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Fruit and vegetable picking robots are a�ected by the complex orchard

environment, resulting in poor recognition and segmentation of target fruits

by the vision system. The orchard environment is complex and changeable.

For example, the change of light intensity will lead to the unclear surface

characteristics of the target fruit; the target fruits are easy to overlap with each

other and blocked by branches and leaves, which makes the shape of the fruits

incomplete and di�cult to accurately identify and segment one by one. Aiming

at various di�culties in complex orchard environment, a two-stage instance

segmentation method based on the optimized mask region convolutional

neural network (mask RCNN)was proposed. The newmodel proposed to apply

the lightweight backbone network MobileNetv3, which not only speeds up

the model but also greatly improves the accuracy of the model and meets

the storage resource requirements of the mobile robot. To further improve

the segmentation quality of the model, the boundary patch refinement (BPR)

post-processing module is added to the new model to optimize the rough

mask boundaries of the model output to reduce the error pixels. The new

model has a high-precision recognition rate and an e�cient segmentation

strategy, which improves the robustness and stability of the model. This study

validates the e�ect of the new model using the persimmon dataset. The

optimized mask RCNN achieved mean average precision (mAP) and mean

average recall (mAR) of 76.3 and 81.1%, respectively, which are 3.1 and 3.7%

improvement over the baseline mask RCNN, respectively. The new model is

experimentally proven to bring higher accuracy and segmentation quality and

can be widely deployed in smart agriculture.

KEYWORDS

mask RCNN, instance segmentation, MobileNetv3, boundary patch refinement, green
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Introduction

Around the world, the planting area of orchards is very

vast, and people all over the world have a large demand for

fruit production. However, there are many production links

of fruit, and the work content is huge and redundant. As the

key of production link, fruit picking consumes a lot of human

resources. To liberate the labor force and further expand the

production scale of orchards, it is necessary to develop automatic

mechanical production and management. Fruit picking is the

most time-consuming and laborious link in the production

process. The development of intelligent and automatic picking

has become a necessary trend in the fruit production process

(Luo et al., 2016; Bargoti and Underwood, 2017; Lin et al., 2021b;

Zhang et al., 2021). As the key of automatic picking, visual

recognition system can determine the efficiency of machine

picking. The vision system aiming at accurate location and

segmentation has important research significance for various

automatic agricultural applications (Jana et al., 2017; Fu et al.,

2020; Tang et al., 2020; Chen et al., 2021; Wu et al., 2022).

Compared with manual picking, automatic machine picking can

improve picking efficiency and save labor cost. However, the

fruit growth environment is often complex. The recognition

and location of target fruit by picking robot will be affected by

the factors such as branch and leaf occlusion, dim light, cloudy

and rainy weather, and equipment viewfinder angle, which

limits the development of automatic picking operation. The

development of an excellent vision system can enable the picking

robot to obtain high-precision target fruit positioning and

segmentation results in a complex orchard environment, reduce

the phenomenon of false detection and missed detection caused

by occlusion and the same color system with the background

leaves, and reduce the damage to the fruit surface. Therefore, the

instance segmentation model with strong robustness, stability,

and high accuracy can further improve the picking efficiency,

reduce the labor cost, and improve the yield of fruits and other

agricultural products.

As the core field of artificial intelligence (Nyarko et al.,

2018; Peng et al., 2018; Liu Q. et al., 2019; Jia et al., 2020),

traditional machine learning has milestone significance for the

development of image recognition. Machine learning methods

first need to extract relevant features from many datasets, then

learn the data through algorithms, and finally make prediction

and decision, which is the key to the realization of artificial

intelligence. Tian proposed a recognition algorithm based on

the depth image. The gradient information is obtained from

the depth image, and the segmentation algorithm is introduced

into the red–green–blue (RGB) image. Finally, the center

and maximum radius of the target fruit was scanned to fit

the contour size of the target fruit, so as to realize apple

recognition and location (Tian et al., 2019). Wu proposed a

fruit point cloud segmentation algorithm integrating color and

three-dimensional geometric features. First, the local descriptor

is used to obtain the candidate fruit region, and then, the

global descriptor is used to remove the background region.

This method improves the fruit recognition ability of the

picking robot, but it is difficult to obtain effective three-

dimensional geometric features for irregular curved fruits,

which makes the generalization ability of the algorithm weak

(Wu et al., 2020). Saedi proposed a new model composed of

multiple convolutional, max-pooling, global average pooling,

and fully connected (Fc) layer to solve the problems of

occlusion and light change in orchard environment. Through

the optimization test, Nadam with the best effect is selected

as the optimizer, which improves the accuracy and reduces

the training parameters (Saedi and Khosravi, 2020). Aiming

at the problem that the color of green fruit is similar to that

of leaf, Sun proposed to roughly determine the fruit region

using the attention-based information maximization algorithm

and cut the identified apple region using the adaptive pixel

expansion method to remove the background information, so

as to realize the accurate segmentation of fruit target. However,

for the connected highlight regions in the background, the

segmentation effect is still not ideal (Sun et al., 2020). Feng

proposed a forward-looking infrared camera based on multi-

spectral dynamic imaging technology to obtain fruit images.

The candidate fruit region is located based on the pseudocolor

and texture information of multi-spectral dynamic image (Feng

et al., 2019). Most of the fruit recognition methods based on

machine learning recognize and segment the fruit based on the

texture features, color, boundary shape, grayscale value, and so

on. However, the real orchard environment is often complex,

and the picking robot will encounter various difficulties in the

complex orchard environment. For example, the same color

system between background leaves and green fruits makes it

difficult to distinguish colors, the serious occlusion and overlap

between fruits lead to incomplete fruit shape, and the change

of light intensity leads to unclear fruit representation. These

problems seriously hinder the development of machine learning.

With the increasing volume and complexity of application

data, the method of manually extracting image features from

data by machine learning cannot deal with the problem quickly

and simply. As a new branch derived from machine learning,

deep learning does not need to extract features manually, and

there are many layers of neural network. In theory, it can

be mapped to any function to solve more complex problems

(Hussain et al., 2020; Naranjo-Torres et al., 2020; Jia et al.,

2021; Lin et al., 2021a). Ilyas proposed convolutional encoder–

decoder network for strawberry fruit maturity recognition and

diseased fruit and introduced adaptive receptive field, channel

selection module, and bottleneck module to realize the accurate

recognition of strawberry fruit, but the model could not segment

a single target (Ilyas et al., 2021). Aiming at many problems

in complex orchard environment, Kang proposed a one-stage

detector DaSNet-v2. DaSNet-v2 used the lightweight backbone

network (LW-Net) to realize the tasks of fruit detection and
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instance segmentation, and semantic segmentation of branches.

The three recognition tasks are combined into a single network

architecture to realize the accurate recognition of fruits (Kang

and Chen, 2020). To predict crop pests and diseases at an early

stage, Kavitha Lakshmi et al. proposed an improved framework

for detecting plant diseases based on pixel-level mask region

convolutional neural networks. The model can effectively locate

and segment the pest and disease sites of crops by adjusting

the proportion of anchor frames and backbone structure in the

region generation network to improve the accuracy and speed

(Kavitha and Savarimuthu, 2021). To detect the morphological

features of leaves and plant specimens, Triki proposed an

instance segmentation method based on deep learning, namely,

deep-leaf. This method is used to improve the leaf detection

and pixel segmentation based on the traditional mask RCNN

model. It can segment the leaves of different families, measure

the length and width of the leaves, and reduce the recognition

error. However, the blade detection with missing shape is not

considered (Triki et al., 2021). The recognition accuracy of

the instance segmentation model based on deep learning is

significantly improved compared with that based on machine

learning. Specifically for algorithms with a large amount of

data, deep learning can solve more complex problems with

a simple end-to-end processing method. However, the above

methods based on deep learning are still not accurate enough

for the recognition and segmentation effect of target fruit.

The limitations and benefits of previous studies are listed

in Table 1.

To improve the segmentation quality and recognition

accuracy of the model, the flexible MobileNetv3 (Howard et al.,

2019) is proposed to be used as the backbone network of

mask RCNN (He et al., 2017) to reduce the complexity of

the algorithm, and the post-processing module boundary patch

refinement (Tang et al., 2021) (BPR) is added at the end of the

optimized mask RCNN model to improve the quality of the

segmentation mask. The main contributions of the new model

are as follows:

1) A lightweight backbone network, MobileNetv3, is used in

the new model, which is able to reduce the computational

complexity of the two-stage model, reduce the storage

resource requirements of the picking robot, and improve

the accuracy of the algorithm.

2) A plug-and-play BPR post-processing module is added to

the new model to optimize the generated coarse masks,

which can effectively correct the erroneous pixels and

obtain higher resolution feature maps to improve accuracy.

3) In this study, persimmon dataset was produced to validate

the accuracy results of the model, and ablation experiments

were conducted with other segmentation models.

4) The new model has strong generalization ability and can

be effectively deployed to other automatic fruit picking

scenarios, such as apples, cucumbers, and other crops.

The subsequent sections of this paper are organized as

follows: In Section Green fruit datasets, the process of making

the perspex dataset is described in detail, and some of the data

images are shown and introduced. The general structure of

the new model is presented in a general divisional structure

in Section Overall structure of model. Following the flow of

the model, first, the lightweight backbone network MobileNetv3

of the new model is introduced in Section Backbone network

MobileNetv3. The prediction output process of the model is

presented in Section Mask output based on the optimized Mask

RCNN. The process of optimizing the coarse mask of the

instance boundary by the BPR module is described in Section

Boundary patch refinement post-processing module. The loss

function of the model is introduced in Section Loss function.

In Section Data analysis and model comparison, the validation

results of the new model and the visualization images are

presented, and a comparison test with some other mainstream

models is performed. A summary of this study is presented in

Section Conclusion.

Green fruit datasets

Datasets collection and labeling

In this study, persimmons in the immature period were

selected as the research object. The fruits in this period were

green and round, which met the research requirements. The

reason why green persimmon is selected as the research object

in this study is to facilitate the subsequent full-time detection of

fruits and lay a foundation for identifying other fruit varieties

with similar growth environment.

Image collection object: Green persimmons in growing

period, the persimmon varieties include “niuxin” persimmon,

“jixinhuang” persimmon, “jingmian” persimmon, etc.

Image collection location: The mountain behind Shandong

Normal University (Changqing campus) and the southern

mountainous area of Jinan City.

Image collection equipment: Canon EOS 80D Single

Lens Reflex camera. The camera used complex metal oxide

semiconductor image sensor. The image resolution was 6,000×
4,000 pixels, saved in JPG format, 24-bit color images.

Image collection environment: The single lens reflex camera

was used to collect green fruit images from a variety of different

angles in a real complex orchard environment. The shooting

angles of the target fruit include front, side, close range,

long-range, and other shooting angles. The image acquisition

time was selected in the morning, noon, and night for three

centralized acquisition in different time periods. In the early

morning, fruit images were collected from various angles under

soft light, and frost and dew may appear on the fruit. At noon,

fruit images were collected at various shooting angles (including

forward light, reverse light, and side light) in strong light
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TABLE 1 Overview of previous research work.

Algorithm Algorithm

overview

Variants for fruit

recognition

Benefits Limitations

Support Vector Machine

(SVM)

SVM is a linear binary

classifier with the largest

interval defined in

feature space

Fruit detection and

grading algorithm

(Bhargava and Bansal,

2020); SVM classifier

algorithm (Patel et al.,

2019)

A. Strong robustness; B.

High accuracy

A. Unable to multi classify;

B. High memory need

Cluster Analysis (CA) CA is the analytical

process of grouping

datasets into multiple

classes consisting of

similar objects

K-means clustering

algorithm (Pham and

Lee, 2015; Sidehabi et al.,

2018);

Density peaks clustering

algorithm (Wang et al.,

2017; Guan et al., 2021)

A. Fast convergence

speed of the algorithm;

B. Easy and

efficient algorithm

A. Poor anti-interference

ability; B. Clustering centers

need artificial intervention

and can easily lead to

subjective errors

Convolutional Neural

Network (CNN)

CNN is a deep neural

network with

convolutional structure,

which can be directly

used for image

processing

Deep leaf algorithm

(Triki et al., 2021); Based

mask RCNN (Liu X.

et al., 2019; Yu et al.,

2019); FoveaMask (Jia

et al., 2021); Dense to

detection algorithm (Wei

et al., 2022)

A. Anchor-based

methods have high

accuracy; B. Anchor-free

methods have low

complexity and faster

speed

A. Unable to balance speed

and accuracy; B. Poor

recognition of small and

occluded objects

Generative Adversarial

Network (GAN)

Generating networks and

discriminating networks

interact to learn the

distribution of data

GAN data augmentation

(Bird et al., 2022); GAN

review (Olaniyi et al.,

2022)

A. Fast sample

generation; B. Reduce

data preparation

A. Model training instability;

B. The model is not easy to

converge

environment. At night, fruit images were collected from various

shooting angles under the environment of light emitting diode

artificial auxiliary light source. The fruit images collected in three

different time periods need to fully consider the complexity of

orchard environment, ensure that the collected data are random

and representative, and can maximize the real-time operation

requirements of agricultural equipment.

A total of 568 persimmon images were collected and

preprocessed in this research experiment. First, gray processing

was performed on the color image to reduce the amount of

data to be processed. In this study, the mean grayscale method

was adopted, and the RGB channel pixels were averaged as the

grayscale value. The acquired data were then subjected to image

enhancement to enhance the useful information of the image,

improve the visual effect of the image, expand the differences

between different object features in the image, and suppress the

uninteresting features. In this study, the histogram equalization

image enhancement method was used to nonlinearly stretch

the image and redistribute the image pixel values, so that

the number of pixels in a certain gray range is roughly the

same. Finally, the contour and type of the target was labeled

with LabelMe software, and the processed image was made

into persimmon dataset. As shown in Figure 1, the dataset

includes many complex situations, such as overlap, rainy day,

backlight, occlusion, smoothing, side light, long-range, close-

up, night view, and so on. The use of datasets containing many

different complex environment images can make the research

obtain more representative and convincing results. To meet the

requirements of real-time orchard segmentation and reduce the

follow-up experimental time, the image resolution was 6,000 ×
4,000 pixels compressed to 600× 400 pixels.

Overall structure of model

To solve the problem that it is difficult for intelligent picking

robot to accurately locate the target fruit and segment the target

fruit with high quality in complex orchard environment, a two-

stage instance segmentation method based on anchor frame is

proposed in this study. The powerful backbone network and

efficient rough mask post-processing module of the new model

are beneficial to greatly improve the accuracy and robustness
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FIGURE 1

Green persimmon fruit images under di�erent complex orchard environments. (A) Overlapps, (B) Back-sunlighting fruit, (C) Occlusions, (D)

Direct-sunlighting fruit, (E) Distant fruit, (F) LEDs-lighting fruit, (G) Close shot the fruit, (H) Side- Back-sunlighting fruit, (I) Fruit after rain.

FIGURE 2

The overall structure of the optimized mask RCNN. The features of the input image are extracted through MobileNetv3 and FPN structure. The

extracted features are used for subsequent classification, regression, and mask operations. Finally, the final segmentation result is obtained by

optimizing the rough mask boundary of the boundary through the BPR module.

of the algorithm, so as to make the target fruit meet the

requirements of high-quality and accurate segmentation.

The classical mask RCNN, as an anchor two-stage

segmentation model, has high computational complexity, large

number of parameters, and slow speed, there is still much room

for improvement in accuracy and efficiency, and the segmented

target mask profile is relatively coarse. As shown in Figure 2, to

solve these tricky problems, the new model uses MobileNetv3
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FIGURE 3

Overall structure of MobileNetv3 network.

FIGURE 4

Overall structure of squeeze-and-excite.

as the backbone network to reduce the complexity of the model

and further improve the accuracy of the model in identifying the

target fruit. After the backbone network, the feature pyramid

network (Lin et al., 2017) (FPN) is connected to realize multi-

scale feature fusion. The detail information of the bottom layer

and the semantic information of the top layer are fused to

increase the low-level receptive field, so that the small target fruit

can obtain more context information. The backbone structure of

MobileNetv3 and FPN can be flexibly integrated into different

segmentation models and bring more efficient and simple

segmentation results. The optimized mask RCNN is used as a

two-stage segmentation model. After feature extraction, region

proposal network (RPN) is used to generate candidate region in

the first stage. Additionally, in the second stage, the classification

and regression of region of interest (ROI) are realized through

the Fc layer. At the same time, the mask prediction branch

of ROI is added in parallel with the classification branch and

regression branch. The classification branch and regression

branch use the Fc layer as the classifier, and the mask branch

uses the Fc network to realize the binary mask segmentation

of ROI. The segmentation mask generated by the optimized

mask RCNN model is still rough, especially the segmentation

of contour boundary is not smooth enough. For the small

details of the instance edge, the processing is not accurate, and

the segmented contour is not appropriate to the shape of the

real target. Therefore, BPR post-processing module is used to

optimize the rough mask boundary patches to generate more

accurate and smooth contour information. Compared with the

traditional mask RCNN model, the optimized model further

improves the pixel resolution and mask segmentation quality.

Backbone network MobileNetv3

A successful backbone network plays a crucial role in image

processing, and a better backbone network should reduce the

computational complexity while improving the accuracy and

stability of the model. To meet the requirements of automated

picking systems that can pick target fruits in real time and

the storage resources required by mobile devices, the backbone

network for vision systems should be a lightweight MobileNetv3

network. The MobileNetv3 network is a model framework that

can be used on the embedded devices with a low number of

parameters and meets the accuracy requirements compared to

Frontiers in Plant Science 06 frontiersin.org

https://doi.org/10.3389/fpls.2022.955256
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2022.955256

TABLE 2 Specification for MobileNetv3.

Input Operator Exp size Out SE Non linearity Stride

2242 × 3 Conv2d, 3× 3 - 16 - H-Swish 2

1122 × 16 Bneck, 3× 3 16 16
√

ReLU 2

562 × 16 Bneck, 3× 3 72 24 - ReLU 2

282 × 24 Bneck, 3× 3 88 24 - ReLU 1

282 × 24 Bneck, 5× 5 96 40
√

H-Swish 2

142 × 40 Bneck, 5× 5 240 40
√

H-Swish 1

142 × 40 Bneck, 5× 5 240 40
√

H-Swish 1

142 × 40 Bneck, 5× 5 120 48
√

H-Swish 1

142 × 48 Bneck, 5× 5 144 48
√

H-Swish 1

142 × 48 Bneck, 5× 5 288 96
√

H-Swish 2

72 × 96 Bneck, 5× 5 576 96
√

H-Swish 1

72 × 96 Bneck, 5× 5 576 96
√

H-Swish 1

72 × 96 Conv2d, 1× 1 - 576
√

H-Swish 1

72 × 576 Pool, 7× 7 - - - - 1

12 × 576 Conv2d, 1× 1, NBN - 1280 - H-Swish 1

12 × 1280 Conv2d, 1× 1, NBN - k - - 1

NBN represents no batch normalization. “-” represents not available. Bneck represents bottleneck. “Exp size” represents the size of the expanded dimension. “Out” represents the output

feature matrix channel. “SE” represents squeeze-and-excitation.

other lightweight networks. The model can be easily applied

to segmentation or detection tasks. The overall structure of

the Mobilenetv3 network is illustrated in Figure 3. The overall

structure of this network differs from the residual network that

first descends dimensionality and then raises dimensionality, but

first raises dimensionality and then lowers dimensionality.

As shown in Figure 3, the overall structure of MobileNetv3

can be divided into four parts. In the first part, MobileNetv3

uses a 1 × 1 extension layer to extend the low dimension to

the high dimension. It also uses batch normalization after the

extension layer to avoid the gradient dispersion problem in

the subsequent activation functions. Note that the nonlinearity

here contains both hard-swish and ReLU activation functions,

because the activation functions used are not consistent, so

nonlinearity is used uniformly. The second part is a 3 ×
3 depthwise convolution, also using batch normalization and

nonlinearity after the structure. The third part is a squeeze-

and-excite (Hu et al., 2018) module similar to the channel

attention mechanism. Squeeze-and-excite, as a plug-and-play

module, is able to increase the weights of useful channels to

enhance the model’s ability to extract features. The fourth part is

the projection convolution, which uses a 1 × 1 projection layer

and BN.

Squeeze-and-excitation

Since each channel has different degrees of importance,

an attention mechanism is introduced in this study to locate

to the information of interest and suppress the unimportant

information. The overall structure of the squeeze-and-excitation

module is shown in Figure 4. First, the feature map is subjected

to a global averaging pooling operation, which turns each two-

dimensional feature map into a real number. It is equivalent to

performing a squeeze operation to squeeze the size of the feature

map from H×W×C to 1 × 1×C size. The feature map is then

passed through Fc1, and the number of Fc1 nodes is 1/4 of the

number of channels. ReLU is used as the activation function after

Fc1. The number of nodes in Fc2 is the same as the previous

number of channels. Finally, the real numbers of each channel

are multiplied as weights with the corresponding feature map at

the beginning.

Hard-swish activation function

In the previous Mobilenetv2 structure, ReLU6 was used

as the activation function after the bottleneck structure. This

study is inspired by swish (Elfwing et al., 2018), which can

better improve the accuracy of the model. However, swish has

the problem that it is complicated to calculate and derive, and

it is not friendly to the quantization process. To solve this

problem, the sigmoid function σ (x) in swish function is replaced

by segmented linear hard analog. Therefore, in this paper, the

hard-swish function is defined as the Equation (1):

Hard − swish[i] = i
ReLU6(i+ 3)

6
(1)

where ReLU=min[max(i,0),6].
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Network layer details for MobileNetv3

To further understand the network structure of

MobileNetv3, Table 2 lists the details of each network layer.

In Table 2, the input feature size, the convolutional operation,

the expanded dimension, and the output channel size for each

layer of the network are shown in turn. In addition, the table

enables to visualize whether the network uses the squeeze-

and-excitation module and whether the nonlinearity used is

hard-swish or ReLU. In addition, the stride of each network

is given.

Mask output based on the optimized
mask RCNN

The task of instance segmentation is different from object

detection. The former not only needs to find all target fruits in

the image, but also needs to segment each target fruit accurately.

Based on the optimized mask RCNN, a two-stage segmentation

model can accurately locate all object instances in the image and

provide high-quality mask segmentation for each instance. The

features extracted from the input image through MobileNetv3

and FPN structure are used for subsequent classification branch,

regression branch, and mask branch. The implementation

process can be summarized as the following three steps: (1) The

extracted feature map generates region proposals in the feature

map through RPN and performs candidate box regression and

category differentiation for each region proposal. (2) The ROI

align operation was used to align the features of the extracted

ROI, the ROI to a fixed size was cut, and the feature map got

after all ROI regularization. (3) The obtained feature map is

subjected to boundary box regression and category prediction

through the Fc layer. At the same time, additional mask branch

is added to realize semantic segmentation of ROI and generate

binary mask.

As shown in Figure 2, step 1 takes the features extracted

from the backbone as the input of the region proposal network

RPN and generates a region proposal. The specific process is

shown in Figure 5. The featuremap extracted from the backbone

is used as the input of RPN, and k candidate windows (k =
9, 9 windows have 3 different shapes and 3 different aspect

ratios) are set on each vector of the input feature map using a

sliding window of 3× 3 size as the initial detection box, namely,

anchors. The size of each feature map is H × W × 256; that is,

each vector is 256 dimensions and has k anchors. Each anchor

should be distinguished between positive and negative samples.

A 256-dimensional vector passes through the classification layer

to obtain 2K score (i.e., the confidence of anchor’s foreground

and background). Then, through the regression layer, we get (x,

y, w, and h) 4K offset coordinates regressed with the ground

truth. RPN structure uses softmax (Horiguchi et al., 2019) layer

as classifier to judge whether anchors belong to positive samples

or negative samples and then uses boundary box regression to

modify the anchor box to obtain accurate proposals.

The region proposals generated by RPN and the features

extracted from the backbone are used as the input of ROI align

layer in step 2. After synthesizing this information, proposal

feature maps are extracted. Unlike the ROI pooling operation in

faster RCNN (Bai et al., 2020), mask RCNN uses ROI align layer

and bilinear interpolation algorithm to output the coordinates

of pixels, which can avoid the problem of position quantization

error caused by ROI pooling. Because ROI pooling extracts

a 7 × 7 size feature map from each ROI, it is necessary to

quantify the ROI of floating-point numbers into cells, which

will lead to the error between ROI and extracted features and

reduce the accuracy of the predicted mask. The application of

ROI align greatly improves the quality of mask segmentation

and improves the recognition accuracy of target fruit based on

optimized mask RCNN. The fixed size ROI obtained by ROI

align operation is used as the input of the Fc layer, and each ROI

is subjected to category prediction and detection box regression.

The specific process is shown in Figure 2. The extracted ROI

obtains the confidence of the category and the offset of the

coordinates, respectively, through the classification branch and

the regression branch. At the same time, the model adds mask

branch to divide ROI into binary mask; that is, ROI realizes

semantic segmentation through fully convolutional network to

obtain rough instance mask.

The new model realizes the goal of locating and segmenting

the target fruit on the image through three branches:

classification branch, regression branch, and mask branch.

At this time, the optimized mask RCNN has obtained the

preliminary segmentation mask, but the quality of binary

segmentation mask still has a lot of room to improve.

Boundary patch refinement
post-processing module

The traditional mask RCNN has low feature spatial

resolution and a small proportion of boundary pixels. These

problems lead to the segmentation result of the target fruit that

is not fine enough, resulting in rough boundary shape. The new

model uses BPR as the post-processing module. BPR uses the

strategy of cropping first and then refinement to optimize the

rough boundary and correct the wrong pixels at the boundary

of the target fruit. Due to the unique performance of instance

contourmask optimization, BPRmodule can effectively improve

the recognition rate of target fruits with serious occlusion and

overlap and reduce the occurrence of false detection and missed

detection. The refinement module first extracts dense small

boundary patches for the instance boundary predicted by the

optimized mask RCNN and then optimizes the boundary image

patches through the refinement network with higher resolution.
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FIGURE 5

Structure diagram of RPN.

As shown in Figure 6, first, the initial rough segmentation

result [shown in Figure 6 (1)] generated based on the optimized

mask RCNN model is used as the input of the BPR module.

Then, a large number of boundary patches are densely

distributed along the boundary of the target fruit using the

sliding window algorithm [shown in the red rectangle in

Figure 6 (2)]. The central area of the rectangular boundary

patch covers the pixels of the instance boundary, but these

boundary patches contain a lot of redundant information,

resulting in a lot of unnecessary calculations. Therefore, the

non-maximum suppression (Karthikeyan et al., 2021) (NMS)

algorithm (the threshold of NMS is set to 0.25) is used to filter

out some redundant and overlapping boundary patches [shown

in Figure 6 (3)], so as to take into account the accuracy and

speed of the algorithm. After NMS algorithm, the corresponding

mask patches were extracted [shown in Figure 6 (5)] from the

reserved image patches [shown in Figure 6 (4)], these patches

were cut into the same size, and they were used as the input of the

refinement network at the same time. The mask patch extracted

from the rough instance mask edge provides the location and

semantic information for the refinement network and avoids

the repeated learning of the refinement network. In this way,

the refinement network only needs to learn how to locate the

hard pixels around the decision boundary and locate them in

the correct position.

The BPR module uses high-resolution network v2 (Sun

et al., 2019) (HRNetV2) as the refinement network for binary

semantic segmentation of each extracted boundary patch.

HRNetV2 realizes the feature fusion of high and low resolutions.

After sampling the low-resolution feature map, it is spliced

with the high-resolution feature map. After convolution, the

softmax layer generates the segmentation prediction map. As

a refinement network, HRNetV2 makes the processing of

boundary patches that have high resolution, so as to improve

the quality of mask. Note that in this model, the number of

input channels is 4 (RGB image block is 3 + mask block

is 1), and the number of output channels is 2 (background

color and foreground color). Moreover, the extracted mask

patches provide positioning and semantic information for the

refinement network. The refinement network only needs to

correctly classify the wrong pixels at the boundary extracted

by NMS algorithm, which speeds up the training convergence.

All the refined mask patches (as shown in Figure 6 (6)]

are reassembled into the instance boundary to obtain high-

resolution expression and high-quality instance segmentation

results. Figure 6 (7) shows the comparison of the optimized

segmentation results with the pre-assembly. In the BPR training

process, the model only extracts boundary patches from the

target instances with IOU > 0.5 of prediction mask and

real target mask (other target instances still participate in the

inference process). The corresponding real mask patch uses

pixel-level binary cross-entropy loss to supervise the output of

the refinement network.

Overlapping target fruits inevitably share the same boundary

patch, but the learning objectives are different. This problem

can be solved by combining different mask patches for

each instance. When the two target fruits overlap, the

boundary patches overlap. The final result is to take the

average value and use 0.5 as the threshold to judge whether

a pixel belongs to the foreground or background. BPR

model can correct the wrong segmentation of the boundary

pixels of the target instance, and to a certain extent,

it can distinguish the target fruits with overlapping and

branches and leaves, so as to avoid the wrong scene of

identifying two overlapping fruits as one fruit. The refinement

network improves the accuracy and stability of the model to

identify the target fruit and obtains high-quality target fruit

segmentation results.
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FIGURE 6

Overall structure diagram of BPR. Where (5) and (6) represent rough mask patches and refined mask patches respectively. “After” represents the

result graph after mask optimization. “Before” represents the result before the rough mask optimization.

FIGURE 7

Overall experimental flow chart based on optimized mask RCNN model.

Loss function

Loss function is the most basic and key element in deep

learning. It can measure the quality of model prediction, show

the gap between predicted value and actual data value, and make

the model obtain optimal and faster convergence. Choosing the

correct loss function can help the model learn how to focus on

the correct set of features in the data. The optimization-based

mask RCNN uses the sum of the loss functions of multiple tasks

as the final loss function. The loss function consists of Lcls, Lreg,

Lmask three parts, using Log loss, Smooth L1 loss, and binary

cross-entropy loss, respectively, and the overall loss function is
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TABLE 3 Based on the optimized mask RCNNmodel, the average precision, and average recall of persimmon datasets at di�erent thresholds, sizes,

and quantities are analyzed.

Metric mAP AP50 mAPS mAPM mAPL mAR mARS mARM mARL

Value (%) 76.3 93.0 33.2 78.4 90.7 81.1 45.0 83.3 92.5

The lower right corner of the evaluation character in the table represents the size of the target fruit. S represents the small size of the target fruit; that is, the range of the rectangular area is

[0, 32*32]. M represents medium size target fruit; that is, the range of rectangular area is [32*32, 96*96]. L represents the large size target fruit; that is, the range of the rectangular area is

[96*96,∞]. The number in the lower right corner of the character indicates that the threshold of IoU is 0.5.

defined as Equation (2):

L(
{

pi
}

, {ti} , {ω}) =
1

Ncls
6i(−log[p∗i pi + (1− p∗i )(1− pi)])

+ λ
1

Nreg
6ip

∗
i R(ti − t∗i )−

6i[p
∗
i ∗ ln(σi)+ (1− p∗i ) ∗ ln(1− σi)]

where pi represents the probability of anchor i being predicted as

an object, ti represents the vector of bounding box coordinates

for predicted anchor i, and ω represents the set of weights

solved. p∗i stands for ground truth object label and t∗i stands

for true box coordinate. Ncls represents the number of anchors

in minibatch. Nreg represents the number of anchor locations.

R represents smooth L1 loss function. σi is the return value

of the sigmoid function calculated on sample i, based on

the parameter ω. Regarding the definition of R and p∗i
in Equation (2) as shown in Equation (3) and Equation

(4), respectively.

p∗i =

{

0, negative label

1, positive label
(2)

R = SmoothL1(x) =

{

0.5x2, if |x| < 1

|x| − 0.5, otherwise
(3)

where x = ti − t∗i .

Data analysis and model comparison

Experiment operation platform

The experiment was performed on a personal computer,

with a processor of Inter (R) Core (TM) i5-7200U, and

RadeonTM R7 M445 graphics card with an 8GB of

memory. The software environment was Ubuntu 16.04,

python 3.6, and pytorch 3.7. The hardware environment

is Intel i7-8700K, random access memory 16G, and

Nvidia GeForce GTX 1080 Ti Graphics Processing

Unit (GPU).

Model training

The whole process of experimental research includes

data collection, dataset production, model training, and

testing. The specific flow chart is shown in Figure 7.

In the process of model training, the setting of super

parameters plays an important role in model training

and optimization.

The new model adopted initial weight of preliminary

training based on common objects in context datasets, which

helps to stabilize the loss function and improve the training

accuracy. For model training, 10 epochs were iteratively trained

using minibatch and the total number of iterations was 16,000.

In addition, the initial learning rate was set to 0.0025, the

decay to 0.0001, and the momentum to 0.9. The learning rate

will control the learning progress of the model in the iterative

process. In the gradient descent method, the given unified

learning rate is given, and the whole optimization process is

updated with the determined step size. In the early stage of

iterative optimization, if the learning rate is large, the forward

step size will be longer. At this time, the gradient descent

can be carried out at a faster speed, and in the later stage of

iterative optimization, the value of learning rate and step size

will be gradually reduced, This will help the convergence of the

algorithm and make it easier to approach the optimal solution.

The number of iterations refers to the number of times, the

whole training set is inputted into the network for training.

When the difference between the test error rate and the training

error rate is small, the current number of iterations can be

considered appropriate.

Evaluation index

Selecting the appropriate evaluation method in the research

process can quickly find the possible problems in the process

of model selection and training and iteratively optimize the

model. In this study, the average precision (AP) and average

recall (AR) are used to evaluate the performance of the instance

segmentation model. Precision refers to the proportion of the

number of positive samples correctly classified by the classifier

to the number of positive samples classified by the classifier.
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FIGURE 8

Visual diagram based on optimized mask RCNN test. (A) Distant fruit, (B) LEDs-lighting fruit, (C) Fruit after rain, (D) Overlapps, (E) Close shot the

fruit, (F) Occlusions.

TABLE 4 Comparison of instance segmentation performance of five di�erent networks.

Metric (%) mAP AP50 mAPS mAPM mAPL mAR mARS mARM mARL

SOLOv2 58.9 85.1 18.7 63.2 68.7 67.9 29.9 70.7 78.2

Mask RCNN 73.2 90.6 29.6 75.2 87.6 77.4 41.6 79.3 90.3

YOLACT 64.6 88.6 20.0 67.1 81.2 72.5 34.5 74.2 86.9

Cascade_RCNN 71.4 90.7 23.9 72.7 88.5 75.5 36.9 77.2 90.6

Ours 76.3 93.0 33.2 78.4 90.7 81.1 45.0 83.3 92.5

Recall refers to the proportion of the number of positive samples

correctly classified by the classifier to the number of all positive

samples. The calculation method of accuracy rate and recall rate

is shown in formula (5) and formula (6):

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

where TP represents the positive sample predicted as positive

by the model, FP represents the negative sample predicted as

positive by the model, and FN represents the positive sample

predicted as negative by the model.

Under different IOU thresholds, the values of precision and

recall will also change. Average precision summarizes the shape

of the accuracy/recall curve and is defined as the average of the

accuracy over a set of 11 equally spaced recall levels [0, 0.1, 0.2,...,

1]. The average accuracy can be expressed as formula (7):

AP =
∫ 1

0
p(r)dr (6)

where p (r) is a function with r as a parameter.

In fact, this integral is very close to the change of precision

value multiplied by recall value for each threshold and then

accumulate the products obtained under all thresholds. As

shown in formula (8):

AP ≈ 6
N
k=1P(k)1r(k) (7)

where N represents the number of all pictures in the test set,

P (k) represents the value of precision when k pictures can be
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FIGURE 9

Comparison of segmentation e�ects of five di�erent models.

TABLE 5 The e�ect comparison of three di�erent models with or without BPR module.

Metric (%) mAP AP50 mAPS mAPM mAPL mAR mARS mARM mARL

SOLO 37.8 60 5.3 36.6 62.1 49.4 10.4 49.2 72.1

SOLO+ 39.7 62.3 7.1 39 64.5 53 12.7 51.2 74.6

D2Det 58 83.2 40.6 65 87.8 61.9 45.9 69.1 89.6

D2Det+ 61.1 86 43.3 67.9 90.1 65.1 48.8 72 92.7

Mask RCNN 73.2 90.6 29.6 75.2 87.6 77.4 41.6 79.3 90.3

Mask RCNN+ 75.8 92.9 32.5 77.9 89 80.6 44.5 82 92.1

“+” represents that BPR module is added to the model.

recognized, and1r(k) represents the change of recall value when

the number of recognized pictures changes from k – 1 to k.

Result and analysis

Segmentation e�ect of green target fruit

After the network training based on the optimized mask

RCNN model is completed, the optimal model is selected based

on mAP index, and the performance of the new model is

comprehensively evaluated. The average precision and average

recall of the new model based on persimmon dataset are

recorded in Table 3. Figure 8 shows the visual segmentation

results of some datasets, including the segmentation results of

green persimmons in different complex orchard environments

such as night, rainy day, occlusion, overlap, and distant view.

This paper especially selects the visual pictures with complex

environment as the representative, and each complex condition

is displayed with two different pictures. Note that each condition

marked in the figuremay contain a variety of complex situations,

such as distant view, occlusion, and overlap in Figure 7A below.

It can be seen from the Figure 8 that the target fruit often

appears in complex and difficult scenes, just as a target fruit will

appear many unstable factors such as occlusion, unclear light,

rainy days, color system with background leaves, and so on.

The complex and changeable orchard environment brings great

challenges to fruit and vegetable picking. However, from the

segmentation results, the new model has less missed detection

and false detection for the target fruit in various complex scenes,

and the positioning of the target fruit is accurate, which meets

the needs of high-quality segmentation. Even if the target fruit

is not annotation due to shooting blur and other reasons, it

can still be segmented. Therefore, the optimized mask RCNN

model overcomes the difficulties caused by incomplete boundary
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information and the similarity between fruit color and leaf color

and has strong generalization ability and robustness.

Table 3 shows the different average precision and average

recalls obtained from the green persimmon dataset under

different IOU thresholds and quantities and target fruit size.

According to the analysis in Table 3 and Figure 8, the new

model has the best effect on large target fruit segmentation

(AP achieved 90.7%), and all targets in the picture can be

recognized and achieve high-quality segmentation. For the fruit

with small vision, the segmentation effect is slightly worse (AP

value is 33.2%), but most of the fruit can still be completely

recognized, and only the objects at the boundary of the image or

blurred cannot be recognized. According to Figure 8, it can be

observed that when the target fruit is covered and overlapped by

branches and leaves (as shown in Figures 8F,D), although only

a small part of the target is exposed, it can still be accurately

identified. Combined with the analysis of tables and images, it

can be concluded that: The distribution of prospective target

fruits is dense, the target size is small, and it is easy to have

large area occlusion and overlap, resulting in the serious lack of

boundary information. This is the biggest difficulty in intelligent

picking. However, in terms of the overall segmentation effect,

the optimized mask RCNN model is ideal for the segmentation

of target fruits in various complex scenes. Even for the heavily

occluded and overlapping target fruits, it still achieves high-

precision and high-quality segmentation mask. Thanks to the

powerful backbone network and unique post-processingmodule

of the new model, it can better process edge information

and improve resolution. Even for fruits with incomplete edge

information, it can still achieve accurate positioning and high-

quality segmentation.

Algorithm comparison

The new model takes mask RCNN as the baseline, carries

out a series of optimization, and achieves high accuracy and

high-quality segmentation mask. Moreover, in the process of

experimental design, this study fully considered the objectivity

and authenticity of experimental evaluation. Therefore, ablation

experiment was adopted to fully verify that the new model has

higher accuracy and higher quality for green target fruit. In this

study, the newmodel is compared with four algorithms: baseline

mask RCNN, SOLOv2 (Wang et al., 2020), YOLACT (Bolya

et al., 2019), and Cascade_RCNN (Cai and Vasconcelos, 2019).

Among them, mask RCNN model and Cascade_RCNN model

are the two-stage instance segmentation methods, whereas

SOLOv2 and YOLACT are one-stage segmentation models.

To ensure the objectivity and effectiveness of the comparative

experiment, the same super parameters will be set in the

experimental process, and the same persimmon dataset will be

used for testing. The data results of the test are entered as shown

in Table 4.

As shown in Table 4, the optimized mask RCNN leads other

models with average recall of 81.1% and average precision of

76.3%, respectively. Compared with the baseline mask RCNN,

the AP and AR values of the new model increased greatly.

Moreover, the recognition rate of small target fruit in the

new model is significantly higher than that in other models,

especially for the recall rate. Through further analysis of the

experimental results, it is found that due to the efficient post-

processing operation of BPR module, the phenomenon of

repeatedly identifying overlapping multiple targets as a whole

and identifying leaves as fruits is reduced in the new model.

This shows that the new model reduces the false detection rate

and missed detection rate to a certain extent. The experimental

data show that a series of optimization of mask RCNN greatly

improves the performance of the model, which fully proves the

feasibility of this research method. The dataset of this study

contains a large number of complex scenes, but the model

still achieves satisfactory average precision and average recall,

which can meet the requirements of application to the field of

agricultural intelligent picking.

As shown in Figure 9, the segmentation effects of five

different models are shown. According to the analysis of Figure 9

and Table 4, SOLOv2 has the worst effect, the segmentation

effect of the experiment is not clear, the boundary shape

is incomplete, and there are a lot of missed detection. The

experimental results based on the optimized mask RCNNmodel

are the best. Both the accuracy and the quality of segmentation

are better than other models. The segmentation quality of

YOLACT and Cascade_RCNN models is relatively good, but

they are prone to missed detection and false detection, and the

accuracy is far lower than that of the newmodel. The recognition

accuracy of mask RCNNmodel is second only to the newmodel,

but the segmentation quality of mask RCNN model is poor and

the processing of edge pixels is not accurate enough. It is very

easy to repeatedly recognize multiple target fruits as a whole.

This paper has important research value for the optimization of

mask RCNN. At the same time, the model is optimized from the

two aspects of segmentation quality and recognition accuracy, so

as to realize the real high-quality accurate segmentation. Based

on the performance of optimized mask RCNN model with high

accuracy, strong robustness, good generalization ability, and

high segmentation quality, it is of great significance to deploy

to the field of intelligent agriculture.

Ablation study

To verify the effectiveness of BPR module, this study

conducted additional ablation experiments based on the

persimmon dataset. In the training, the NMS threshold of BPR

modules added to all models is set to 0.25. In the inference, set

NMS to 0.55. HRNetV2_W18_Small is used as the optimized

network of BPR module, and the size of the extracted boundary

patches is 64 ∗ 64 without padding. Then, boundary patches are
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resized to 256 ∗ 256 as the input of BPR. In this experiment, the

influence of BPRmodule on the accuracy and recall of the model

is verified by controlling the variable BPR module while keeping

other settings unchanged.

This study used three different models to verify the

effectiveness of BPR module, including one-stage and two-stage

segmentation models. The experimental results are shown in

Table 5. By analyzing the data in Table 5, it was found that

the model with the addition of the BPR module had higher

AP and AR, which could improve the recognition of target

fruits at different scales. Moreover, BPR module can be easily

integrated into most pixel-based instance segmentation models

and greatly improve the segmentation accuracy of the model.

Thus, BPR, as a plug and play module, can easily help most

models improve accuracy.

Conclusion

Based on the classic mask RCNN algorithm, this paper

optimizes and innovates the new model to achieve ideal

recognition accuracy and segmentation quality in complex

orchard environment. The new model applied MobileNetv3 as

a lightweight backbone network, which is able to reduce the

number of parameters in the mask RCNN model and achieve

a significant improvement in the accuracy of identifying target

fruits without sacrificing speed! MobileNetv3, as a lightweight

backbone network, can further meet the storage resource

requirements of automated picking robots and can be easily

applied to similar inspection or segmentation networks. The

features extracted by the backbone network pass through the

subsequent classification, regression, and mask segmentation

branches to obtain the coarse segmentation mask. The boundary

patches of the rough segmentation mask are used as the input

of the post-processing module BPR. The extracted boundary

patches are optimized by crop-then-refine strategy, which

significantly improves the resolution and segmentation quality.

Although the new model has achieved satisfactory results, there

are still some rooms for progress:

(1) The experimental dataset used in the newmodel contains

fewer pictures, so we should consider expanding the dataset in

the future.

(2) The new model as a two-stage anchor segmentation

model, the size of the anchor limits the development of the

model, and the association between the presence and absence of

the anchor frame should be further searched.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author/s.

Author contributions

WJ: conceptualization, writing—original draft preparation,

and funding acquisition. JW: data curation, software, and

writing—original draft preparation. QZ: data curation and

visualization. NP: data curation and software. YN: methodology,

software, and validation. XY: conceptualization and writing—

reviewing and editing. YD: validation and visualization. XG:

conceptualization, funding acquisition, and writing—reviewing

and editing.

Funding

This work was supported by the Natural Science Foundation

of Shandong Province in China (No.: ZR2020MF076), the

National Nature Science Foundation of China (No.: 81801776),

the Natural Science Foundation of Jiangsu Province (No.:

BK20170256), the Focus on Research and Development Plan

in Shandong Province (No.: 2019GNC106115), the Opening

Foundation of Key Laboratory of intelligent control and

manufacturing of agricultural machinery (Wuyi University)

Fujian Province University (AMICM202104).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Bai, T., Pang, Y., Wang, J., Han, K., Luo, J., Wang, H., et al. (2020). An Optimized
Faster R-CNN Method Based on DRNet and RoI Align for Building Detection in
Remote Sensing Images. J. Rem. Sens. 12, 762. doi: 10.3390/rs12050762

Bargoti, S., and Underwood, J. (2017). Deep fruit detection in orchards. IEEE Int.
Conf. Robot. Autom. 3626–3633. doi: 10.1109/ICRA.2017.7989417

Bhargava, A., and Bansal, A. (2020). Automatic detection and grading
of multiple fruits by machine learning[J]. Food Anal. Meth. 13, 751–761.
doi: 10.1007/s12161-019-01690-6

Bird, J. J., Barnes, C. M., Manso, L. J., Ekárt, A., and Faria, D. (2022).
Fruit quality and defect image classification with conditional GAN data

Frontiers in Plant Science 15 frontiersin.org

https://doi.org/10.3389/fpls.2022.955256
https://doi.org/10.3390/rs12050762
https://doi.org/10.1109/ICRA.2017.7989417
https://doi.org/10.1007/s12161-019-01690-6
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jia et al. 10.3389/fpls.2022.955256

augmentation. J. Scientia Horticulturae. 293, 110684. doi: 10.1016/j.scienta.2021.11
0684

Bolya, D., Zhou, C., Xiao, F., and Lee, Y. (2019). Yolact: Real-time
instance segmentation. Proc. IEEE/CVF Int. Conf. Comput. Vision. 9157–9166.
doi: 10.1109/ICCV.2019.00925

Cai, Z., and Vasconcelos, N. (2019). Cascade R-CNN: high quality object
detection and instance segmentation. J. IEEE Transac. Pattern Anal. Mach. Intell.
43, 1483–1498. doi: 10.1109/TPAMI.2019.2956516

Chen, M., Tang, Y., Zou, X., Huang, Z., Zhou, H., Chen, S., et al.
(2021), 3D. global mapping of large-scale unstructured orchard integrating
eye-in-hand stereo vision and SLAM. Comput. Electron. Agricult. 187, 106237.
doi: 10.1016/j.compag.2021.106237

Elfwing, S., Uchibe, E., and Doya, K. (2018). Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning. J. Neural Netw.
107, 3–11. doi: 10.1016/j.neunet.2017.12.012

Feng, J., Zeng, L., and He, L. (2019). Apple fruit recognition algorithm based on
multi-spectral dynamic image analysis. Sensors. 19, 949. doi: 10.3390/s19040949

Fu, L., Gao, F., Wu, J., Li, R., Karkee, M., Zhang, Q., et al. (2020).
Application of consumer RGB-D cameras for fruit detection and localization in
field: A critical review. Computers and Electronics in Agriculture. 177, 105687.
doi: 10.1016/j.compag.2020.105687

Guan, J., Li, S., He, X., and Chen, J. (2021). Peak-graph-based fast density
peak clustering for image segmentation. J. IEEE Signal Process. Lett. 28, 897–901.
doi: 10.1109/LSP.2021.3072794

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. Proc. IEEE
Int. Conf. Comput. Vis. 2961–2969. doi: 10.1109/ICCV.2017.322

Horiguchi, S., Ikami, D., and Aizawa, K. (2019). Significance of softmax-based
features in comparison to distance metric learning-based features. IEEE Transac.
Pattern Anal. Mach. Intell. 42, 1279–1285. doi: 10.1109/TPAMI.2019.2911075

Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., et al. (2019).
Searching for mobilenetv3[C]. Proc. IEEE/CVF Int. Conf. Comput. Vis. 1314–1324.
doi: 10.1109/ICCV.2019.00140

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. Proc. IEEE
Conf. Comput. Vis. Pattern Recog. 7132–7141. doi: 10.1109/CVPR.2018.00745

Hussain, I., Tan, S., Hussain,W., and Ali, W. (2020). CNN transfer learning for
automatic fruit recognition for future class of fruit. Int. J. Comput. 39, 88–96.
doi: 10.1007/978-3-319-96133-0_23

Ilyas, T., Khan, A., Umraiz,M., Jeong, Y., andKim,H. (2021).Multi-scale context
aggregation for strawberry fruit recognition and disease phenotyping. IEEE Access.
9, 124491–124504. doi: 10.1109/ACCESS.2021.3110978

Jana, S., Basak, S., and Parekh, R. (2017). Automatic fruit recognition from
natural images using color and texture features. Devices for Integrated Circuit
(DevIC). IEEE. 620–624. doi: 10.1109/DEVIC.2017.8074025

Jia, W., Zhang, Y., Lian, J., Zheng, Y., Zhao, D., Li, C., et al. (2020). Apple
harvesting robot under information technology: a review. Int. J. Adv. Robot. Syst.
17, 25310. doi: 10.1177/1729881420925310

Jia, W., Zhang, Z., Shao, W., Hou, S., Liu, Ji, Z., Yin, G., et al.
X. (2021). FoveaMask: A fast and accurate deep learning model for
green fruit instance segmentation. Comput. Electron. Agricult. 191, 1064.
doi: 10.1016/j.compag.2021.106488

Kang, H., and Chen, C. (2020). Fruit detection, segmentation and 3D
visualisation of environments in apple orchards. Comput. Electron. Agricult. 171,
105302. doi: 10.1016/j.compag.2020.105302

Karthikeyan, M., Subashini, T., and Jebakumar, R. (2021). SSD based waste
separation in smart garbage using augmented clustering NMS. Autom. Softw. Eng.
28, 1–17. doi: 10.1007/s10515-021-00296-9

Kavitha, L. R., and Savarimuthu, N. (2021). DPD-DS for plant disease
detection based on instance segmentation. J. Ambient Intell. Human.
Comput. 1–11.doi: 10.1007/s12652-021-03440-1. [Epub ahead of print].

Lin, G., Tang, Y., Zou, X., and Wang, C. (2021a). Three-dimensional
reconstruction of guava fruits and branches using instance segmentation
and geometry analysis. Comput. Electron. Agricult. 184, 106107.
doi: 10.1016/j.compag.2021.106107

Lin, G., Zhu, L., Li, J., Zou, X., and Tang, Y. (2021b). Collision-free path planning
for a guava-harvesting robot based on recurrent deep reinforcement learning.
Comput. Electron. Agricult. 188, 106350. doi: 10.1016/j.compag.2021.106350

Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S., et al. (2017).
Feature pyramid networks for object detection. Proc. IEEE Conf. Comput. Vis.
Pattern Recogn. 2117–2125. doi: 10.1109/CVPR.2017.106

Liu, Q., Li, D., Xiong, X., Niu, Q., Huang, D., Chang, L., et al. (2019). Texture
features prediction of netted melon in greenhouse based on machine learning and
environmental factors. J. Shanghai Jiaotong Univ. (Agricultural Science). 37, 76–82.

Liu, X., Zhao, D., Jia, W., Ji, W., Ruan, C., Sun, Y., et al. (2019). Cucumber
fruits detection in greenhouses based on instance segmentation. J. IEEE Access. 7,
139635–139642. doi: 10.1109/ACCESS.2019.2942144

Luo, L., Tang, Y., Zou, X., Ye, M., Feng, W., Li, G., et al. (2016). Vision-based
extraction of spatial information in grape clusters for harvesting robots. Biosyst.
Eng. 151, 90–104. doi: 10.1016/j.biosystemseng.2016.08.026

Naranjo-Torres, J., Mora, M., Hernández-García, R., Barrientos, R., Fredes, C.,
Valenzuela, A., et al. (2020). A review of convolutional neural network applied to
fruit image processing. Appl. Sci. 10, 3443. doi: 10.3390/app10103443
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