20.6 0.45 0.35 53.45 10.8 15.4 32.3 54

Gha-GAF 1665:201909 20.6 0.72 0.60 80.38 10.2 16.4 45.1 82

Gha-GAF 1723:201909 27.6 0.54 0.40 67.37 13.5 18.5 51.2 82

Gha-ICGV 07390:201909 17.6 0.54 0.46 63.68 14.8 18.6 53.1 96

Gha-ICGV 15008:201909 20.2 0.22 0.18 33.23 6.4 11.2 53.7 129

Gha-ICGV 15033:201909 22.8 0.35 0.27 45.95 9.1 15.0 52.9 104

GhaII-AP-NK-9-13:201909 26.5 0.31 0.24 44.81 8.6 13.7 68.6 113

GhaII-AZIVIVI:201909 19.9 0.51 0.42 59.90 10.5 14.2 52.5 71

GhaII-ICGV-13045:201909 18.0 0.35 0.30 52.80 10.0 11.9 54.8 132

GhaII-ICGV-13998:201909 30.9 0.33 0.23 46.95 9.5 13.2 67.0 109

GhaII-ICGV 03331:201909 44.2 0.26 0.13 39.14 5.6 11.0 64.1 117

GhaII-IVG 7867:201909 32.5 0.41 0.28 57.50 8.6 13.8 63.0 103

GhaII-NUMEX 05:201909 26.0 0.38 0.27 51.15 9.1 12.4 62.4 113

GhaII-SHITAOCHI:201909 26.2 0.22 0.17 34.78 9.0 12.6 64.1 127

Mal-ICG 14630:201909 29.7 0.38 0.26 49.54 5.5 10.5 62.8 110

Mal-ICGV 01258:201909 40.2 0.28 0.18 41.76 13.6 15.4 61.8 124

Mal-ICGV 08656:201909 24.0 0.47 0.36 59.01 10.0 12.7 56.6 111

Mal-ICGVIS 13835:201909 17.1 0.40 0.34 57.20 11.4 14.0 56.8 115

Mal-ICGVIS 141120:201909 23.3 0.36 0.29 48.23 12.3 13.2 69.4 121

Mwi-CG 7:201909 22.3 0.55 0.43 68.12 11.0 12.7 54.1 95

Mwi-ICG 14705:201909 20.1 0.35 0.28 49.25 10.4 15.0 56.6 109

Mwi-ICGV-SM 01711:201909 22.7 0.52 0.41 63.44 12.8 15.0 44.1 98

Mwi-ICGV-SM 01721:201909 17.2 0.35 0.29 44.01 10.5 12.7 44.8 93

Mwi-ICGV SM 07512:201909 24.1 0.41 0.31 55.24 11.1 13.1 55.0 136

Mwi-ICGV SM 1276:201909 21.3 0.34 0.28 47.20 12.2 14.7 63.0 122

MZG-ICGV-SM 01731:201909 25.2 0.49 0.37 64.05 8.5 12.8 64.2 108

MZG-Local 1:201909 20.7 0.58 0.47 68.94 9.3 14.7 52.9 96

MZG-MTP 14001:201909 25.6 0.35 0.27 49.52 10.2 10.9 63.8 115

MZG-NMP 14003:201909 19.6 0.55 0.45 65.20 9.8 12.0 42.2 92

Oug-BOUNDUCK UG:201909 30.1 0.55 0.38 67.19 7.5 11.1 59.0 108

Oug-ICGV 15021:201909 24.8 0.48 0.36 60.16 15.1 16.9 53.1 93

Oug-ICGV 15025:201909 24.6 0.24 0.18 33.96 7.7 13.0 57.2 110

Oug-ICGV 90099:201909 25.8 0.62 0.44 68.58 14.6 16.9 46.0 77

Oug-ICGV SM 02724 18.6 0.58 0.48 67.72 12.5 13.8 50.2 95

Oug-ICGV SM 06525:201909 27.9 0.25 0.18 37.31 10.2 15.7 57.3 145

Oug-ICGV SM 07510:201909 31.0 0.32 0.22 46.83 13.3 13.1 57.9 122

Oug-ICGV SM 10034:201909 20.2 0.63 0.52 75.58 14.9 16.0 53.7 93

Oug-ICGV SM 15583:201909 25.4 0.58 0.44 70.14 12.1 14.5 58.3 101

Oug-KAYOBA X 02501 UG 38.8 0.25 0.17 40.36 10.4 12.9 62.6 134

Oug-SERENUT 11 T UG:201909 38.7 0.61 0.35 65.12 9.7 13.4 58.8 95

Oug-SERENUT 9 T UG:201909 26.1 0.65 0.48 73.16 11.5 14.9 54.0 87

Oug-SGV 0023 UG:201909 20.2 0.66 0.54 78.53 11.7 14.4 55.6 90

Oug-SGV 0062 UG:201909 22.2 0.64 0.51 70.48 14.0 18.4 49.9 91

Oug-SGV 07002 UG:201909 20.6 0.62 0.51 76.39 14.5 14.5 51.1 82

Sen-69-101:201909 20.7 0.64 0.51 71.80 8.9 13.3 50.2 88

Sen-DOGO_Chin1:201909 34.9 0.23 0.14 36.68 7.8 10.5 68.6 106

Sen-DOGO_Chin4:201909 28.4 0.39 0.29 51.88 8.0 11.0 65.8 118

Sen-DOK IT:201909 24.2 0.23 0.18 30.19 7.3 11.6 72.8 130

(Continued)
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Tables 3, 4 for both, the medium duration and early duration 
populations. For the medium duration population, the values for Ϭ2g 
were in the range of 0.01 for GAA at 70 DAP (GGA_70) to 353.1 for 

LLS_AUDPC whiles values for Ϭ2p were in the range of 0.01 for 
GGA_70 to 384.1 for LLS_AUDPC (Table 4). The values for GCV 
ranged from 11.7% for hue angle at 70 DAP (Hue-70) to 40.3% for 

TABLE 3 Continued

Genotype CSI_95 GA_95 GGA_95 Hue_95 PW/PLT 
(g) Pods/plant ELS_

AUDPC
LLS_

AUDPC

Sen-HUAYU 33:201909 22.8 0.20 0.17 28.70 6.9 9.6 70.0 131

Sen-Souleye Badiane:201909 24.0 0.12 0.10 21.79 8.1 11.9 71.1 122

Tog-HG09:201909 25.6 0.28 0.22 42.80 7.8 11.6 70.3 129

Tog-HG100:201909 21.4 0.41 0.33 51.70 10.1 14.5 50.7 119

Tog-HG91:201909 24.6 0.27 0.21 38.34 9.3 12.7 59.7 120

Zam-CHARLIMBANA:201909 28.7 0.53 0.37 63.24 11.4 12.0 52.7 94

Zam-ICG-13099:201909 21.1 0.42 0.33 54.13 10.5 14.1 53.0 108

Zam-ICGV-SM-01514:201909 29.7 0.21 0.16 33.42 10.1 12.6 72.0 109

Zam-ICGV-SM-07599:201909 19.9 0.67 0.54 73.00 17.5 18.2 45.1 85

Zam-ICGV-SM-93522:201909 27.8 0.33 0.24 45.05 8.8 12.2 60.4 107

Zam-MGV-6:201909 23.5 0.54 0.42 64.05 10.9 13.1 46.8 94

Zam-MGV-8:201909 18.6 0.57 0.47 70.62 12.2 13.6 43.6 85

MEAN 25.0 0.43 0.33 54.51 10.5 13.7 56.8 106

MIN 17.1 0.12 0.10 21.79 5.5 9.6 32.3 54

MAX 44.2 0.72 0.60 80.38 17.5 18.6 72.8 145

Pod weight per plant and the number of pods per plant were taken at the physiological maturity. CSI, crop senescence index; GA, green area; GGA, greener area; Hue, ratio of green and 
greener area; PW/PLT, pod weight per plant; Pods/plant, number of pods per plant; ELS_AUDPC and LLS_AUDPC, area under disease progress curve for early and late leaf spot, 
respectively. The bold values represent the means, minimum and maximum values recorded for each trait.

TABLE 4 Genotypic and phenotypic variance, genotypic and phenotypic coefficient of variation, broad sense heritability, expected genetic advance 
and expected genetic advance as percentage of the mean for RGB-image method and conventionally measured traits on the medium duration 
population.

Trait Ϭ2g Ϭ2p GCV (%) PCV (%) H2 (%) EGA GAM

GA_70 0.01 0.01 16.34 17.59 86.23 0.21 31.25

GGA_70 0.01 0.01 18.11 19.35 87.65 0.20 34.93

Hue_70 73.34 91.50 11.65 13.01 80.15 15.79 21.48

CSI_70 14.03 19.00 23.56 27.42 73.82 6.63 41.69

GA_80 0.02 0.02 23.16 24.67 88.13 0.26 44.79

GGA_80 0.02 0.02 25.84 27.35 89.25 0.25 50.29

Hue_80 116.99 140.63 16.08 17.63 83.19 20.32 30.22

CSI_80 18.53 22.59 24.40 26.95 82.01 8.03 45.52

GA_85 0.02 0.03 30.41 31.53 93.03 0.31 60.42

GGA_85 0.02 0.02 33.18 34.50 92.52 0.26 65.75

Hue_85 164.61 180.58 21.40 22.42 91.15 25.23 42.10

CSI_85 25.32 36.36 20.54 24.62 69.62 8.65 35.31

GA_95 0.03 0.03 37.12 39.07 90.28 0.31 72.65

GGA_95 0.02 0.02 40.33 42.72 89.13 0.26 78.44

Hue_95 231.67 258.42 27.92 29.49 89.65 29.69 54.46

CSI_95 48.23 66.52 27.83 32.69 72.50 12.18 48.82

ELS_AUDPC 86.89 102.71 16.40 17.83 84.60 17.66 31.07

LLS_AUDPC 353.06 384.14 17.77 18.54 91.91 37.11 35.09

Pods/PLT 8.32 15.57 21.12 28.88 53.47 4.35 31.81

PW/PLT(g) 9.10 12.83 28.76 34.14 70.95 5.23 49.89

Ϭ2g, genotypic variance; Ϭ2p, phenotypic variance; H2, broad sense heritability; GCV, genotypic coefficient of variation; PCV, phenotypic coefficient of variation; EGA, expected genetic 
advance and GAM, genetic advance as percentage of the mean; GA_70, GA_80, GA_85, and GA_95, green area at 70, 80, 85 and 95 days after planting (DAP); GGA_70, GGA_80, 
GGA_85, and GGA_95, greener area at 70, 80, 85, and 95 DAP; Hue_70, Hue_80, Hue_85, and Hue_95, hue angle at 70, 80, 85, and 95 DAP; CSI_70, CSI_80, CSI_85, and CSI_95, crop 
senescence index at 70, 80, 85, and 95 DAP, respectively. PW/PLT stands for pod weight per plant, ELS_AUDPC and LLS_AUDPC stands for area under disease progress curve for early 
and late leaf spot, respectively, and Pods/plant stand for number of pods per plant.
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TABLE 5 Genotypic and phenotypic variance, genotypic and phenotypic coefficient of variation, broad sense heritability, expected genetic advance 
and expected genetic advance as percentage of mean for RGB-image method and conventionally measured traits on the early duration population.

Trait Ϭ2g Ϭ2p GCV (%) PCV (%) H2 (%) EGA GAM

GA_70 0.005 0.008 14.438 17.977 64.502 0.122 23.887

GGA_70 0.004 0.006 15.023 19.192 61.275 0.099 24.225

Hue_70 50.225 84.866 11.614 15.097 59.182 11.231 18.406

CSI_70 10.427 18.783 16.383 21.989 55.512 4.956 25.145

GA_80 0.008 0.011 24.493 29.212 70.300 0.152 42.305

GGA_80 0.006 0.008 26.902 32.104 70.220 0.130 46.439

Hue_80 88.520 129.127 19.150 23.129 68.552 16.047 32.663

CSI_80 24.054 38.499 20.478 25.907 62.479 7.986 33.344

GA_85 0.009 0.011 30.038 34.531 75.672 0.167 53.828

GGA_85 0.006 0.008 33.767 38.777 75.831 0.139 60.574

Hue_85 68.904 96.952 20.070 23.807 71.070 14.416 34.854

CSI_85 32.510 51.710 21.696 27.363 62.870 9.313 35.438

GA_95 0.007 0.010 36.493 43.236 71.241 0.146 63.452

GGA_95 0.005 0.007 37.957 44.749 71.947 0.126 66.324

Hue_95 118.348 185.746 35.138 44.021 63.715 17.888 57.779

CSI_95 7.236 24.862 13.895 25.755 29.105 2.990 15.442

ELS_AUDPC 27.97 41.060 9.200 11.140 68.110 8.990 15.630

LLS_AUDPC 299.500 353.200 10.350 11.240 84.800 32.830 19.640

PW/PLT(g) 7.030 15.690 30.330 45.320 44.780 3.650 41.810

Pods/plant 6.620 20.160 22.370 39.040 32.830 3.040 26.400

Ϭ2g, genotypic variance; Ϭ2p, phenotypic variance; H2, broad sense heritability; GCV, genotypic coefficient of variation; PCV, phenotypic coefficient of variation; EGA, expected genetic 
advance; GAM, genetic advance as percentage of the mean; GA_70, GA_80, GA_85, and GA_95, green area at 70, 80, 85, and 95 DAP; GGA_70, GGA_80, GGA_85, and 
GGA_95, greener area at 70, 80, 85, and 95 DAP; Hue_70, Hue_80, Hue_85, and Hue_95, hue angle at 70, 80, 85, and 95 DAP respectively; CSI_70, CSI_80, CSI_85, and CSI_95, crop 
senescence index at 70, 80, 85, and 95 DAP. PW/PLT stands for pod weight per plant, ELS_AUDPC and LLS_AUDPC stands for area under disease progress curve for early and late leaf 
spot, respectively, and Pods/plant stand for number of pods per plant.

GAA at 95 DAP (GGA_95), while PCV values ranged from 13% for 
Hue_70 to 42.7% for GGA_95. Estimated broad sense heritability 
ranged from 53.5% for Pods/PLT to 93% for GA at 85 DAP (GA_85). 
EGA values were in the range of 0.20 for GGA_70 to 37.1 for LLS_
AUDPC. GAM values ranged from 21.5 for Hue_70 to 78.4 for 
GGA_95. Results for the early duration population were similar with 
the medium duration population. For example, Ϭ2g ranged from 
0.004 for GGA_70 to 299.5 for LLS_AUDPC and Ϭ2p from 0.006 for 
GGA_70 to 353.2 for LLS_AUDPC (Table 5). GCV values started 
from 9.2% for ELS_AUDPC to 38% for GGA_95 while PCV values 
were in the range of 11.1 to 45.3% for PW/PLT. Broad sense 
heritability values ranged from 29.1% for the CSI at 95 DAP (CSI_95) 
to 84.8% for LLS_AUDPC. Values for EGA were in the range of 0.1 
for GGA_70 to 32.8 for LLS_AUDPC. GAM values ranged from 15.4 
for CSI at 95 DAP (CSI_95) to 66.3 for GGA_95.

Association between studied traits

The Pearson correlation matrix was employed to assess the 
relationship between the RGB-image method and conventionally 
measured traits for both, the training and validation populations. 
There were significant correlations (p < 0.05) among the parameters 
studied. The analysis showed a negative linear association between 
the RGB-image method traits (GA_85, GGA_85 and Hue_85) and 
the LSD scores (ELS_AUDPC and LLS_AUDPC) for both 
populations (Tables 6, 7), i.e., a smaller number of green pixels on 

the image corresponded to more diseased plots. Not surprising, 
CSI_85 exhibited a significant positive association with the ELS_
AUDPC and LLS_AUDPC also for both populations, i.e., more 
senescence for more diseased plots. For the medium duration 
population, significant correlations were observed for GA_85 and 
ELS_AUDPC (r = −0.72, p < 0.001), GA_85 and LLS_AUDPC 
(r = −0.7, p < 0.001; Table  6). GA_85 and Pods/plant (r = 0.52, 
p < 0.001), and GA_85 and PW/PLT (r = 0.62, p < 0.001), GGA_85 
also showed significant associations with ELS_AUDPC (r = −0.74, 
p < 0.001), LLS_AUDPC (r = −0.68, p < 0.001), Pods/plant (r = 0.56, 
p < 0.001), and PW/PLT (r = 0.66, p < 0.001). For the early duration 
population, significant correlations were observed between GA_85 
with LLS_AUDPC (r = −0.66, p < 0.001) ELS_AUDPC (r = −0.45, 
p < 0.001), and PW/PLT (r = 0.23, p < 0.01; Table 7). GGA_95 also 
exhibited significant associations with ELS_AUDPC (r = −0.49, 
p < 0.001), LLS_AUDPC (r = −0.69, p < 0.001), and PW/PLT 
(r = 0.25, p < 0.01). RGB-image methodRGB-image method.

Principal component analysis

The Principal component analysis (PCA) was used to identify 
the most important traits in this study. For the training population, 
Principal components one (PC1) and two (PC2) were those 
considered with the greatest contribution to the observed variability 
among the genotypes based on their eigenvalues (Table 8). These 
two principal components cumulatively contributed to 76.8% of the 
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TABLE 6 Correlations among RGB-image and conventionally measured traits for the medium duration population at 85 D.A.P.

ELS_85 LLS_85 ELS_AUDPC LLS_AUDPC PW/PLT (g) Pods/plant

GA_85 −0.74*** −0.5*** −0.72*** −0.7*** 0.62*** 0.52***

GGA_85 −0.75*** −0.48*** −0.74*** −0.68*** 0.66*** 0.56***

Hue_85 −0.7*** −0.43** −0.67*** −0.63*** 0.63*** 0.51***

CSI_85 0.42** 0.19 0.47*** 0.25* −0.49*** −0.37**

N = 60, PW/PLT stands for pod weight per plant; ELS_AUDPC and LLS_AUDPC stands for area under disease progress curve for early and late leaf spot, respectively; CSI stands for crop 
stress index; GA and GGA stand for green area and greener area of vegetation, respectively; Pods/plant represents number of pods per plant; and Hue angle is the angle (°) of the color in 
a 360°circle from red back to red. *p < 0.05, **p < 0.01 and ***p < 0.001.

TABLE 7 Correlations among RGB-image and manually measured traits for early duration population at 85 D.A.P.

ELS_85 Pods/PLT PW/PLT ELS_AUDPC LLS_AUDPC LLS_85

CSI_85 0.4*** −0.16* −0.17* 0.34*** 0.35*** 0.36***

GA_85 −0.74*** 0.17* 0.23** −0.45*** −0.66*** −0.56***

GGA_85 −0.75*** 0.19** 0.25** −0.49*** −0.69*** −0.58***

Hue_85 −0.69*** 0.16* 0.21** −0.4*** −0.62*** −0.5***

N = 192, PW/PLT stands for pod weight per plant; ELS_AUDPC and LLS_AUDPC stands for area under disease progress curve for early and late leaf spot, respectively; CSI stands for 
crop stress index; GA and GGA stand for green area and greener area of vegetation, respectively; Pods/plant represents number of pods per plant; and Hue angle is the angle (°) of the 
color in a 360°circle from red back to red. *p < 0.05, **p < 0.01 and ***p < 0.001.

TABLE 8 Loadings of the traits measured at 95 days from planting (RGB-image method and disease traits), and at the physiological maturity (pod 
yield per plant and the number of pods per plant) onto 8 principal components for medium duration and early duration populations.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Medium duration population

CSI_95 0.222 0.255 0.864 0.228 0.232 −0.001 −0.096 0.152

GA_95 −0.408 −0.188 0.273 −0.226 0.071 0.091 −0.438 −0.684

GGA_95 −0.418 −0.198 0.067 −0.286 0.006 0.081 −0.431 0.713

Hue_95 −0.400 −0.179 0.284 −0.316 0.138 0.042 0.778 0.026

ELS_AUDPC 0.351 0.115 0.219 −0.608 −0.668 −0.001 −0.001 −0.022

LLS_AUDPC 0.354 0.19 −0.183 −0.553 0.662 0.238 −0.062 −0.014

Pods/PLT −0.316 0.627 −0.076 0.106 −0.181 0.674 0.048 −0.009

PW/P −0.317 0.621 −0.077 −0.169 0.071 −0.687 −0.035 −0.018

Eigenvalues 5.213 0.933 0.857 0.508 0.264 0.202 0.016 0.006

Proportion 0.652 0.117 0.107 0.063 0.033 0.025 0.002 0.001

Cumulative Proportion 0.652 0.768 0.875 0.939 0.972 0.997 0.999 1

Early duration population

CSI_95 0.172 0.095 0.875 −0.397 −0.148 0.027 −0.104 0.074

GA_95 −0.469 0.172 0.155 0.083 0.216 0.014 −0.428 −0.7

GGA_95 −0.475 0.157 0.059 0.116 0.232 −0.021 −0.418 0.71

Hue_95 −0.452 0.184 0.231 0.047 0.278 −0.008 0.793 0.006

ELS_AUDPC 0.295 −0.051 0.359 0.88 0.084 0.007 −0.007 0.004

LLS_AUDPC 0.404 −0.033 −0.029 −0.211 0.886 0.05 −0.052 −0.004

Pods/PLT −0.166 −0.683 0.126 −0.038 0.084 −0.693 −0.007 −0.017

PW/P −0.208 −0.657 0.089 −0.013 0.03 0.718 0.006 0.016

Eigenvalues 4.053 1.68 0.982 0.663 0.39 0.176 0.05 0.006

Proportion 0.507 0.21 0.123 0.083 0.049 0.022 0.006 0.001

Cumulative proportion 0.507 0.717 0.839 0.922 0.971 0.993 0.999 1

PC1 to PC8, principal components 1 to 8; CSI_95, crop senescence index; GA_95 at 95 days after planting, green area at 95 days after planting; GGA_95, greener area at 95 days after 
planting; Hue_95, ratio of green and greener area at 95 days after planting; ELS_AUPDPC and LLS_AUDPC, area under disease progress curve for ELS and LLS respectively, Pods/
PLT, number of pods per plant and PW/P, pod weight per plant. The bold values represent the values for traits with the highest contributions to the variability in the various principal 
components (ie PC 1 to PC 8). Moreover, principal components (PCs) with bold eigenvalues are those with significant contributions to the total variability existing among the genotypes.
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total variation. PC1 accounted for 65.2% of the variation with the 
traits GA_95 (−0.408), GGA_95 (−0.418), Hue_95 (−0.4), ELS_
AUDPC (0.351) and LLS_AUDPC (0.354) having the highest 
contributions to the variation. PC2 contributed to 11.7% of the 
variation and had traits Pods/PLT (0.627) and PW/p (0.621) as the 
most important traits influencing this principal component. For the 
validation population, the first three principal components (PC1, 
PC2, and PC3) were those regarded as having a significant 
contribution to the total observed variation existing among the 
genotypes judging by their eigenvalues, and they accounted for 
87.5% of the total variation (Table  8). PC1 contained GA_95 
(−0.469), GGA_95 (−0.475), Hue_95 (−0.452), and LLS_AUDPC 
(0.404) as traits accounting for most of the variation. PC2 included 
Pods/PLT (−0.683) and PW/PLT (−0.657), and PC3 contained 
CSI_95 (0.864) as the only trait accounting for most of the variation.

Discussion

The challenge to feed the growing human population in the face 
of numerous constrains for the agricultural production including 
biotic and abiotic stresses is an uphill task. Efficient phenotyping can 
help breeding programs develop more rapidly productive and 
resistant varieties of crops. In this study, 60 medium duration and 
192 short duration accessions from the AGGC were used to develop 
improved phenotyping approaches for the leaf spot resistance and 
yield in groundnut. Originated under diverse agroecological 
conditions, these accessions represent an important genetic resource 
for biotic and abiotic stress resistance, which is the key to genetic 
gain and crop improvement (Zanklan, 2003). Indeed, in this study, a 
great diversity of ELS and LLS symptoms was observed among the 
genotypes that could be attributed to their genetic ability to respond 
differently to infection by the casual pathogens (White et al., 2012). 
For example, genotypes 73–33, Zam-MGV-8:201909, 
Mwi-ICGV-SM 01711:201909, Zam-ICGV-SM-07599:201909, 
Gha-GAF 1723:201909, Oug-ICGV 90099:201909, Mal-ICGV 
02271:201909, Sen-SERENUT 10R:201909, and GhaII-
AZIVIVI:201909 were moderately tolerant to the leaf spot diseases. 
Genotypes Gha-ICGV 07390:201909, Gha-GAF 1723:201909, 
Zam-ICGV-SM-07599:201909 and Oug-ICGV 15021:201909 
exhibited high values for PW/PLT and Pods/PLT, and three out of 
four genotypes with good yield traits were also resistant to the 
LSD. Further assessment of these genotypes for use in crosses or 
release will go a long way to boost groundnut production in 
Northern Ghana. Fungicide application, which is a commonly used 
method in developed countries, is not applicable in Ghana because 
the farmers cannot afford their high cost (Denwar et  al., 2021). 
Growing resistant varieties is the only option in controlling these 
diseases in developing countries. Furthermore, water pollution is 
minimized when farmers use less chemicals, in particular in fields 
neighboring water bodies where chemicals can be washed in by 
heavy rains following immediately after their application.

The estimated phenotypic coefficients of variation were higher 
compared to the genotypic coefficients of variation for the studied 

parameters. This observation was not different from the findings of 
Oteng-Frimpong et al. (2017). However, the differences between 
GCV% and the corresponding PCV% were narrow, suggesting lesser 
influence of the environmental factors in the expression of these 
parameters implying that variability was largely due to genetic effects 
(Tsegaye et al., 2007; Okwuagwu et al., 2008; Singh et al., 2013). The 
estimation of heritability gives information about the portion of 
variation which can be transferred from parent to the subsequent 
generation (Visscher et al., 2008). Effective exploitation of genotypic 
variability through selection is based on individual traits’ heritability 
(Bilgin et  al., 2010). The high broad sense heritability of the 
RGB-image method indices in this study is an indication that these 
indices will be best to select for, as the environment has a minimal 
influence on their expression (Oteng-Frimpong et al., 2017). It is also 
worth mentioning that medium heritability for Pods/PLT and high 
heritability for PW/PLT were observed for the training population, 
suggesting high possibility of improving these traits. This observation 
was not surprising to us given the diverse genetic background of the 
genotypes. Information about heritability alone is not enough to 
make conclusion whether selection will lead to improvement since 
it does not give enough information as to the rate of genetic gain that 
can be obtained through selection (Singh et al., 2013). The high 
heritability and high genetic advance observed for some of the 
studied traits indicates additive gene action suggesting phenotypic 
selection for such traits is highly possible. For example, Hue_95 and 
CSI_95 with both high heritability and expected genetic advance are 
best selection targets for improvement of leaf spot resistance in 
breeding programs. High genetic advance as percentage of the mean 
from selecting the best 5% of the genotypes coupled with high broad 
sense heritability recorded for most of the RGB-image method traits 
in this study indicates additive gene action (Govindaraj et al., 2011; 
Kant et al., 2012).

Correlation analysis gives important information about the 
association between traits (Owusu et  al., 2018; Ajayi and 
Gbadamosi, 2020; Mofokeng et  al., 2020). Pearson correlation 
matrix was employed to assess the relationship between the 
RGB-image method and conventionally measured traits for both 
training and validation populations. There were significant 
correlations (p < 0.05) among the studied parameters indicating that 
RGB-image method has the potential to replace or complement the 
conventional methods of data collection due to the easy application 
and less expensive nature of the technology. Findings from this 
research suggest potential for automatization of disease severity and 
yield components assessment that will enable faster data collection 
at multiple/relevant time points throughout the growing season. 
The positive correlation between GA, GGA and Hue and yield 
components (PW/PLT and Pods/PLT) indicates that improving 
GA, GGA and Hue will directly lead to improvement in yield 
components. The strong association between GA and LLS_AUDPC, 
GGA and LLS_AUDPC and Hue and LLS_AUDPC provides an 
opportunity for the development of LLS resistant cultivars through 
indirect selection. Because of polygenic nature of ELS and LLS 
(Younis et al., 2020), the direct/traditional selection is hindered by 
the environmental effect. When selecting based on GA, GGA, and 
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Hue, however, our data indicate less environmental effect and 
higher heritability than for visual selection.

The PCA was used to determine genetic variability among the 
groundnut genotypes for both training and validation populations. 
PC1 contributed to 50.7% of the total variation for the training 
population and 65.2% for the validation population, and contrasted 
GA, GGA and Hue with LLS_AUDPC, ELS_AUDPC and CSI. This 
observation showed that genotypes that scored lower values for GA, 
GGA and Hue scored high values for LLS_AUDPC, ELS_AUDPC 
and CSI, and such genotypes should be discarded during selection. 
PC2, which accounted for 21% of the total variation for the training 
population and 11.7% for the validation population, was mainly 
influenced by yield components suggesting that genotypes with the 
highest contribution to PC2 could be targeted for yield improvement.

Significant correlations (p ≤ 0.001) were observed between 
predicted and the observed disease scores for all six prediction 
models. GA, GGA, and Hue angle, representing the number of 
green RGB-image method.

Conclusion

This study showed the potential of using RGB-image method as a 
high-throughput tool for phenotyping leaf spot diseases and yield 
components estimation in groundnut. Fast progress in groundnut 
improvement could be achieved when RGB-image method traits are 
use as surrogate traits for selecting leaf spots resistance in groundnut 
breeding programs in Ghana. GA, GGA, Hue, and CSI can successfully 
replace or, at least, complement the conventional methods for leaf spot 
diseases phenotyping in groundnut. This study reveals that 
photogrammetric techniques were more effective at the later rather 
than early stages of vegetation and when disease symptoms are ample.

Genotypes 73–33, Gha-GAF 1723:201909, Zam-ICGV- 
SM-07599:201909, and Oug-ICGV 90099:201909 were identified 
as promising sources for leaf spot diseases resistance and high yield 
components for the groundnut breeding programs in Ghana.
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