AUTHOR=Zheng Shaoxiong , Gao Peng , Zou Xiangjun , Wang Weixing TITLE=Forest fire monitoring via uncrewed aerial vehicle image processing based on a modified machine learning algorithm JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.954757 DOI=10.3389/fpls.2022.954757 ISSN=1664-462X ABSTRACT=

Forests are indispensable links in the ecological chain and important ecosystems in nature. The destruction of forests seriously influences the ecological environment of the Earth. Forest protection plays an important role in human sustainable development, and the most important aspect of forest protection is preventing forest fires. Fire affects the structure and dynamics of forests and also climate and geochemical cycles. Using various technologies to monitor the occurrence of forest fires, quickly finding the source of forest fires, and conducting early intervention are of great significance to reducing the damage caused by forest fires. An improved forest fire risk identification algorithm is established based on a deep learning algorithm to accurately identify forest fire risk in a complex natural environment. First, image enhancement and morphological preprocessing are performed on a forest fire risk image. Second, the suspected forest fire area is segmented. The color segmentation results are compared using the HAF and MCC methods, and the suspected forest fire area features are extracted. Finally, the forest fire risk image recognition processing is conducted. A forest fire risk dataset is constructed to compare different classification methods to predict the occurrence of forest fire risk to improve the backpropagation (BP) neural network forest fire identification algorithm. An improved machine learning algorithm is used to evaluate the classification accuracy. The results reveal that the algorithm changes the learning rate between 0.1 and 0.8, consistent with the cross-index verification of the 10x sampling algorithm. In the combined improved BP neural network and support vector machine (SVM) classifier, forest fire risk is recognized based on feature extraction and the BP network. In total, 1,450 images are used as the training set. The experimental results reveal that in image preprocessing, image enhancement technology using the frequency and spatial domain methods can enhance the useful information of the image and improve its clarity. In the image segmentation stage, MCC is used to evaluate the segmentationresults. The accuracy of this algorithm is high compared with other algorithms, up to 92.73%. Therefore, the improved forest fire risk identification algorithm can accurately identify forest fire risk in the natural environment and contribute to forest protection.