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Multispectral technology has a wide range of applications in agriculture. 

By obtaining spectral information during crop production, key information 

such as growth, pests and diseases, fertilizer and pesticide application can 

be determined quickly, accurately and efficiently. The scientific analysis based 

on Web of Science aims to understand the research hotspots and areas of 

interest in the field of agricultural multispectral technology. The publications 

related to agricultural multispectral research in agriculture between 2002 

and 2021 were selected as the research objects. The softwares of CiteSpace, 

VOSviewer, and Microsoft Excel were used to provide a comprehensive 

review of agricultural multispectral research in terms of research areas, 

institutions, influential journals, and core authors. Results of the analysis 

show that the number of publications increased each year, with the largest 

increase in 2019. Remote sensing, imaging technology, environmental 

science, and ecology are the most popular research directions. The journal 

Remote Sensing is one of the most popular publishers, showing a high 

publishing potential in multispectral research in agriculture. The institution 

with the most research literature and citations is the USDA. In terms of the 

number of papers, Mtanga is the author with the most published articles 

in recent years. Through keyword co-citation analysis, it is determined 

that the main research areas of this topic focus on remote sensing, crop 

classification, plant phenotypes and other research areas. The literature co-

citation analysis indicates that the main research directions concentrate in 

vegetation index, satellite remote sensing applications and machine learning 

modeling. There is still a lot of room for development of multi-spectrum 

technology. Further development can be carried out in the areas of multi-

device synergy, spectral fusion, airborne equipment improvement, and real-

time image processing technology, which will cooperate with each other 
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to further play the role of multi-spectrum in agriculture and promote the 

development of agriculture.
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Introduction

Precision agriculture is currently in a phase of rapid 
development, which integrates technologies such as remote 
sensing, big data, and decision analysis, and aims to achieve 
efficient use of resources, rational inputs, and co-benefits in 
environmental and economic terms through variable and 
controllable scale farm management (Mazzia et  al., 2020). 
Whereas information acquisition is the basis of precision 
agriculture, farming information is precisely the dynamic 
tracking of the agricultural environment and the state of plants 
at various growth periods (Huang et  al., 2016), and plant 
phenotypes are important expressions of information on 
morphological characteristics that can be observed from plants 
(Huang et  al., 2020). Both are important expressions of 
information in precision agriculture. Therefore, farming 
information and plant phenotypes reflect the information status 
of plants and provide reliable information for decision makers. 
In this case, how to obtain the required information becomes  
critical.

The advent of multispectral technology provides an effective 
and fast way to obtain agricultural information or plant phenotype 
information. Spectral imaging technology (Garini et al., 2006) 
emerged in the 1960s and was early applied in remote sensing, 
military and other fields. With the emergence of semiconductor 
photodetectors, spectral technology developed rapidly and its 
applications were extended to agriculture, environmental science, 
food engineering and other fields. Multispectral imaging 
technology is a kind of fusion technology of image and spectrum, 
which can acquire both spatial and spectral information of the 
object. In recent years, with the development of multispectral 
technology, its application in the field of agriculture has become 
more and more extensive. In the field of agriculture multispectral 
has been deeply applied in several aspects such as grain yield 
prediction (Zhou et  al., 2017), pest and disease detection 
(Sankaran et al., 2010), nondestructiveness detection (Yu et al., 
2018), remote sensing of agricultural drones Berni et al. (2009), 
weed identification (Pena et  al., 2013; Sa et  al., 2018), water 
content detection (Baluja et al., 2012), biomass (Kross et al., 2015), 
vegetation detection (Candiago et al., 2015), and inorganic matter 
detection (He et al., 2016). Agricultural multispectral technology 
is based on multidisciplinary fusion research, which makes use of 
data fusion techniques with multiple platforms, sensors, and 
remote sensing to provide data for research in the field 
of agriculture.

Bibliometrics and scientometrics are quantitative tools 
commonly used in scientific research. They are applied to 
analyze the frontiers of a topic or research field from macro- to 
micro-perspectives, which includes elements such as countries, 
institutions, authors, keywords, and journals (Raparelli and 
Bajocco, 2019; Zhang et  al., 2019). These tools integrate 
computer engineering, big data applications, and statistics, and 
are widely applied in many fields (Chen, 2017) to provide rich 
assessments and analyses in different areas. The advantages of 
bibliometrics are reflected in stronger analytical efficiency for 
keyword analysis, research hotspot frontiers, and reference 
co-occurrence analysis. Scientometrics is an effective method for 
discovering research hotspots, and a powerful helper for 
researchers to understand the evolutionary path of research as 
well (Xie et  al., 2020). It provides a systematic and 
comprehensive judgment.

The development and application of multispectral 
technology in agriculture promotes the development of 
precision agriculture and helps solve problems encountered in 
today’s agricultural development. The bibliometrics and 
scientometrics analysis was conducted in this paper by reviewing 
publications related to agricultural multispectral research in 
agriculture between 2002 and 2021 from the Web of Science 
(WOS). Multiple softwares, CiteSpace, VOSviewer, and 
Microsoft Excel were adopted for analyzing and mapping of 
scientific knowledge to characterize the research hotspots  
and frontiers of agricultural multispectral technology. 
Comprehensive analysis was discussed in terms of research 
areas, institutions, influential journals, core authors, and 
keywords. Multiple research areas on agricultural multispectral 
research were identified through keyword co-citation analysis. 
The main research directions were proposed through literature 
co-citation analysis as well.

Materials and methods

Literature search strategy

The WOS database was taken as the data source with 
multispectral as the theme. Agriculture multispectral research 
mostly focus on crops, soil, moisture, biomass, etc. Therefore, the 
search formula was determined as: TS = (multispectral)AND 
TS = (Agricultural UAV or agriculture or crop or tomato or corn 
or wheat or rice or citrus or cotton or soybean or moisture or soil 
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or pest or weed or yield or potato or precision agriculture or Sugar 
cane or Nitrogen or tea or biomass or water fractions or Vegetables 
or Agricultural Remote Sensing or Chlorophyll or Pesticides). The 
literature data were searched for the time period from January 
2002 to December 2021. Finally, 3,830 publication records were 
exported with each record containing author, title, source 
document, abstract, and cited references.

Methodology

Data mining, analysis and visualization were conducted for 
3,830 literature related to agricultural multispectral research 
through CiteSpace 5.8.3, VOSviewer, and Microsoft Excel.

CiteSpace software1 was developed by Prof. Chaomei Chen, 
Professor (tenure-track faculty) at School of Information Science 
and Technology, Drexel University, United States. The software is 
citation visualization and analysis software gradually developed in 
the context of scientometrics and data visualization (Chen, 2006; 
Chen et  al., 2010). Thomas’ and Kuhn’s structure of scientific 
revolution provides the philosophical basis for CiteSpace. Another 
design inspiration for this software is a theory called structural 
holes, which was proposed by Burt at the University of Chicago in 
his study of social networks and social values (Chen, 2013). The 
software features dynamic complex network analysis and data 
visualization, and the visualization of CiteSpace can be divided 
into two main modes: cluster view and temporal view. The most 
prominent feature in CiteSpace is the co-citation analysis of the 
literature as a way to explore the knowledge structure of research. 
CiteSpace helps summarize clusters research frontiers and reveal 
the valuable knowledge points in the frontiers of agricultural 
multispectral research.

VOSviewer,2 afree JAVA-based software developed by VanEck 
and Waltman at the Centre for Science and Technology Studies 
(CWTS), Leiden University, the Netherlands, in 2009 (van Eck 
and Waltman, 2010), is mainly oriented toward documentary 
data, relational knowledge units of documents construction. It is 
adapted to the analysis of one-mode undirected networks and 
focus on the visualization of scientific knowledge. VOSviewer 
draws scientific knowledge maps to show the inter-relationships 
between literatures in agricultural multispectral research. The 
most valuable advantage of VOSviewer over other bibliometric 
software is its graphical presentation capabilities, its suitability for 
large-scale data, and the versatility in adapting to source data in 
various formats from various databases. VOSviewer also provides 
text mining capabilities for constructing and visualizing 
co-occurrence of important terms extracted from scientific 
literatures about agricultural multispectral research. VOSviewer 
also provides text mining capabilities for building and visualizing 

1 https://sourceforge.net/projects/citespace/

2 https://www.vosviewer.com/

co-occurrence networks of important terms extracted from 
these literatures.

Keywords are the core summary of a scientific paper. Analysis 
of the keywords gives a glimpse of the topic of the paper as that 
keywords given in a paper must have some kind of association. This 
association can be expressed by the frequency of co-occurrence. It 
is generally believed that the more frequent a word pair appears in 
the same literature, the closer the relationship between the two 
themes. Co-occurrence analysis investigates the common 
occurrence of lexical pairs of nouns or phrases in a literature set to 
determine the relationship between themes in the disciplines 
represented by that literature set. By counting the frequency of 
occurrences of two theme terms in the same document, a co-word 
network of these word-pair associations can be  formed. The 
analysis of keywords can explore the research themes and hotspots 
of the literatures. The statistics of the frequency of keywords can 
analyze the hotspots of the research field. Two or more papers are 
cited by one or more papers at the same time, then these papers will 
constitute a co-citation relationship, and the co-citation relationship 
of the literature will change with time. A research hotspot is the 
focus and concentration of a technical field over a period of time, 
which is manifested by the emergence of a large number of papers 
and patents on a technical issue. The concept of research hotspot 
was first introduced by Plath in 1965, and has been developed and 
extended over the past 60 years to multiple levels. Analyses of 
research hotspots help clarify the development history, correctly 
understand the research lineage, and provide reference for future 
directions of agricultural multispectral technology.

Results

Basic data information

The searched literatures were first processed and removed 
irrelevant ones, and a total of 3,830 publications and 53,390 
references were obtained. The average of 191.5 publications per 
year from 2002 to 2021 was available in the field of agricultural 
multispectral research. From the analysis results it is clear that 
multispectral study is flourishing in agriculture. These 
literatures involved 12,913 authors and generated a total of 
12,899 keywords.

Evolution of publications
The trend of year-on-year growth can be seen in Figure 1, 

from 54 articles in 2002 to 608 articles in 2021, with an average 
annual growth rate of 13.5%. The number of publications 
exceeded 100 for the first time in 2008 and reached 104, then 
dropped below 100 in the next 2 years. From 2011 the number 
of publications exceeded 100 again and showed a stable growth 
trend. From 2002 to 2021, the number of publications increased 
by 10.25 times. The increasing number of publications year by 
year indicates that the application of multispectral technology 
in agriculture is attracting more and more attention.
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WOS Research Area
Table 1 lists the main agricultural fields of multispectral study 

from 2002 to 2021, which are remote sensing, imaging science, 
environmental science, geology, multi-discipline research, 
agriculture, electronic engineering, etc. Among them, remote 
sensing is the field with the largest proportion, followed by a 
variety of subjects, indicating that multispectral research is 
concerned by multiple fields and disciplines. From the current 
perspective, the research of multi-discipline integration will 
become a hot trend in the future about agricultural 
multispectral research.

Analysis of research countries and 
institutions

Analyzing research institutions help understand the publication 
and collaboration of major institutions. In total, 3,358 institutions 
are involved in agricultural multispectral research. Results show 
that the top five institutions with the highest number of publications 
are: USDA, Chinese Academy of Sciences, NASA, UNIVERSITY 
OF CALIFORNIA SYSTEM, and CNRS.A total of 746 articles were 
published by the above five institutions. The top two institutions 
have significantly more publications than the others, indicating an 
imbalance between the research publications of influential 
institutions. From 2002 to 2021, the USDA is the institution with 
the highest number of publications, with a total of 247 publications, 
taking the first place. The institutional co-occurrence mapping in 
Figure 2 was generated based on the analysis.

A total of 118 countries are involved in agricultural 
multispectral research. The density of cooperation among 
countries is visualized in Figure 3. The research countries analysis 
shows that the five countries with the highest number of 
publications are the United States (1,177), China (737), Spain 
(285), Germany (277), and Italy (231). In addition to the number 
of publications, centrality is one of the criteria to measure the 
strength of a country’s research in this field. From the data 
obtained, the top five countries in terms of centrality are: 

United States, Germany, Italy, Australia, and England. China and 
Spain, despite being in the top five in terms of number of 
publications, are not in the top five in terms of centrality ranking.

FIGURE 1

Annual distribution of the number of research publications on agricultural multispectral research in 2002–2021.

TABLE 1 Main categories of multispectral research literature in 
agriculture from 2002 to 2021.

Subject categories Number Ration%

Remote Sensing 1,691 44.11

Imaging Science Photographic Technology 1,430 37.30

Environmental Sciences 1,124 29.32

Geosciences Multidisciplinary 868 22.64

Engineering Electrical Electronic 372 9.70

Geography Physical 295 7.69

Agriculture Multidisciplinary 265 6.91

Agronomy 239 6.23

Plant Sciences 194 5.06

FIGURE 2

Co-current mapping of research institution collaboration on 
agricultural multispectral research in 2002–2021. The points to 
circles represent the individual countries, the size of the graph 
indicates how much literature comes from each country and 
how influential it is, and the lines represent how close each 
country is to other countries.
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Influential journals

Multispectral research in agriculture was published in 702 
journals, and the co-occurrence map of journals is shown in 
Figure 4. The top 20 (2.85%) journals published 2,021 papers, 
accounting for 52.8% of the total literature. There were 405 
journals that published only one paper in agricultural 
multispectral research, accounting for 57.7% of the total number 
of journals. There were 200 journals that published 2–5 papers, 
accounting for 28.5% of the total number of journals. Less than 10 
papers were published in 645 journals, representing 91.8% of the 
total number of journals. The top  3 publishers were Remote 
sensing (529), International journal of remote sensing (216), and 
Remote sensing of environment (207). According to this analysis, 
the agricultural multispectral publications become scattered. Most 
of the research achievement was published in 12 journals as shown 
in Table 2. These 12 journals can be considered as the core sources 
of multispectral research in agriculture, and these journals play an 
important role as well. Among them, Remote sensing is the most 
popular journal in the field of agricultural multispectral research 
with the largest proportion and the fastest growth rate, showing 
that it has played an important role in promoting multispectral 
research in agriculture.

Analysis of author groups

The collaborative network of authors enables the analysis of 
the core authors and collaborations within the field of agricultural 

multispectral study. The analysis of core authors and their 
collaborative relationships was performed by VOSviewer to 
generate a co-occurrence map of authors, as shown in Figure 5. 
Results show that the top 5 authors with the highest number of 
published papers are Onisimo Mutanga (52), Timothy Dube (25), 
Yu Zhang (24), James F. Bell (22), and Jeffrey R. Johnson (22). 
Zarco-Tejada, P. J. has the most cited papers with an average of 
81.9 citations per paper. Authors with more than four publications 
in the field of study were considered core authors according to its 
definition, of which there are 675 core authors. The top 10 core 
authors are shown in Table 3. There are 3,830 papers that involve 
12,913 authors, with an average of 0.29 papers per author and 3.37 
authors per paper. This also indicates that multispectral research 
in agriculture is a multi-author collaborative field.

Keyword analysis

A total of 12,899 keywords were detected in 3,830 publications 
from 2002 to 2021 through software analysis. A total of nine 
clusters were generated by co-occurrence analysis. The clusters, 
based on the relationship between the weight of link attributes 
under different keywords and the strength of total links, are shown 
in Figure  6. The top  20 keywords in 3,212 publications were 
ranked by frequency, as shown in Table 4.

Figure  6 shows the keyword network presented by the 
co-occurrence method on agricultural multispectral research in 
2002–2021. The keywords are divided into nine clusters and each 
cluster is identified by a different color. The thickness and number 

FIGURE 3

Visualization of agricultural multispectral research in terms of the density of cooperation between countries.
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TABLE 2 Top 12 journals for local citation ranking of agricultural multispectral studies in 2002–2021.

Source D Citations TS WL

Remote Sensing 532 7,930 1,831 198

International Journal of Remote Sensing 216 4,934 560 123

Remote Sensing of Environment 207 17,268 1,216 172

Computers and Electronics in Agriculture 134 3,982 495 111

International Journal of Applied earth Observation and Geoinformation Sensors 107 2,766 501 106

Sensors 105 1782 400 92

Isprs Journal of Photogrammetry and Remote Sensing 85 3,293 525 89

Ieee Journal of Elected Topics in Applied Earth Observations and Remote Sensing 84 1743 259 54

Journal of Applied Remote Sensing 80 935 213 63

Ieee Transactions on Image Processing 79 4,137 309 75

Precision Agriculture 62 1952 275 29

Spectroscopy and Spectral Analysis 60 174 34 18

D, documents; TS, Total link strength; WL, weight links.

FIGURE 4

Co-occurrence map of influential journals on agricultural multispectral research in 2002–2021.
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FIGURE 5

Co-occurrence map of agricultural multispectral researcher collaboration in 2002–2021.

TABLE 3 Top 10 authors ranked by total literature on agricultural multispectral research in 2002–2021.

Authors Dc Ct TLS Institutions Countries

Onisimo Mutanga 52 1,672 813 University of KwaZulu-Natal South Africa

Timothy Dube 30 591 427 University of Western Cape South Africa

Yu Zhang 23 563 320 Chinese Academy of Sciences China

James F. Bell 22 396 199 Arizona State University United States

Jeffrey R. Johnson 22 1,228 260 U.S. Geological Survey United States

Chenghai Yang 22 563 209 USDA-Agricultural Research Service United States

Moon S. Kim 21 272 68 USDA-Agricultural Research Service United States

Lopez-granados F 21 891 163 Spanish National Research Council Spain

Lei Zheng 21 291 568 Hefei University of Technology United States

Yan Zhu 21 396 199 Nanjing Agricultural University China

Dc, Documents; Ct, Citations; TLS, Total link strength; JCICTA, Jiangsu Collaborative Innovation Center for the Technology and Application of Internet of Things; UKSARC, USDA-
ARS Kika de la Garza Subtropical Agricultural Research Center.
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of connecting lines between different clusters indicate the 
closeness of the connection between clusters. These nine clusters 
are cluster 1, red: remote sensing; cluster 2, green: vegetation 
indexes; cluster 3, cyan: reflectance; cluster 4, yellow: biomass; 
cluster 5, purple: quality; cluster 6, blue: soil; cluster 7, orange: 
random forest; cluster 8, brown: leaf-area index; cluster 9, pink: 
resolution. From the top 20 keywords given on Table 4, cluster 1 
remote sensing, cluster 2 vegetation indexes, cluster 3 reflectance, 
cluster 4 biomass, cluster 5 quality account for the most weight, by 
clustering with the four keywords that account for the most, 
we can know the current research hotspots.

By keyword clustering found clustering 1 remote sensing in 
the field of agricultural multispectral is the most dominant 
research area, remote sensing technology is generally considered 
as one of the most important technologies for precision 
agriculture, and the development of technologies such as imaging 

of spectral information and multi-directional optical detection 
has improved the timeliness and operability of remote sensing 
technology (Tsouros et al., 2019). At present, remote sensing in 
the field of agriculture mainly focuses on: crop classification, crop 
coverage, and precise identification. Classification of weeds and 
crops in the field and accurate management of weeds, crop cover 
and vegetation coverage in agricultural fields, accurate 
identification of biomass and trace element content are the 
current research priorities in remote sensing (Huang et al., 2018; 
Näsi et al., 2018; Memon et al., 2019; Wijesingha et al., 2021). 
Remote sensing has made a great contribution to the development 
of precision agriculture.

Keyword clustering 2 led by vegetation indexes is likewise a 
current research hotspot in multispectral in agriculture, 
vegetation indexes have been widely used to qualitatively and 
quantitatively evaluate the information produced by vegetation, 

FIGURE 6

Network of keywords based on the co-occurrence method on agricultural multispectral research in 2002–2021.
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and vegetation indexes have been applied in a particularly wide 
range of applications, in which yield prediction, spectral 
reflection studies, vegetation growth, and vegetation canopy 
information extraction are hot research directions (Zhou et al., 
2017; Marston et al., 2020; Peng et al., 2021; Zhu et al., 2021). 
Among these research directions, accurate yield prediction of 
food crops, application research of specific wavelength bands, soil 
drought and salinity, foliar index, and crop pest monitoring are 
the focus of research (Farrell et al., 2018; Mazzia et al., 2020; Zhu 
et al., 2021), and a significant part of these studies use uavs as the 
main application platform, and the combination of UAVs and 
multispectral further promotes the development of vegetation 
indices in agriculture.

keyword clustering 3 reflectance is based on spectral 
reflectance information to carry out various studies in which the 
most important thing is to use reflectance information to 
construct models through which specific problems can be solved. 
For example, the simple algorithm yield model was used to 
estimate the foliar index by combining the light energy efficiency 
and leaf function of the crop (Peng et  al., 2021) the SWAP-
WOFOST model was used to predict the growth of sugarcane 
(Hu et al., 2019) and the improved casa model was used to map 
the crop biomass (Fang et al., 2021). The application of various 
models helped us to provide a great role in rapid crop monitoring 
as well as crop yield assessment.

Keywords clustering 4 biomass: Biomass is a common crop 
parameter based on remote sensing and with the rapid 
development of remote sensing technology biomass detection 
techniques have advanced tremendously with the rapid 
development of precision agriculture from 1980 to 2021. The 
rapid development of UAV technology, lightweight 
multispectral, and hyperspectral equipment has provided new 
tools for biomass detection and during these decades most of 
the studies on crop parameters were conducted based on 
spectral information and with the addition of 3D information 
technology the interplay of the two is a new progress in the 
detection of crop parameters (Candiago et al., 2015; Näsi et al., 
2018; Zhu et al., 2019a; Fei et al., 2021; Jayakumari et al., 2021; 
Li et al., 2021; Yu et al., 2021).

Keywords clustering 5 quality: Improving the quality of 
production is one of the goals of agriculture and the development 
of multispectral technologies in improving the quality of 
production provides scientific tools to achieve the goal of high-
quality agricultural development and the rapid development of 
UAVs with light and portable sensors capable of capturing 
multiple spectral images and new image processing methods have 
promoted high quality agricultural production (Messina et al., 
2021). For example, six-band multispectral sensors and accurate 
orthorectified impact processing methods can improve spatial 
accuracy and can provide guidance for subsequent research 
(Mesas-Carrascosa et al., 2017); the use of deep learning methods 
to segment UAV images a new image alignment method that 
enables the fusion of information from two different sensors and 
improves detection accuracy (Kerkech et al., 2020).T
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Theme term analysis

Co-occurrence analysis of theme term
The theme term was analyzed by CiteSpace. Noun terms were 

extracted from the titles, author keywords, and system 
supplementary keywords of the dataset, and the top appearing 
terms were selected to generate a network time zone map 
(Figure 7). The time zone map collects the first occurrence of 
theme terms in the same year and the same time zone, which 
shows the evolution of the knowledge domain in the time 
dimension more clearly. Multispectral image, vegetation indices, 
normalized difference vegetation index (NDVI), the multispectral 
data, Unmanned aerial vehicle, overall accuracy, square error, 
spectral bands, random forest, high spatial resolution, 
hyperspectral data, remote sensing data, spatial distribution, 
growing season, etc., should be considered as the hot content of 
multispectral research in the field of agriculture in these years.

Burst Analysis of Theme Term
The theme terms with relatively high salience were analyzed by 

CiteSpace’s burst detection algorithm in order to reflect the 
research trend and dig out the research hotspots, which are 
characterized by high frequency of changes within a certain phase 
in the software. The nodes that show up in red in Figure 7 indicate 
burst. Since there are relatively more red nodes with prominence 

from 2002 to 2021, the red nodes with prominence in the 6 years 
from 2015 to 2021 were selected as shown in Table 5. Satellite data, 
climate change, forest inventory, standard deviation, growing 
satellite data, climate change, forest inventory, standard deviation, 
growing seasons, plant height, sentinel-2 data, unmanned aerial, 
environmental condition, crop water stress index, point clouds, 
crop yield, etc., indicate that the recent years of multispectral 
research in agriculture are based on the above series of themes. The 
above-mentioned thematic terms have been used as a research 
method in the field of agriculture. From 2002 to 2010, burst themes 
included canopy reflectance, spectral mixture analysis, reflectance 
data, airborne multispectral imagery, aerial photography, and 
multispectral analysis. Burst themes in 2011–2021 associated with 
multispectral satellite imagery, remote sensing technique, high 
resolution, water quality parameter, partial least squares, crop 
water stress index, and biomass estimation, which indicate that the 
research and application of vegetation indices and algorithms were 
the main focus at this phase. Among them, vegetation index is the 
most researched part of multispectral in the field of agriculture.

Research frontiers

Agricultural multispectral research analysis selects the 
reference node and generates the cited literature analysis graph by 

FIGURE 7

Co-occurrence time zone map of theme terms on agricultural multispectral research in 2002–2021. The horizontal axis represents the year, each 
node represents a topic, and the size of each node represents frequency of occurrence. The lines between each node represent connections to 
other topics. The circles in the vertical axis represent topics in the multispectral area of agriculture. The size of the circles represents the 
magnitude of the heat. The years with more topics were arranged in order from the largest to the smallest on the vertical axis.
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CiteSpace. Clusters were formed by selecting keywords, and then 
a total of 17 clusters were generated by LLR algorithm. Each of 
these clusters represents the activity of its future direction, as 
shown in Figure 8. The denser and more active the clusters in the 
graph, the more they represent the current research frontier. The 
module values of the 17 clusters in Figure 8 are Q = 0.8208 and 
S = 0.917. The module values and the average profile values are 
indicators provided by CiteSpace based on the network structure 
and the clarity of the clusters, which are used to measure the 
clustering effect of the map. Q > 0.3 indicates that the clustering is 
significant, and S  > 0.7 indicates that the clustering is highly 
convincing. Generally, the clustering above 0.5 can be considered 
reasonable. Therefore, the present clustering is reasonable and the 
structure is significant.

The color curves in the figure indicate co-citation links. More 
connected lines between clusters indicate a strong correlation 
between clusters. Large nodes indicate that they are worth 
exploring because they contain important cases that are overcited 
or mentioned. Nodes that are still active represent cutting-edge 
directions, scientific themes and novel trends in agricultural 
multispectral research field. According to the Figure 8, the largest 
cluster is #0 (vegetation index), located at the top of the image. The 
duration varies between clusters, with some lasting more than a 
decade and others having a shorter life span. The four clusters with 
higher activity and frequency were selected for further analysis.

The largest cluster #0 (UAV) contains 175 reference points 
between 2012 and 2021. The average reference year is 2016 and the 
average profile value S = 0.855, which was well visualized. This 
cluster is a corresponding study for vegetation indices in land 
cover, vegetation classification, crop yield estimation, drought 

monitoring, and environmental change using UAV remote sensing 
as the main application platform. UAV is an important vehicle for 
acquiring a variety of remote sensing data accurately, flexibly and 
efficiently in the low-altitude field, and UAV remote sensing is 
now very commonly used in precision agriculture, while 
UAV-based IoT technology is considered as the future of remote 
sensing in precision agriculture. Vegetation indices are formed by 
combining different bands of the spectrum according to the 
spectral characteristics of vegetation. More than 40 kinds of 
vegetation indices are available and widely used in the field of 
agricultural production. The most cited one in this cluster is 
Bendig et al. (2015), who used vegetation indices and plant height 
information to estimate summer barley biomass and verified the 
potential of visible bands to predict biomass. Candiago et  al. 
(2015) demonstrated the great potential of UAVs in the 
multispectral field by monitoring vegetation indices with UAVs 
carrying imaging equipment. Zhou et  al. (2017) verified that 
red-edge and infrared bands were more effective in predicting rice 
yield and foliar index based on a UAV-mounted multispectral 
photography platform, demonstrating the reliability of the 
platform for rice yield and growth estimation and identifying the 
most contraindicated virtual instrument for rice yield. Zaman-
Allah et al. (2015) used a multispectral imaging sensor-mounted 
UAV platform to measure the N content in soil and derive crop 
performance indices for low N stress in maize fields, showing that 
the platform is effective in assessing field variability and crop 
performance. Duan et al. (2017) applied UAV based multispectral 
camera to detect NDVI indices in wheat field during the growing 
season through a high-throughput phenotyping platform, 
showing that NDVI before and after flowering had a strong 

FIGURE 8

Co-citation timeline mapping of publications on agricultural multispectral research in 2002–2021. The horizontal axis represents the year, each 
node represents a popular cited reference, and the size of each node is proportional to its citation frequency. The line between each node 
represents the time evolution of the cited literature, and the thickness of the line represents the co-citation intensity.
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correlation with yield. From the clustering timeline, the cluster is 
still highly dynamic until 2021, and UAV remote sensing is still a 
hot spot for current research.

The average citation time for cluster #2 is 2016. This cluster 
focuses on the clustering of remote sensing-based algorithms, 
which summarizes a review of multispectral remote sensing and 
case studies of algorithm applications. Currently algorithms for 
remotely sensed vegetation indices is effective and convenient, 
which have been applied for vegetation cover and growth 
dynamics research with wide application of UAVs (Xue and Su, 
2017). Torres-Sánchez et al. (2015a) newly developed a threshold 
segmentation OBIA algorithm by UAV images on the Otsu-based 
method. This algorithm was applied to the Excess Green Index 
(ExG) and Normalized Vegetation Index (NDVI). Torres-Sánchez 
et al. (2015b) proposed a method to calculate the 3D geometric 
features of individual trees and rows with an accuracy of 97% for 
area quantification with UAVs. Mathews and Jensen (2013) 
acquired UAV images to collect Leaf Area Index (LAI) of 
visualized and quantified vineyard canopy through a motion 
point cloud computer technique. Albetis et al. (2017) proposed a 
UAV-based images and operational flavescence dorée mapping 
technique for grape diseases detection. The duration of this 
clustering is 2012–2021 and, as with the vegetation index, 
machine learning is also a current hotspot. Machine learning has 
becomes a hot spot thanks to the development of artificial 
intelligence, which improves efficiency by combining various 
algorithms. Integration of machine learning and vegetation 
indices plays an important role in the field of agricultural 
multispectral research.

Cluster #3 is well visualized with a mean citation time of 
2012 and a mean profile of S = 0.897. The clustering is mainly the 

analysis of ground information using high-altitude images from 
satellite multispectral remote sensing. Nowadays, more and 
more UAVs are joining the application of remote sensing 
mapping, but satellite remote sensing is still the most used 
method in high-altitude remote sensing. Satellite remote sensing 
has the characteristics of high point of view, wide field of view, 
and continuous and fast data collection. It has a broad 
application prospect in land resources, water resources survey, 
farming estimation, etc. Dube and Mutanga (2015) applied the 
medium-resolution multi-spectral Landsat 8 to analyze above-
ground biomass in forest plantations. His study concluded that 
the data provided by satellite could be  a more effective data 
source for analyzing above-ground biomass and spectral 
vegetation indices, demonstrating the potential and advantages 
of this Landsat dataset. Immitzer et  al. (2016) adopted S2 
satellites to map summer and winter crops and different 
deciduous and tree species to confirm the capability of S2 data 
for land cover mapping and the high value of red-edge and 
short-wave infrared bands for vegetation mapping. Clevers and 
Gitelson (2013) estimated chlorophyll and nitrogen content of 
crops and grass based on red-edge band remote sensing on 
Sentinel-2 and-3 satellites, confirming the importance of the 
red-edge band on satellites for agricultural applications. Ramoelo 
et al. (2015) used Worldview-2 satellite to monitor leaf nitrogen 
content and above-ground biomass, demonstrating the 
importance of high-altitude resolution and the red-edge band in 
rangeland assessment and detection. Mutanga et  al. (2012) 
obtained red-edge-band images from Worldview-2 satellite and 
applied random forest regression algorithm to predict biomass 
in wetland areas. The duration of this clustering was 2009–2017, 
which indicates that multispectral research in terms of satellites 

TABLE 5 Burst theme terms on agricultural multispectral study in 2015–2021.

Term Strength Begin End 2015–2021

Satellite data 3.81 2015 2017 ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂

Climate change 3.44 2015 2017 ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂

Forest inventory 3.15 2015 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂

Spectral feature 5.07 2016 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂

Hyperspectral image 4.73 2016 2017 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂

Standard deviation 3.77 2016 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃

Growing seasons 3.69 2016 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃

Soil property 5.91 2017 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂

Optimal wavelengths 4.6 2017 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃

Plant height 3.1 2017 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃

Sentinel-2 data 8.1 2018 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

Unmanned aerial system 6.02 2018 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

RGB image 5.71 2018 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

Field scale 4.82 2018 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

Environmental condition 4.02 2018 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

Crop water stress index 4.02 2018 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

Point clouds 3.62 2018 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

Digital surface model 3.19 2018 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

Crop yield 3.19 2018 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃
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is no longer a hotspot for research at present. The current 
direction of research has moved toward multispectral remote 
sensing research represented by UAVs.

The average citation time for cluster #4 is 2012. The main 
research in this cluster is summarized for aerial detection. In 
addition, this cluster is a multispectral research mainly by 
UAVs. The main research in this cluster is remote sensing 
mapping of field vegetation by multispectral information, and 
building higher accuracy classification models, including 
research on weed identification and yield estimation in crop 
fields. Yu et  al. (2016) adopted UAV platform to obtain 
multispectral data for soybean breeding, which led to significant 
improvement in yield estimation models through machine 
learning. Maimaitijiang et al. (2017) applied UAV multisensor 
data fusion to extract soybean plant phenotypes and developed 
a model for extracting plant phenotypes, demonstrating that 
low-cost multisensors can provide accurate data. 
Veeranampalayam Sivakumar et  al. (2020) conducted 
experiments on weed identification with low altitude UAV 
image of soybean field, verifying the accuracy of the Faster 
RCNN model and fully affirming the importance of the model. 
Marston et al. (2020) conducted soybean aphid experiments 
with UAVs and found that NIR reflections are sensitive for 
aphids detection. The duration of clustering #4 was from 2010 
to 2018, and the research on re-clustering provided a basis and 
reference for the subsequent development of multispectral 
technology in agriculture in terms of precision management of 
farmland, as well as crop identification. Along with the rise of 
vegetation indices as well as machine science, remote sensing 
mapping classification is gradually approaching this aspect.

In addition, based on the ranking of the burst literature 
according to the intensity, the top 15 articles were selected from 
total 162 strongly burst literatures, as shown in Table 6. From the 
content presented in these 15 literatures, the results are roughly 

the same as those of the above cluster analysis, with the research 
frontier trends focusing on the application and expansion of the 
UAV platform in various aspects, as well as various studies for 
vegetation indices. Data acquisition mostly relies on multispectral 
sensors carried by UAVs (Zhang and Kovacs, 2012) and to a lesser 
extent on satellites (Clevers and Gitelson, 2013), with UAVs 
gradually occupying the mainstream with their low-cost and 
flexibility advantages. Moreover, most of the studies are on crop 
parameters such as biomass (Bendig et  al., 2015), species 
classification (Ke et  al., 2010), plant phenotypes (Araus and 
Cairns, 2014), etc. Machine learning (Mountrakis et al., 2011) 
also plays a big role in this. The development of new and emerging 
technologies has played a great role in the development 
of agriculture.

Discussion

Based on the analysis of the publications searched, it is known 
that the current research on multispectral in agriculture is mainly 
focused on vegetation index (Chang et al., 2020; Kim et al., 2020; 
Mazzia et al., 2020), land cover (Laamrani et al., 2020), vegetation 
classification (Gibson et al., 2004), crop estimation (Zhou et al., 
2017), drought monitoring (Periasamy and Shanmugam, 2016), 
and environmental change (Brook et al., 2020). Among them, the 
studies related to vegetation indices involves the most papers. 
Most of the current monitoring of crops uses remote sensing 
technology and ground data in conjunction with each other to 
invert the biological indicators of crops, such as normalized 
vegetation index and biomass (Li et al., 2020a). Vegetation indices 
are the key to qualitative and quantitative assessment of vegetation, 
and vegetation indices have been widely applied for crop 
monitoring. Research related to vegetation indices is also a hot 
area of research at present and also a hot area of research in the 

TABLE 6 Top 15 highest prominence of cited references.

Begin End Strength Year References 2002–2021

2011 2015 15.5696 2010 Blaschke, 2010, ISPRS J Photogramm, V65, P2 ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂

2013 2017 13.1026 2012 Zarco-Tejada PJ, 2012, Remote Sens Environ, V117, P322 ▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂

2017 2018 12.5081 2013 Clevers JGPW, 2013, Int J Appl Earth Obs, V23, P344 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂

2015 2018 12.1329 2013 Mulla DJ, 2013, Biosyst Eng, V114, P358 ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂

2014 2017 11.6238 2012 Mutanga O, 2012, Int J Appl Earth Obs, V18, P399 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂

2012 2014 11.4153 2009 Berni JAJ, 2009, IEEE T Geosci Remote, V47, P722 ▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂

2017 2021 10.5978 2014 Bendig J, 2014, Remote Sens, V6, P10395 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃

2015 2017 9.5025 2012 Zhang CH, 2012, Precis Agric, V13, P693 ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂

2006 2017 9.3241 2012 Berner L T, 2012, Biogeosciences, V9, P3943 ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂

2011 2014 9.2223 2009 Chander G, 2009, Remote Sens Environ, V113, P893 ▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂

2018 2021 8.3433 2015 Bendig J, 2015, Int J Appl Earth Obs, V39, P79 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃

2012 2015 8.1168 2010 KeYH, 2010, Remote Sens Environ, V114, P1141 ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂

2017 2021 7.7503 2014 Torres-Sanchez J, 2014, Comput Electron Agr, V103, P104 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃

2016 2021 7.1715 2014 Araus JL, 2014, Trends Plant Sci, V19, P52 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃

2012 2016 7.1502 2011 Mountrakis G, 2011, ISPRS J Photogramm, V66, P247 ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂
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future. Vegetation indices can be divided into linear combinations 
of bands or original band ratio design (RVI; Lee et al., 2020), 
improvement of original indices by physical and mathematical 
methods (with universal applicability; Zhu et  al., 2019b), and 
indices born on the basis of remote sensing technology for 
hyperspectral and thermal infrared remote sensing (with difficulty 
in data acquisition and difficult to be promoted and developed; 
Berni et al., 2009). The early studies of vegetation indices were on 
chlorophyll and nitrogen measurements, and plant data were 
obtained by tgi indices in conjunction with related factors (Hunt 
et al., 2013). Many current studies address NDVI indices and are 
interwoven with various indices such as NDRE and NGRDI 
(Hassan et al., 2019). The best proof of the application of remote 
sensing in agricultural monitoring was demonstrated in crop yield 
estimation (Maimaitijiang et al., 2020). Combined with the 2021 
research literature, there is now a shift from large scale and large 
area detection of satellite data to specific range detection with 
further improvement in accuracy and precision.

Before the rise of UAVs, land satellites were primary means of 
acquiring multispectral data. Satellites equipped with multispectral 
instruments have the capability to detect the full spectral band 
from visible to thermal infrared. Such satellites are used in land 
resources (Zanardo et  al., 2016), environmental monitoring 
(Brook et al., 2020), etc. by higher applications. And in recent 
years the emergence of unmanned aircraft remote sensing 
detection gradually occupy the mainstream, but from 2002 to the 
present satellites still mainly undertake the task of data acquisition. 
The US landlast and sentinel series satellites are typical 
representatives of multispectral research. Early studies based on 
satellite data modeled drought environments (Theseira et  al., 
2002) and constructed drought early warning systems, that is, 
drought has been the focus of research. There have also been 
studies on crop leaf area monitoring (Chrysafis et al., 2020) and 
image classification and identification (Venkatesh and Kumar 
Raja, 2003; Gibson et al., 2004; Li et al., 2020b) through satellite 
data. Nowadays, the main research of satellites is for surface 
biomass (Khan et al., 2020) and monitoring of soil elements over 
a large area (Sullivan et al., 2004; Periasamy and Shanmugam, 
2016; Ramos et al., 2020; Luo et al., 2021). In the future, as satellite 
technology continues to develop, the application of multispectral 
aspects will gradually advance, and the ability to monitor large 
areas as well as the types of objects to be  monitored will 
be greatly improved.

Deep learning and machine algorithms are also extensively 
covered in the literature of search. The current strong emergence 
of UAV imaging systems has developed as a means of application 
in agriculture that can yield benefits. The application of machine 
learning algorithms (Eskandari et al., 2020; Maimaitijiang et al., 
2020; Mazzia et al., 2020; Osco et al., 2020a) has improved the 
ability of UAV applications and likewise the ability of satellite data 
for agricultural applications (Datta et  al., 2021). Through the 
study it was shown that 62% studies used regression models and 
38% used classification models. With the technology development, 
machine learning has also gradually derived multiple medium 

algorithms, including artificial convolutional neural networks 
(Osco et al., 2020b), support vector machines (Fortin et al., 2014), 
etc. The early algorithms were simple development of machine 
vision such as detection of two-dimensional planes (Aleixos et al., 
2002), for example, fruit integrity detection (Ariana et al., 2006). 
The integration of algorithms and equipment has achieved three-
dimensional breakthroughs, for example, extraction of tree 
canopy volume (Li et  al., 2020a; Minařík et  al., 2020), etc. 
Currently in the field of remote sensing support vector machines 
and integrated classifiers are the focus of current development, 
while deep learning in the field of agricultural multispectral 
research mainly analyzes images, including image fusion, 
segmentation, recognition, target detection, obia, supervised 
training, etc. With the progress of hardware technology, the 
consequent acquisition of numerous data will also be beneficial to 
the development of machine learning, and currently big data 
cloud computing and machine learning are combined together to 
work on the development of agriculture. Deep learning is being 
applied to various fields of remote sensing.

In terms of multispectral detection equipment, it lacks of 
cooperation of ground and UAV and other aerial equipment. In 
some special terrain areas, the UAVs cannot shoot clearly. In this 
case, ground equipment will be able to make up for this shortcoming. 
The cooperation of multiple machinery and equipment in the future 
may be  the focus of development research. Especially in crop 
modeling, UAVs and scanning instruments can cooperate with each 
other to combine mathematical models, build internal and external 
relationships, and generate complete plant images.

At present, it is difficult to achieve the simultaneous existence 
of multispectral and hyperspectral data on the same machine. The 
use of multispectral data to simulate hyperspectral data to obtain 
different data types by image fusion technology will be a valuable 
research direction in the future. Image fusion techniques can fuse 
different data types, not only multispectral data. The multispectral 
data can be  extracted from the hyperspectral data or inverse 
performance data by specific methods such as mathematical 
equations, but this method is still incomplete and the current 
research is still focused on traditional linear algorithms. Future 
research should focus on studying new models or improving the 
accuracy by further improving machine algorithms.

UAVs play a great role with their unique advantages as the 
current main application platform of multispectral in agriculture. 
The most prominent problem with UAVs at present is the 
endurance problem. In the future, high endurance UAVs should 
be launched, while stability performance, detection accuracy, and 
load capacity are also necessary performance enhancements. In 
addition, economic and efficient multispectral equipment is 
needed as well. The simplicity of operation can reduce the user’s 
learning costs. At the same time, sensor fusion technology can 
also improve its application level, eliminate the possible 
contradictory data between sensors, reduce uncertainty, and 
improve the speed and correctness of the system.

Real-time image processing technology can eliminate the time 
gap between data collection and data analysis, and provide the 
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basis for real-time control of operating equipment. Along with the 
rapid development of deep learning technology, the research on 
agricultural information analysis based on artificial intelligence 
has opened the era of intelligent research on unmanned farms. 
However, in the actual application operation, the uneven network 
coverage in the field limits the real-time transmission of images in 
the cloud, and the current computing performance of embedded 
chips also limits the real-time processing of images at the edge. 
Therefore, this technology is still in the early stage of research. In 
the future, with the popularization of 5G signal, the improvement 
of embedded chip computing power and the breakthrough of 
lightweight network model, the feasibility of real-time image 
processing will be gradually improved, and the foundation for the 
realization of unmanned and intelligent farms will be laid.

Conclusion

The bibliometrics and scientometric approach were applied 
to analyze the publications on multispectral research in 
agriculture from 2002 to 2021. It can be seen that the number of 
publications in agricultural multispectral research has a rapid 
growth trend. The growth rate is obviously significant in recent 
years, maintaining a high growth rate of the literature, which is 
closely related to the development of precision agriculture. The 
study shows that the United States, China, and Spain are the 
countries with the largest research share, with the Chinese 
Academy of Sciences from China being the institution with the 
most publications. The most influential journal is Remote 
Sensing with Mutanga, Dube.timothy, and Chenghai Yang as 
core authors.

Multispectral technology has undergone nearly 50 years of 
development from the launch of ground-accessible land satellites 
in the United States in the 1970s to the present. It is gradually 
developing from the initial exploration stage to the present 
mature model with commercialized equipment and system 
software, and spreading to multiple industries. Based on the 
analysis, the development of agricultural multispectral 
technology from 2002 to 2021 is accompanied by advanced 
sensors and sophisticated algorithms and numerical models in 
agriculture. Especially along with the development of UAV 
technology, the application of multispectral technology in 
agriculture has become more and more extensive, from organic 
matter monitoring such as crops, to inorganic matter monitoring 
such as soil, moisture, nitrogen elements. The future development 
prospect is also more extensive. The advancement of technology 
has jointly promoted the application of multi-spectrum in 
agriculture, and also promoted the development of precision  
agriculture.
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