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Surface-enhanced Raman spectroscopy (SERS) has attracted much attention

because of its high sensitivity, high speed, and simple sample processing,

and has great potential for application in the field of pesticide residue

detection. However, SERS is susceptible to the influence of a complex

detection environment in the detection of pesticide residues on the surface

of fruits, facing problems such as interference from the spectral peaks

of detected impurities, unclear dimension of effective correlation data,

and poor linearity of sensing signals. In this work, the enhanced raw

data of the pesticide thiram residues on the fruit surface using gold

nanoparticle (Au-NPs) solution are formed into the raw data set of Raman

signal in the IoT environment of Raman spectroscopy principal component

detection. Considering the non-linear characteristics of sensing data, this

work adopts kernel principal component analysis (KPCA) including radial

basis function (RBF) to extract the main features for the spectra in

the ranges of 653∼683 cm−1, 705∼728 cm−1, and 847∼872 cm−1, and

discusses the effects of different kernel function widths (σ) to construct

a qualitative analysis of pesticide residues based on SERS spectral data

model, so that the SERS spectral data produce more useful dimensionality

reduction with minimal loss, higher mean squared error for cross-

validation in non-linear scenarios, and effectively weaken the interference

features of detecting impurity spectral peaks, unclear dimensionality of
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effective correlation data, and poor linearity of sensing signals, reflecting

better extraction effects than conventional principal component analysis

(PCA) models.

KEYWORDS

surface-enhanced Raman spectroscopy, kernel principal component analysis, fruit
pesticide residues, radial basis function, non-linear signal processing

Introduction

As a fungicide, thiram can effectively control apple scab
and tomato rot, and is widely used in the cultivation of
fruits and vegetables (Wang et al., 2019; Hussain et al., 2020;
Gedam et al., 2021; Mbaye et al., 2022). Although the toxicity
of formazan is relatively low, studies have shown that there
are multiple potential harms from exposure to formazan.
Currently, methods for the detection of agrochemical pollutants
in fruits and vegetables include gas chromatography (Girard
et al., 2021), high-performance liquid chromatography (Wei
et al., 2021), gas chromatography-mass spectrometry (Ghatak
et al., 2018), and liquid chromatography-mass spectrometry
(Ye et al., 2020). Although these analytical techniques have
good sensitivity for the quantitative detection of chemical
pollutants, they still have shortcomings such as the inability to
real-time monitoring, complicated operations, and cumbersome
sampling process (Bereli et al., 2021). Therefore, it is necessary
to propose simple and reliable methods to rapidly assess and
detect pesticide residues on fruit surfaces. SERS is often used
as a promising spectroscopic tool due to its advantages of high
sensitivity, good specificity, simple preprocessing, and rapid
spectral measurement (de Goes et al., 2019). At present, SERS
has a wide range of analysis and applications and is often used
to identify and detect chemical and biological species, as well
as molecular imaging and monitoring at the cellular, tissue, and
animal levels. It also has broad application prospects in the field
of food safety (Abasi et al., 2020). Generally, SERS technology
is a combination of Raman spectroscopy and nanoscience
(Yoo et al., 2021), in which the molecules to be detected are
adsorbed on or near the rough surface of transition metals,
thereby increasing the Raman signal intensity in the local optical
nanostructure region by several orders of magnitude. The effect
is caused by the surface plasmon resonance of nanoparticles
(Huang et al., 2020; Lin et al., 2020). As one of the most
commonly used metal systems, gold nanoparticles (Au-NPs) are
mainly used for SERS sensing (Zhang et al., 2017; Dowgiallo and
Guenther, 2019; Szekeres and Kneipp, 2019).

Surface-enhanced Raman spectroscopy technology has great
potential in detecting pesticide residues, but it still faces the
following difficulties. First, good detection conditions are the
basis for sensitive detection of SERS. At present, researchers

have prepared various SERS substrates, but in the SERS
detection of pesticide residues, they still lack high sensitivity,
good repeatability, simple preparation, and low cost, which can
not only enrich pesticide molecules, but also effectively enhance
the suitability of the substrate (Kuo and Chang, 2014; Shen
et al., 2022). In addition, there is still a lack of systematic
research on the influence mechanism of different detection
environments on pesticide SERS detection. Second, according to
the electromagnetic enhancement mechanism, only molecules
adsorbed or close to the surface of the substrate can undergo
a plasmon resonance effect under light excitation, producing
the SERS enhancement effect. And some pesticide molecules
of weak affinity class can only produce a weak Raman signal
or even no Raman signal (Krajczewski et al., 2020). In general,
the SERS detection of pesticide residues on fruit surfaces is
in the development stage. The ultra-sensitive detection based
on SERS is prone to interference, so it is necessary to extract
the characteristic information. The model of signal processing
and signal recognition is still being explored, and a unified
standard has not been formed. There are still many problems
worth exploring.

In this work, SERS was used for the signal detection of
thiram pesticide on the fruit surface, and the detection limits
were determined by a combination of KPCA and partial least
squares (PLS) chemometric methods after pre-processing with
averaging, smoothing and differentiation, and finally, a model
for the detection of thiram pesticide residues on the fruit surface
was established to achieve qualitative and quantitative detection
of thiram pesticide residues on the fruit surface, providing an
experimental basis for the application of SERS to the detection
of pesticide residues in fruits.

Related works

Surface-enhanced Raman spectroscopy refers to the
phenomenon that the molecules to be tested will be adsorbed on
the surface of some solid metals (gold, silver, copper, etc.) or soil
particles under the irradiation of incident light, resulting in the
enhancement of their local electric field (Kim et al., 2019). The
intensity of the Raman spectrum obtained at this time is 104-
106 times higher than that of the ordinary Raman spectrum,
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which overcomes the defects of weak intensity and low
sensitivity of the ordinary Raman spectrum (Zhan et al., 2019).
SERS technology has also made great progress in detecting
pesticide residues on the surface of fruits. Nanomaterials widely
used in SERS detection of pesticide residues include noble
metal sol substrates, mainly including gold, silver, and other
nanoparticles, which can significantly enhance the SERS signal
intensity of the analyte adsorbed on its surface (Xu et al.,
2017; Ong et al., 2020). At present, the commonly used metal
sol preparation methods include the electrochemical redox
method, chemical deposition method, seed method, and so on,
or else adding inducers such as NaC, NaNO3, and cysteamine
hydrochloride to the metal sol can enrich the nanoparticles
and generate a large number of hot spots to improve the
enhancement effect (Krajczewski et al., 2020). Stamplecoskie
et al. (2011) prepared silver nanoparticles (Ag NPs) by seed
method and controlled their sizes, and detected 10−3 mol·L−1

rhodamine 6G (R6G), the results showed that the optimal size
of Ag NPs was 50∼60 nm, the SERS intensity on the surface of
R6G is the highest, and this method is expected to be extended
to other adsorbents. Xu et al. (2017) developed a surfactant-free
method to prepare popcorn-like Au-NPs for the detection of
Chrysanthemum cicada on the peel surface. At present, SERS
has been widely used in chemical science, biological science,
safety, quality inspection, etc.

Generally, the dimension of independent variables is
reduced in advance, and it is hoped that fewer features are used
to express the original data, to make the constructed model
simpler and the results more accurate and precise, and PCA is
a widely used method. The rapid screening and identification
of contaminants in food contact materials is another important
approach with the help of data mining technology, among
which, PCA has been widely adopted as a favorable tool for data
mining (Liang et al., 2021). PCA can perform dimensionality
reduction on big data so that useful information in the data can
be quickly extracted and classified. At present, SERS combined
with PCA has been used for the rapid detection of multiple
targets such as multiple disease markers (Nargis et al., 2019),
and good results have been achieved. Some scholars have used
this method in combination with vector machines to propose a
new method to solve the problem that the original model has a
large amount of computation and a slow training speed when
the data is high-dimensional. It is empirically found that the
results of the new method are more accurate than methods such
as neural networks.

Shin et al. (2018) demonstrated the correlation between
non-small cell lung cancer (NSCLC) cell-derived exons and
potential protein markers in cancer diagnosis through Raman
scattering spectroscopy and PCA. Ai et al. (2018) analyzed the
SERS spectrum of four different food colorants using modified
PCA and identified characteristic bands. Uddin et al. (2021)
proposed the use of variance accumulation for selecting top
features from PCA data, from segmentally folded PCA (Seg Fol
PCA) and spectrally segmented folded PCA (Seg Fol PCA) FE

methods Intrinsic features are selected in the transformation
space of, but the non-linear relationship between transformation
features generated by the PCA-based finite element method
cannot be exploited. KPCA operates on the covariance of non-
linear transformations of the data, allowing a more flexible
functional basis to be constructed. The basic idea of KPCA is
to map the linearly no separable data in the low dimensional
space to the higher dimensional space through some mapping
function through the kernel function so that it can be linearly
separable in the high dimensional space, and then use the
relevant algorithms applicable to the linearly separable data for
subsequent processing. When linear mapping may not get the
desired results, KPCA has more advantages than PCA. Xin et al.
(2020) used a kernel function to non-linearly map the calibrated
samples to a high-dimensional space, evaluated the Raman
spectral reconstruction accuracy based on the relative root mean
square error, and reduced bad data and non-performing samples
in the sample. Sun et al. (2019) proposed a model combining
KPCA and support vector machine, which effectively eliminated
the influence of noise in the spectrum. Wang et al. (2021) used
the synthetic minority oversampling technique (SMOTE) to
predict protein-protein interaction sites and applied KPCA to
remove redundant features.

Test principle and instrument
reagents

Mathematical expression of Raman
signal

Many fields of physics, including plasma spectroscopy,
atmospheric spectroscopy, nuclear physics, and nuclear
magnetic resonance, can emit information-rich spectral lines
whose contours approximate the Voigt function. The Voigt
function is the result of the convolution of the Gaussian
function and the Lorentzian function, and its calculation
process is extremely complicated. Studies have shown that
the Voigt peak function is divided into a Gaussian peak and a
superposition of a Lorentz peak with the same center position
and half-width, and its approximate form can be expressed as
(Ejiri et al., 2021):

V(ν) = θα exp
[
−

4 ln 2(ν− ω)2

γ2

]
+ (1− θ)α

γ2

(ν− ω)2 + γ2

In this equation, ν is the wave number, θ is the Gauss-
Lorentz coefficient, α is the peak height, ω is the center
position of the peak, and γ is the half-width of the peak. The
spectral signal curve is formed by the superposition of dozens
or hundreds of Voigt peaks. Tracing back to the source, the
mathematical analysis of the vibrational spectral signal is to
use the Voigt function to mathematically describe the spectral
curve. The Voigt peak function is divided into a superposition
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FIGURE 1

The IoT environment for the detection of principal components of pesticide residues on the surface of fruits by Raman spectroscopy.

of a Gaussian peak and a Lorentzian peak with the same
center position and half-width. Therefore, the spectral peaks
of the Raman and other vibrational spectra have the contour
of the Lorentzian function, and its form can be expressed as:

L(v) =
1
π

γ2
L

(v− w)2 + γ2
L

In this equation, ν is the wave number, γL is the half-
width of the Lorentz peak, and ω is the center position
of the peak. However, the spectrum is often affected by a
variety of factors, such as altitude, air pressure, or the power

distribution of the laser, and the Lorentz peak profile changes
accordingly. Mathematically, the effects of these factors are
generally approximated by the convolution of a Gaussian
function. The following is the representation of the Gaussian
function:

G(v) =
1
γG

(
ln 2
π

)1/2
exp

[
−

(
v− w
γG

)2
ln 2

]

Where γG is the half-width of the Gaussian peak.
The research shows that the Raman spectral signal obtained

by the instrument is not only the real Raman spectrum but
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the result of the co-convolution of the real Raman spectrum
showing the Lorentzian line shape and the instrument function
showing the Gaussian line shape. The half-width of the latter
depends on the resolution of the Raman spectrometer, and the
half-width of the actual Raman spectral peak is much larger
than the resolution of the Raman spectrometer. Therefore, if
equation of G(v) is used to fit the Voigt line shape, a higher
fitting accuracy can be obtained, which is suitable for various
quantitative analysis situations.

Raman spectrum testing instrument

The IoT environment for the detection of principal
components of pesticide residues on fruit surfaces is shown
in Figure 1. The Raman spectrometer used in the experiment
is LabRAM-HR800 from HORIBA Jobin Yvon, France, and
the specification model is Horiba Jobin-Yvon LabRAM-HR800.
HR800 laser confocal Raman spectrometer has the function
of in situ spectral research, overcomes the limitation that the
original Raman spectrometer can only perform offline structural
analysis of materials in an indoor open environment, and
realizes non-destructive and non-invasive in situ measurement,
which provides a reliable experimental technique for real-time
monitoring of physical and chemical changes of substances
under specific temperature, pressure, and atmosphere (Tang
et al., 2015). The Raman spectrometer has a variety of
laser wavelengths to choose from and can switch gratings
automatically. The detection range is between 550 and
1550 cm−1 and the 633 nm laser used in this experiment is
used as the Raman light source, dispersion system, and data
processing system, which can meet the needs of data acquisition
in this experiment.

The laser reaches the surface of the sample through
a series of condensing lenses, mirrors, etc. In the focused
state, the radiation power of the sample per unit area
reaches the maximum. The laser-focused sample produces
high energy and heat. Some biological samples or substances
with lower melting points often need to reduce the power
during testing. The six filters on the power attenuation
wheel can achieve 1/2, 1/4, 1/10, 1/100, 1/1000, and 1/10000
six-gear power reduction. The dispersive system separates
the Raman scattered light in space by wavelength, usually
using a grating. An important parameter of the grating
is the spectral resolution (R), which is a measure of
the ability to separate two adjacent spectral lines at a
specific wavelength (λ). That is, R = λ/M λ. The grating
focal length (F) and the grating line density (N) are
important factors to determine the spectral resolution (R),
R∝F·N. The larger the F and N, the higher the spectral
resolution. In addition, the spectral resolution is also related
to the wavelength (λ). The larger the λ, the higher the
spectral resolution. The powerful data analysis function is

an indispensable part of an advanced Raman spectrometer.
The Labspec 5 equipped with it has conventional data
acquisition and analysis functions, and its imaging technology
can generate images for different features of the spectrum
(peak position, peak intensity), it also supports VB scripting
language, and can also be used for Active X control in
third-party applications, Labspec 5 software plug-ins can
enter the spectral library and search, compatible with many
commercial databases.

Substrate preparation and data
collection

A 1.0 × 10−4 g·ml−1 solution sample of thiram solution
was prepared in the laboratory, and the scanning electron
microscope diagram of Au-NPs is shown in Figure 2A. It can
be observed that the appearance of Au-NPs is spherical, and
the particle diameter distribution diagram given in Figure 2B
shows that its shape is relatively uniform. The specific operation
was to dissolve 0.01 g of thiram sample in 100 ml of acetone, as
shown in Figure 2C. Raman enhanced substrate is an important
part of SERS technology. Au-NPs have stable properties and
can generate local surface plasmon resonance under visible
light irradiation. They are widely used in the preparation of
reinforced substrates. The preparation method of Au-NPs is
simple, the property is stable, and the reproducibility is high. It
is an excellent material to strengthen the substrate. Therefore,
70 nm Au-NPs was prepared in the laboratory as the substrate
for SERS detection (Wang et al., 2021). The test samples
used in the experiment were the red Fuji apples purchased
in the campus supermarket with basically the same size and
weight, and Dangshan pears with almost the same size and
weight, simulating the pesticide spraying process in the natural
environment, that is, spraying on the surfaces of the two
samples, respectively. The concentration of 1.0 × 10−4 g·ml−1

thiram, and then wait for 10-15 min after the fruit sample
surface is automatically air-dried, take the sample epidermis,
and then drop 5 microliters of Au-NPs solution on the sample
epidermis, as shown in Figure 2D.

Limit of detection (LOD) refers to the corresponding
amount of three times the instrument background signal
generated by the matrix blank, or the average value of the
background signal generated by the matrix blank plus three
times the mean standard deviation. In the qualitative analysis
of trace amounts, the LOD is used as the evaluation index
to measure the enhancement effect of the substrate. For
quantitative analysis, it is necessary to focus on uniformity
and reproducibility. The substrate sensitivity and uniformity
and repeatability have not yet reached a perfect balance. Sol-
based substrates can achieve better detection limits and better
SERS performance.
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FIGURE 2

(A) Scanning electron microscope diagram of Au-NPs. (B) Particle diameter distribution diagram. (C) Preparation of thiram solution.
(D) Dropping Au-NPs solution on the surface of the sample.

Rhodamine 6G is a kind of dye that characterizes SERS. It
has strong fluorescence and has a good application effect in SERS
ultra-sensitive single-molecule detection. Rhodamine groups
with blocked spironolactone units can produce cation-excited
fluorescence and SERS signals. Their excellent photophysical
properties are widely used in fluorescent probes and SERS.
To explore the uniformity and repeatability of Raman
enhancement of the Au-NPs substrate used in this work,
the probe molecule R6G was selected for testing, and the
probe molecules located at 1510 cm−1 (attributed to N-H
in-plane bending) and 1362 cm−1 (attributed to C-H in-
plane bending) were tested. Statistical calculation of the SERS
peak intensity values (as shown in Figure 3) at the two
peaks shows that the relative standard deviation (RSD) of
the two peaks is only 1.36258 and 1.63378%, indicating that

the prepared Au-NPs substrates have good homogeneity and
reproducibility.

During the experiment, thiram solution was sprayed on
the sample for the first time and then detected by the Raman
spectrum. The fluorescence signal and noise signal in the Raman
spectrum experimental data obtained are very strong so that
the characteristic peak signal of thiram solution is completely
covered by interference, and the composition analysis of the
data in the subsequent work cannot be completed. The edible
wax on the skin of the fruit can not only keep it fresh but also
prevent microorganisms from invading the fruit. There may
be residual wax on the cleaned fruit surface, which causes a
strong fluorescence signal to interfere with the Raman signal.
Therefore, the experimental plan was improved in this work.
The Au-NPs suspension was dropped on the tape with a pipette,
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FIGURE 3

SERS spectral intensity of R6G (10−4 mol·L−1) measured at 20 positions on Au-NPs substrate.
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FIGURE 4

Schematic diagram of the plasma SERS model with enhancement effect with reaction time for the solution of thiram and Au-NPs.

and a drop was dropped every 8 cm or so, and it was left to
stand for several hours until it was completely dry. Take different
varieties of apples and pears and scrub the surface. And after
drying, respectively, apply thiram solution on the surface of the
fruit to air dry naturally. Adhere the tape coated with Au-NPs
to the fruit containing thiram solution on the surface, peel it
off after a few minutes, and place it on the Raman instrument
detection table for detection (Liu et al., 2021). The transfer of
pesticides to the tape can reduce the fluorescence signal and

ensure the full reaction of pesticides with the substrate. Using
a 633 nm light source and a 50× microscope, the LabSpec6
software collects data on different points on the surface of
different varieties of apple and pear samples to obtain the raw
data of the Raman spectrum on the surface of the sample. The
obtained Raman spectrum data can be observed, as shown in
Figure 4. The characteristic peak signal of the thiram solution
indicates that the SERS can be used to obtain the original data of
the sample surface. The original data includes the Raman spectra
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FIGURE 5

Flow chart of quantitative KPCA for SERS.

of Au-NPs on the tape, the Raman spectra of Au-NPs mixed with
thiram on the fruit surface, the Raman spectra of thiram on the
fruit surface, and the Raman spectra of thiram solutions with
different concentrations.

Signal processing and non-linear
feature extraction

Raman signal preprocessing

Since Raman scattering itself is relatively weak, the Raman
spectrum is often affected by sample fluorescence, substrate
fluorescence, natural light, and fluorescent light, resulting
in high background and cosmic rays. When detecting the
SERS signal of thiram, due to high-frequency random noise,
fluorescence background, and sample unevenness, certain
interference such as light scattering noise and baseline drift
will be generated. The improvement of equipment often
cannot eliminate these interference factors, and it is easy
to affect the accuracy of subsequent prediction models. To
obtain better experimental results, reduce noise, and improve
the signal-to-noise ratio, the collected Raman signals must
be analyzed. Perform certain preprocessing. Commonly
used preprocessing methods include Smoothing, Baseline
Correction, Derivative, Multiplicative Scatter Correction
(MSC), and Standard Normal. Variate Correction (SNV),
Wavelet Transform (WT), Direct Orthogonal Signal Correction
(DOSC), and Empirical Mode Decomposition (EMD), are
shown in Figure 5.

In this work, spectral averaging is used to average the
SERS of thiram pesticides. Since the subsequent first-order
differential and second-order differential processing will amplify

the influence of noise, smoothing is used to remove the
noise interference of the system and fluorescence. Improve
the signal-to-noise ratio; finally, the overlapping peaks in the
spectrum are separated by differential processing, and the first-
order differential and second-order differential can, respectively,
remove the drift that is independent of the same wavelength
and linearly related. PLS is a regression modeling method of
multiple dependent variables to multiple independent variables.
By calculating the maximum variance between the spectral data
and the target analyte, the relationship between the two is
analyzed. It is suitable for complex multi-component Spectral
analysis a widely used multivariate calibration method with
good selectivity and predictive accuracy. PLS can eliminate
the influence of data collinearity and effectively reduce the
dimension of spectral data. After spectral averaging, smoothing,
and differential processing, the implicit linear relationship
between variables can be effectively detected due to the
combination of appropriate chemometric methods, as shown
in Figure 6. Therefore, the KPCA method and PLS method
are used in this study to further construct the model to
determine its non-linear relationship. To achieve the best fitting
effect of the PLS model, the number of correction sets and
prediction sets is very important. The experiment adopts the
maximum-minimum strategy to establish a PLS model for
samples according to a certain proportion of correction set
and prediction set. First, calculate the average spectra of all
candidate samples, and find the samples with the minimum
and maximum distance from the average spectra to add to the
calibration set. Then calculate the spectral distance between the
remaining samples and each sample in the calibration set, find
the samples with the minimum and maximum spectral distance
from the average spectrum and add them to the calibration set,
and repeat the above steps until the number of calibration sets
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FIGURE 6

The spectrum after preprocessing the original Raman spectrum
by subtracting the baseline, etc.

reaches the set value, and the remaining samples are included in
the prediction set.

Non-linear kernel principal component
analysis method

Surface-enhanced Raman spectroscopy spectrum is
preprocessed to reduce noise interference and reduce or
eliminate fluorescence background. However, because the
SERS spectral data is up to thousands of dimensions and
contains a lot of redundant information, the computational
complexity of subsequent analysis increases, the accuracy rate
decreases, and the model robustness is poor. To optimize the
model and improve its prediction accuracy, the full spectrum
variable modeling is usually not used, but the characteristic
range spectrum is selected for analysis and processing, and
the variables with a high contribution rate are extracted for
modeling. Commonly used feature extraction methods include
non-negative factorization (NMF), discrete cosine transform
(DCT), PCA, etc. These methods obtain subject information in
the sense of mathematical transformation after transforming
the spectral signal.

Principal component analysis ignores the linear components
with small variance and preserves the larger variance terms
by processing the raw data. In this way, the dimension of
effective data representation is reduced, the difficulty of problem
processing is simplified, and the signal-to-noise ratio of data
information is improved, to improve the prediction accuracy
of the model. However, it usually requires the raw data to
be Gaussian scores to extract better features, which greatly
limits the practicality of this method. This is mainly because,
in essence, the traditional PCA is a linear mapping method
and does not do any non-linear processing, so it cannot detect
the non-linear structure between the data. Therefore, many

studies have extracted features between data by using non-
linear PCA. On the other hand, an important feature of high-
dimensional data is that the amount of data is huge, but the
useful information that can be obtained from it is very limited,
and there are different degrees of non-linear relationships. For
this, traditional linear principal components are not sufficient.

Kernel principal component analysis uses an appropriate
kernel function to project the original data space into a high-
dimensional feature space. Generally, KPCA uses a non-linear
kernel function to reconstruct a linear PCA, and the non-linear
expansion of PCA can improve the dimensionality reduction
quality of some non-linear data. KPCA maps the original data
space to high-dimensional feature space and then performs PCA
dimensionality reduction in the feature space.

Suppose the corresponding mapping is 8, which is defined
as 8 : Rd → F, x→ ξ = 8(x). The kernel function is to
implicitly realize the mapping from point x to F by mapping
8, so that the data in the generated features satisfies the
centralization condition, that is,

M∑
µ=1

8(xµ) = 0

The covariance matrix in the feature space is:

C =
1
M

M∑
µ=1

8(xµ)8(xµ)
T

The eigenvalues and eigenvectors can be obtained by
solving, and the test sample projection in the eigenvector space
vk is:

[νk ·8(x)] =
M∑
i=1

(αi)
k
[8(xi),8(x)]

Replacing the inner product with a kernel function, we have

[vk ·8(x)] =
M∑
i=1

(αi)
kK(xi, x)

When equation the above does not hold, it needs to be
adjusted

8(xµ)→ 8(xµ)−
1
M

M∑
v=1

8(xv)µ = 1, . . . ,M

Then the kernel matrix can be modified as

Kµν → Kµν −
1
M

( M∑
w=1

Kµw +

M∑
w=1

Kwv

)
+

1
M2

M∑
w,τ=1

Kwτ

The KPCA algorithm essentially extracts the non-linear
structure of the original data through the non-linear
transformation between the data space, feature space, and
category space, and combines multiple related indices into
several independent comprehensive indices, to reduce the
dimension of the data and solve the problem of PCA in the
processing of linearly inseparable data.
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TABLE 1 Predicted results of the model developed using
chemometric methods.

Data MLR PLSR KPCA + PLS

RMSECV/
(mg·L−1)

RMSECV/
(mg·L−1)

σ in
KPCA

RMSECV/
(mg·L−1)

Spectra of 0.4507 0.4178 1000 3.902

653∼683, 5000 0.0347

705∼728, 8000 0.0305

847∼872 cm−1 10000 0.1828

The kernel function K (kernel function) can directly obtain
the inner product of the low-dimensional data mapped to the
high-dimensional data, ignoring what the mapping function
is, that is K < x,y > = < 8(x), 8(y)>, where x and y are
low-dimensional input vectors, 8 is the mapping from low-
dimensional to high-dimensional, and <x, y> is the inner
product of x and y. Kernel functions provide a link from linear
to non-linear and any algorithm that can represent only the dot
product between two vectors. If we first map our input data
to a higher-dimensional space, the effect of operations in this
high-dimensional space will be non-linear in the original space.
Commonly used kernel functions are Linear Kernel (Linear
Kernel) k(x, y) = xTy + c, polynomial kernel(Polynomial Kernel)
k(x, y) = (axTy + c)d, Among them, the Radial Basis Function
(Radial Basis Function) k(x, y) = exp(-γ||x-y||2), Also called
Gaussian Kernel, because it can be one of the following kernel
functions:

k(x, y) = exp
(
−
||x-y||2

2σ2

)
The radial basis function refers to a real-valued function

whose value only depends on the distance of a specific point,
that is,

8(x, y) = 8
(
||x-y||

)
Any function 8 that satisfies the property is called a radial

vector function, Standard generally uses Euclidean distance,
although other distance functions are possible. Therefore,
the other two commonly used kernel functions, the power
exponential kernel and the Laplacian kernel, also belong to the
radial basis kernel. In this work, the SERS spectrum including
radial basis function (RBF) is used to extract the main features
of the spectrum in the range of 653∼683, 705∼728, and
847∼872 cm−1, and the influence of different kernel function
widths (σ) is discussed. Then, the support vector machine
regression (SVR) algorithm was used to establish a regression
model to predict the residues of thiram solution in the fruit
epidermis, and the mean square error of interactive verification
(RMSECV) was used to evaluate the performance of the model.
The results are shown in Table 1.

It can be seen that the linear models built by multiple linear
regression (MLR) and PLSR have higher RMSECV values, which
may lead to lower accuracy of the prediction results; when

σ is 1000, the prediction performance of the model built by
KPCA combined with PLS is the worst, while the prediction
performance improves when σ is 10000, but it is still weaker than
when σ is 5000 and 8000. In conclusion, the model constructed
by PCA combined with PLS with a σ of 8000 is the best.
Its RMSECV is 0.0268 mg·L−1, the error is small, and it can
accurately predict the residues of thiram solution.

The KPCA algorithm used is a qualitative and quantitative
analysis model of pesticide residues written based on the
measured SERS spectral data using Matlab software. The
conversion equation of peak and pesticide concentration,
through which qualitative and quantitative analysis of pesticide
residues of unknown concentration can be carried out, and
goodness of fit can be introduced to ensure that the error and
accuracy of the model are within the allowable range. The
goodness of fit refers to the fitting degree of the regression line
to the observed value. The statistic to measure the goodness of
fit is the determinate coefficient (also known as the determinate
coefficient) r2. The maximum value of r2 is 1. The closer the
value of r2 is to 1, the better the fitting degree of the regression
line to the observed value is. Conversely, the smaller the value
of r2, the worse the fitting degree of the regression line to
the observed value.

Peak attribution and principal
component comparison of thiram
solution

According to the molecular structure and conventional
Raman spectra of thiram, thiram has obvious Raman
characteristic peaks at 562, 929, 1146, 1379, and 1514 cm−1.
The characteristic peak of 562 cm−1 is caused by S-S stretching
vibration; the characteristic peak of 929 cm−1 is caused by
C = S and C-N stretching vibration; the characteristic peaks of
1146 cm−1 and 1514 cm−1 can be attributed to C–N stretching
and CH3 rocking vibration; the strongest characteristic peak at
1379 cm−1 is caused by the C-N stretching vibration and the
CH3 symmetrical deformation vibration mode. Linear fitting
was performed between the intensity (I) of the Raman peak
at 1379 cm−1 and the concentration of the standard solution
(N, µg·mL−1) of thiram, and the results showed that the mass
concentration of thiram and the intensity of the Raman peak at
1379 cm−1 were linearly fitted. It has a good linear relationship.
When the mass concentration range is 0.1∼5.0 µg·mL−1, it
satisfies the linear regression equation I = 11644N + 4536.5 and
the correlation coefficient r2 = 0.9912.

Compared with the standard Raman spectrum of thiram
solution, the characteristic peaks of the Raman spectrum of the
experimental sample data obtained by MATLAB are consistent
with the standard Raman spectrum of thiram in the number of
characteristic peaks and Raman displacement.
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FIGURE 7

Score diagram of KPCA of thiram enhanced by Au-NPs solution.

In this work, by artificially applying the standard solution of
thiram pesticide to the fruit samples that were not contaminated
by the pesticide residues of thiram, the residual concentrations
of thiram in the fruit epidermis were 0, 0.1, 0.5, 1.5, and
10 µg/g, respectively. Its SERS was measured under a Raman
microscope, and each concentration was repeated four times,
and the obtained SERS was smoothed, and baseline corrected.
The characteristic peaks of the SERS in the water (1:1) solution
are relatively consistent, and there are characteristic peaks at
750, 830, 1165, 1560 cm−1, etc., and the relationship between
the intensity of the characteristic peak at 750 cm−1 and the
concentration is the most obvious. Therefore, the characteristic
peak at 750 cm−1 was selected to study the relationship between
the peak intensity of the SERS and the concentration of fumes in
the fruit epidermis. KPCA was used to determine the minimum
detection limit of thiram in fruit epidermis. It can be seen from
Figure 7 that the minimum detection limit of thiram in fruit
epidermis is 0.1 µg/g, indicating that SERS can be used to detect
thiram pesticide residues in fruit epidermis, and the minimum
detection limit can reach 0.1 µ g/g.

Comparison with principal component
analysis method

The visualization diagram of the 18 groups of sample data
selected in this study. Through this diagram, we can compare
it with the standard Raman spectrum of thiram solution after
processing. From this, we can preliminarily determine whether
the measured samples containing Pesticide residues are the
characteristic peaks of the molecules of thiram, and with the
graph of the experimental data, we can also see the similarity and
difference of Raman spectra, even if the characteristic peaks of
the same substance may not be the same, but the characteristics

FIGURE 8

Relationship between the contribution of sample information
and individual components.

FIGURE 9

Two-dimensional scatter diagram of PC1 and PC2.

of the same substance The number of peaks is the same, and
there is little difference between similar characteristic peaks. It
can also be seen that the rapid detection of pesticide residues by
KPCA Raman spectroscopy is more accurate.

The first two principal components PC1 and PC2 have
accounted for 98.9% of the variance. It can be seen from Figure 8
that the first principal component PC1 has explained most
of the variance in the sample data matrix. Figure 9 shows a
2D scatter plot generated by PC1 and PC2, where the PC2
axis is perpendicular to the PC1 axis, which is often used
for data classification. In Figure 9, it can be seen that the
explained variance of PC1 for the experimental sample data
is 90.0%, and the explained variance of PC2 is 8.9%. And the
number of principal components shown in Figure 8 is also
in full agreement with this data. It can be seen that Raman
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spectroscopy using KPCA combined with PLS is superior to the
PCA model in terms of accuracy, precision, and stability.

Conclusion

Ultra-sensitive detection based on SERS is prone to the
interference of impurities and fluorescent substances. Therefore,
to play the maximum role of SERS, it is necessary to extract
feature information and establish a feature recognition model,
that is, the recognition module of signal processing and signal
recognition model for the relevant data spectrum library. In
this work, by simulating the situation of pesticide residues on
the fruit surface in the natural environment and based on the
SERS detection technology, the pesticide residues on the fruit
epidermis were determined. It was found that the metal particles
in the SERS substrate could adsorb the pesticide components
in the fruit epidermis. Thus, the Raman signal is enhanced,
and the interference of the fluorescent signal and noise on
the surface of the fruit is prevented to a certain extent. The
performance of the models processed by non-linear kernel
principal components is better than that of the models processed
by principal components, which proves that the former has
a better dimensionality reduction effect than the latter and
makes the results more accurate. The probe molecule R6G
was selected for comparative testing, and the relative standard
deviation (RSD) of the two peaks was statistically calculated for
the SERS peak intensity value, indicating that the prepared Au-
NPs substrate had an excellent enhancement effect on pesticides.
Then, with Au-NPs substrate as the enhancer, the Raman peaks
of the standard product of thiram solution were compared,
and the characteristic peaks for qualitative discrimination of
thiram solution were determined based on the assignment
of spectral peaks. Using the Raman spectroscopy technique
based on KPCA, the punctuation samples are standardized and
preprocessed, and then the samples are non-linearly mapped
by the Gaussian kernel function. Non-linear factors improve
the usability and operability of measurement data and reduce
computational overhead. In this method, the substances in the
Raman spectrum can be classified and the pesticide residues can
be detected quickly. At the same time, this work is of great value
to the practical popularization of SERS.
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