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Citrus fruits are susceptible to fungal infection after harvest. To reduce the

economic loss, it is necessary to reject the infected citrus fruit before storage

and transportation. However, the infected area in the early stage of decay

is almost invisible on the fruit surface, so the detection of early decayed

citrus is very challenging. In this study, a structured-illumination reflectance

imaging (SIRI) system combined with a visible light-emitting diode (LED) lamp

and a monochrome camera was developed to detect early fungal infection

in oranges. Under sinusoidal modulation illumination with spatial frequencies

of 0.05, 0.15, and 0.25 cycles mm−1, three-phase-shifted images with phase

offsets of − 2π/3, 0, and 2π/3 were acquired for each spatial frequency. The

direct component (DC) and alternating component (AC) images were then

recovered by image demodulation using a three-phase-shifting approach.

Compared with the DC image, the decayed area can be clearly identified

in the AC image and RT image (AC/DC). The optimal spatial frequency was

determined by analyzing the AC image and pixel intensity distribution. Based

on the texture features extracted from DC, AC, and RT images, four kinds of

classification models including partial least square discriminant analysis (PLS-

DA), support vector machine (SVM), least squares-support vector machine

(LS-SVM), and k-nearest neighbor (KNN) were established to detect the

infected oranges, respectively. Model optimization was also performed by

extracting important texture features. Compared to all models, the PLS-DA

model developed based on eight texture features of RT images achieved the
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optimal classification accuracy of 96.4%. This study showed for the first time

that the proposed SIRI system combined with appropriate texture features and

classification model can realize the early detection of decayed oranges.

KEYWORDS

citrus, early decay detection, structured light imaging, image processing,
classification models

Introduction

Citrus is one of the most popular fruits all over the
world. Decay caused by fungi is one of the most important
pathologies affecting the storage and marketing of citrus
fruit. During storage or long-distance transportation, a few
decayed citruses can lead to infection of the whole batch
without proper precautions and controls (Folch-Fortuny et al.,
2016). Due to the lack of effective detection ways, fungal
infection has caused huge economic losses to the citrus
industry. However, the early detection of decay is difficult
because the decayed area in the initial stage is very slight
with a similar appearance to the surrounding healthy tissue
(Li et al., 2019). Although many grading systems have been
successfully developed for commercial grading of citrus quality
such as size, color, weight, etc., it remains a challenge to
detect decay in the early stage of development with few visual
symptoms for the citrus industry. Therefore, it is very attractive
for developing an automated detection system to facilitate
early decay detection and improve the profitability of the
citrus industry.

In order to realize the effective and rapid detection of
citrus with early decay, many techniques have been developed.
Blasco et al. (2000) used near-infrared spectroscopy to detect
the early decay of citrus caused by fungal infection and found
that there was a spectrum difference between the healthy
and decayed areas of citrus. Lorente et al. (2015a) combined
near-infrared spectroscopy with intelligent learning methods to
detect infected fruit and obtained good results. Their research
indicated that near-infrared spectroscopy can be used to detect
decay tissue. However, the infection location of decayed citrus
fruit cannot be determined in advance, so this technology has
limitations in practical application due to local information
acquisition capability. In contrast, the imaging technique is
more suitable for the detection of early decay. Blasco et al.
(2007) used a machine vision system to measure citrus with
different damage types and achieved a high success rate in
other defects, but it was less than 60% for decay detection
by (red, green, and blue) RGB imaging technique. It may
be that the similar color features between the decayed and
the healthy area reduce the recognition ability of the RGB
imaging system. Fluorescence imaging provides another means

for decay detection of citrus, based on the observation that
citrus epidermal tissues can emit yellow fluorescence under
excitation of ultraviolet (UV)-A light (Obenland et al., 2010).
Kurita et al. (2009) designed a double image acquisition
system with visible and UV LEDs for decay detection of
citrus fruit. However, not all the decayed areas of citrus
produce detectable fluorescence, ensuring the effectiveness
of this imaging technique (Momin et al., 2012). Moreover,
some citrus defects, such as peel scratch and freezing injury
(Slaughter et al., 2008; Obenland et al., 2010), can produce
similar fluorescence under the induction of UV-A light, which
would confound the decay detection. In addition, Lorente et al.
(2015b) used laser backscattering imaging to detect the early
decay of citrus fruit. Statistical and physical contour modeling
was used to obtain good classification results. However, the
position of the decayed area needs to be matched with the laser
light source and camera in order to capture a clear speckle
image. Compared with the single near-infrared spectroscopy
and imaging technology, hyperspectral imaging combines image
and spectral information. In recent years, it has also been used
to detect the early decay of citrus. Li et al. (2016) successfully
detected and visualized the early decay in citrus using Vis-
NIR hyperspectral imaging, with a detection accuracy of 98.6%.
Li J. B. et al. (2022) proposed two-wavelength image detection
of early decayed oranges by coupling spectral classification with
image processing. Hyperspectral data variable selection and
image principal component analysis were used to select two
wavelength images for the development of a fast multispectral
algorithm, and the overall classification accuracy of 96.6%
was achieved. However, due to the long processing time and
expensive equipment, hyperspectral imaging is mainly used
for laboratory research (Wang et al., 2021). Although efforts
have been made to develop hyperspectral techniques into a
multispectral system for detecting decayed citrus fruit, there are
no reports of multispectral imaging systems available.

In recent years, an emerging structured-illumination
reflectance imaging (SIRI) technique has been developed
for enhanced detection of sub-surface or near-surface slight
defects in horticultural products (Lu et al., 2016). Compared
with traditional uniform diffuse illumination, SIRI uses
the modulated structured illumination for sample image
acquisition, which can control the depth of light penetration
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into tissue by changing the spatial frequency of illumination,
making it possible to better detect fruit surface defects. Based
on the SIRI technique, a few phase-shifted images at a certain
spatial frequency were obtained, and then demodulated into
a direct component (DC, corresponding to uniform/diffuse
illumination) and alternating component (AC, unique to
structured illumination) images for processing (Lu and Lu,
2019). Different from the DC image, AC encodes depth-specific
information with image contrast and resolution varying with
the spatial frequency of illumination patterns. The enhanced
detection ability of this technology for defects without obvious
signs has been demonstrated in previous studies, such as
subsurface bruising in apples (Lu and Lu, 2017a; Li et al.,
2018), early decay of peaches (Sun et al., 2019), and subsurface
bruising in fresh pickling cucumbers (Lu et al., 2021). However,
the feasibility of this technology still needs to be verified
for the detection of early decayed citrus fruit. In this study,
a new SIRI system based on a visible LED lamp and a
monochrome camera was developed for the detection of
oranges with early decay. The corresponding classification
models combined with texture features were also established.
This may be the first important attempt to detect decayed
citrus using SIRI technology coupled with a texture feature
classification model. It is expected that the findings in this
work could potentially be used to develop a low-cost and real-
time SIRI system for the quality detection of fruits and other
agricultural products.

The main objectives of recent work were to (1) acquire the
SIRI of oranges under the sinusoidal modulation illumination
with the spatial frequencies of 0.05, 0.15, and 0.25 cycles mm−1

using a developed SIRI system with a visible LED lamp, which
was demodulated to recover DC and AC; (2) extract the texture
features from DC, AC, and ratio (RT) images and optimize
features by x-loading analysis to obtain the most relevant
ones for the identification of decayed and healthy oranges;
(3) develop feature classification models coupled with PLS-
DA, SVM, LS-SVM, and KNN classifiers; and (4) evaluate the
feasibility of the developed classification models and SIRI system
for detecting oranges with early decay.

Materials and methods

Experimental samples

Oranges were purchased from a local fruit supermarket in
Beijing in December 2021. A total of 280 intact samples were
prepared in this experiment. Among them, 150 samples were
injected with a fungal solution of Penicillium digitatum and
placed in the laboratory (about 25◦C and 99% relative humidity)
for 3 days to form early decayed samples. All samples with early
decay showed no noticeable visual symptoms (e.g., severe watery
and fungal spore) on the fruit surface prior to image acquisition.

For the detailed preparation process of early decay samples,
refer to our previous research (Li et al., 2016, 2019). Figure 1
shows photographs of a typical decayed sample (left) and the
corresponding section (right). The sectional view was obtained
by cutting the sample along the green line passing through
the decayed area. By visually observing the intact sample, the
decayed area of the sample was similar in appearance to the
surrounding sound area, indicating that the identification of
decayed fruit was difficult by the naked eyes and traditional
RGB machine vision technology. After cutting the sample along
the green line, it can be seen from the sectional view that the
subcutaneous spongy tissue of the affected area had begun to
decay into dark yellow. In this study, 100 healthy samples and
100 decayed samples were randomly selected as the calibration
set to develop the models, whereas the remaining 80 samples
(30 healthy and 50 decayed samples) were used as the test set to
evaluate the performance of the models.

The structured-illumination
reflectance image acquisition

A SIRI system based on a visible LED lamp and
monochrome camera, shown in Figure 2, was developed for the
acquisition of the SIRIs of all samples. The SIRI system mainly
consisted of a computer (Tianyi-510S, Lenovo Inc., China),
a digital light projector (DLP4500, Texas Instruments, Dallas,
TX, United States) with a visible LED lamp, a monochrome
camera (MV-CA050-10GM, Hangzhou Hikrobot Intelligent
Technology Co., Ltd., Hangzhou, China) with an adjustable
focal length lens (MVL-MF1628M-8MP, Hangzhou Hikrobot
Intelligent Technology Co., Ltd., Hangzhou, China), a set of
polarizers (PL-D50, RAYAN Technology Co., Ltd., Changchun,
China), a long wave pass filter (GCC-300701, Daheng New
Epoch Technology Inc., Beijing, China), and an adjustable stage
for holding samples (600LW-WT, Shanghai Weimu Automation
Equipment Co., Ltd., Shanghai, China). The camera was located
above the sample and perpendicular to the sample, whereas the
projector was located at the upper left of the sample and has
an incident angle of 15◦. The digital light projector and the
camera were connected with the computer through data lines,

FIGURE 1

Orange sample with early decay.
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FIGURE 2

Schematic diagram of the developed structured-illumination reflectance imaging (SIRI) system.

respectively. A band-pass filter with a central wavelength of
680 nm was installed in front of the lens considering there was
a significant difference between the decay and healthy tissues
in this band (Li et al., 2016). In addition, two linear polarizers,
attached in the front of the lens and the digital light projector,
respectively, were used to suppress specular reflection from
the sample surface.

In terms of the SIRI technique, the ability of light to
penetrate into biological tissue is directly related to the spatial
frequency of structured light; therefore, it is important to select
the appropriate structured light frequency for the accurate
detection of decayed oranges. Light penetration depth in the
tissue decreases with the increase of spatial frequency, whereas
the resolution and contrast of the acquired images show an
opposite trend. The skin of oranges contains many lenticels,
which can be enhanced in high-frequency structured light
images and negatively affect the accurate segmentation of
decayed areas, especially for slight decay. Therefore, three spatial
frequencies including 0.05, 0.15, and 0.25 cycles mm−1 were
selected on the basis of pre-experiment and finally used in
this study. For structured light image acquisition, an orange
was placed on the sample stage and made the decayed area
(if the sample is a decayed fruit) toward the camera. Three-
phase-shifted sinusoidal illumination patterns (8-bit grayscale
bitmap image) with phase offsets of − 2π/3, 0, and 2π/3
shown in Figure 2, pregenerated using MATLAB software, were
uploaded to the projector to illuminate the tested sample one
at a time. At the same time, the camera collected structured
light images of the tested sample. In this way, a total of 9
SIRIs (3 phases × 3 spatial frequencies) were acquired for
each sample. Note that the three-step phase-shifting technique
requires the same relative phase shift in a sinusoidal period (2π)
(Schreiber and Bruning, 2007).

Image demodulation and
enhancement

Image demodulation
The original structured light image cannot be directly

used for the recognition of decayed oranges due to the
obvious light fringe in the image. Therefore, the original
three-phase images collected by the SIRI system need to be
demodulated to retrieve AC and DC images without any
fringe. The DC image was equivalent to the image obtained
under uniform illumination, whereas the AC image contained
specific depth information related to the spatial frequency
of the sinusoidal illumination pattern. Here, the classical
three-phase-shifting approach (Carlson and Crilly, 2010) was
used to retrieve AC and DC images by demodulating raw
three-phase-shifted pattern images at each spatial frequency
for each sample. The demodulation equations were as
follows:

AC =
√

2
3
[
(I1 − I2)

2
+ (I2 − I3)

2
+ (I3 − I1)

2] 1
2 (1)

DC =
1
3

(I1 + I2 + I3) (2)

where I1, I2, and I3 represent the three-phase-shifted reflectance
images acquired under sinusoidal illumination with phase
offsets of− 2π/3, 0, and 2π/3, respectively.

Image enhancement
The original DC and AC images obtained after

demodulation usually have low gray value, which has a
negative impact on the effective recognition of decayed areas.
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The RT image has been proven to be an effective image
enhancement way for structured light image processing by
significantly reducing image vignetting and enhancing the
features of the target area of interest (Lu and Lu, 2019; Lu et al.,
2021). Therefore, the RT image was also obtained by calculating
the ratio of AC to the corresponding DC image. The following
equation was used to calculate an RT image.

RT =
IAC

IDC
(3)

Where IAC and IDC represent the AC and DC
images obtained by demodulating three-phase-shifting
images, respectively.

Image features extraction and
optimization

The texture features of different images including DC, AC,
and RT were extracted and analyzed. Texture features were
reflected by the gray distribution of pixels and their spatial
fields. Gray level co-occurrence matrix (GLCM) was one of the
most widely used texture extraction methods. The main steps of
texture feature extraction based on GLCM were as follows: (1)
gray image acquisition; (2) gray level compression, compressing
the image to eight gray levels; (3) determining the calculation
parameters with horizontal direction (θ = 0◦) and spacing
distance (d = 1); (4) calculate gray co-occurrence matrix; and
(5) calculate the eigenvalues. Fourteen GLCM statistic features
proposed by Haralick et al. (1973) were used in this study. These
parameters mainly involved angular second moment, contrast,
correlation, the sum of squares: variance, inverse difference
moment, sum average, sum variance, sum entropy, entropy,
difference variance, difference entropy, information measures
of correlation, and the maximal correlation coefficient. All
parameters are listed in Table 1.

Feature optimization is important for establishing a robust
and fast machine learning model. The useless features not
only affect the training speed of the model but also negatively
affect the identification performance of the model. In this
study, x-loading weight analysis based on PLS-DA (Liu et al.,
2008) was used to select effective features from all fourteen
textural features. Those features that have large absolute values
of loading weight and locate at the peak or valley of the loading
curve were selected as important features for the identification
of decayed oranges.

Classification models

Four kinds of classifiers including the partial least square
discriminant analysis (PLS-DA), support vector machine
(SVM), least squares-support vector machine (LS-SVM), and

TABLE 1 The extracted 14 texture features.

Number Features Equation

1 Angular
Second
Moment

f1 =
∑

i

∑
j

{
p
(
i, j
)}2

2 Contrast f2 =
Ng−1∑
n=0

n2

{
Ng∑
i=1

Ng∑
j=1

p
(
i, j
)}
;
∣∣i− j

∣∣ = n

3 Correlation f3 =
∑

i
∑

j(i,j)p(i,j)−µxµy
σxσy

4 Sum of
Squares:
Variance

f4 =
∑

i

∑
j

(i− µ)2 p
(
i, j
)

5 Inverse
Difference
Moment

f5 =
∑

i

∑
j

1
1+(i−j)2 p

(
i, j
)

6 Sum
Average

f6 =
2Ng∑
i=2

ipx+y (i)

7 Sum
Variance

f7 =
2Ng∑
i=2

(
i− f8

)2 px+y (i)

8 Sum
Entropy

f8 = −
2Ng∑
i=2

px+y (i) log
{

px+y (i)
}

9 Entropy f9 = −
∑

i

∑
j

p
(
i, j
)

log
(
p
(
i, j
))

10 Difference
Variance

f10 = variance of px−y

11 Difference
Entropy

f11 = −
Ng−1∑
i=0

px−y (i) log
{

px−y (i)
}

12–13 Information
Measures of
Correlation

f12 =
HXY−HXY1
max{HX,HY}

f13 =
(
1− exp [−2.0 (HXY2−HXY)]

)1/2

14 Maximal
Correlation
Coefficient

f14 =
(
Second largest eigenvalue of Q

)1/2

p(i, j) = (i, j)th entry in a normalized gray-tone spatial-dependence matrix;

Ng = Number of distinct gray levels in the quantized image;

px (i) =
Ng∑
j=1

p(i, j); py
(
j
)
=

Ng∑
i=1

p(i, j);

px+y
(
k
)
=

Ng∑
i=1

Ng∑
j=1

p(i, j), i+ j = k, k = 2, 3, . . . , 2Ng ;

px−y
(
k
)
=

Ng∑
i=1

Ng∑
j=1

p(i, j),
∣∣i− j

∣∣ = k, k = 2, 3, . . . , Ng − 1;

HXY = −
∑

i

∑
j

p
(
i, j
)

log
(
p
(
i, j
))
;HXY1 = −

∑
i

∑
j

p
(
i, j
)

log
(
px (i) py

(
j
))
;

HXY2 = −
∑

i

∑
j

px(i)py(j) log
(
px(i)py(j)

)
;Q

(
i, j
)
=
∑
k

p(i,k)p(j,k)
px(i)py(k)

.

k-nearest neighbor (KNN) were used to build classification
models. PLS-DA was often used for the classification and
discrimination of multivariable data. It is a linear classification
method combining the properties of partial least squares
regression with the discrimination power of a classification
technique (Haaland and Thomas, 1988; Wold et al., 2001). This
method established models between multivariate data (texture
features here) and a vector coding different classes (decayed and
healthy oranges here). As shown in Table 2, the two types of
samples, including healthy and decayed samples, were assigned
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TABLE 2 Sample type and classification assignment.

Sample class No. of
samples

Calibration
set

Test set Assigned
class

Healthy 130 100 30 1

Decayed 150 100 50 0

as 1 and 0, respectively. The predicted value of the PLS-DA
model is a real number, not a dummy integer. Therefore, it
is necessary to set a cutoff value to assist in determining the
classification results of the model. The cut-off value was set
as 0.5. Additionally, in this study, the PLS-DA model with
leave-one-out CV was applied to prevent overfitting of the
calibration model (Li L. J. et al., 2022). The optimal number
of latent variables (LVs) was determined by the lowest value of
the predicted residual error sum of squares. SVM is a classifier
with the largest interval defined in the feature space. It gives
the largest minimum distance to the training data set (Fan
et al., 2020). The radial basis function (RBF) was chosen as
the kernel function and determined the optimal parameters
(penalty coefficient C and density distribution coefficient g)
through 10-fold cross-validation and mesh optimization. LS-
SVM is an improved form of SVM, which can deal with linear
and non-linear multivariate analysis. Compared with SVM, LS-
SVM can simplify the complexity of calculation and improve
the operation speed, so as to improve the analysis ability
of high-dimensional data. RBF was also used as the kernel
function of the LS-SVM model. The main parameters γ and
σ2 of the LS-SVM model were determined by 10-fold cross-
validation and mesh optimization. KNN is a statistical method
of pattern recognition. It classifies by measuring the distance
between different eigenvalues and uses the cross-validation
method to select the optimal K value. In this study, all the
classification models were developed using MATLAB R, 2020b
(The MathWorks, Inc., Natick, MA, United States).

Identification of decayed oranges

Figure 3 shows the flowchart for the identification of
decayed oranges. First, the SIRI system based on a visible LED
lamp and a monochrome camera was developed and used to
obtain three-phase-shifted images of each sample at three spatial
frequencies of 0.05, 0.15, and 0.25 cycles mm−1. The classical
three-phase-shifting scheme was further used to demodulate
the structured light image to obtain DC and AC images. Then,
the DC image was used to produce a binary mask image by
setting a threshold, and the mask image was used to remove the
background of DC and AC images. Based on DC and AC images
after background removal, the RT image was also obtained.
The best spatial frequency was determined by evaluating AC
images and the pixel intensity distribution curves corresponding

to the solid lines in AC images. Subsequently, fourteen texture
features of DC, AC, and RT images at optimal spatial frequency
were extracted based on the GLCM method. Four classification
models including PLS-DA, SVM, LS-SVM, and KNN were
established using the extracted features. In order to simplify
the model, x-loading weights were used to select the effective
features, and the corresponding classification models were also
constructed using the selected features. Finally, the performance
of all models was evaluated to determine the most suitable one
for distinguishing between decayed and healthy oranges.

Classification performance evaluation

Three indexes including Sensitivity, Specificity, and Accuracy
(ACC) were used to evaluate the classification performance
of models. For the calibration set or test set, the Sensitivity
corresponds to the classification accuracy of decayed oranges
(true positive rate, TPR), the Specificity corresponds to the
classification accuracy of healthy oranges (true negative rate,
TNR), and ACC represents the classification accuracy of all
samples. These evaluation parameters can be calculated as
follows:

Sensitivity = TPR =
TP

TP + FN
(4)

Specificity = TNR =
TN

TN + FP
(5)

Accuracy = ACC =
TP + TN

TP + TN + FP + FN
(6)

where TP is the number of the decayed oranges correctly
classified, FN is the number of the decayed oranges incorrectly
classified as healthy, TN is the number of the healthy oranges
correctly classified, and FP is the number of the healthy oranges
incorrectly classified as diseased.

Results and discussion

Demodulated images and analysis

Figure 4 shows the whole process of image processing. From
the original RGB image, it can be seen that the decayed area
of orange showed similar color features to the healthy area.
Three-phase-shifted structured light images shown in the upper
left corner of Figure 4 were acquired from the SIRI system.
The phase offsets were − 2π/3, 0, and 2π/3, respectively. By
image demodulation, DC and AC images were obtained. It can
be observed that the decayed area was almost invisible in the
DC image (similar to uniform field illumination), whereas it
was obvious in the AC image, indicating that the AC image
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FIGURE 3

Flowchart for detection of the decayed oranges.

FIGURE 4

The structured light image processing including image demodulation, background removal, and image ratio.

can be used for effective detection of decay on oranges. In
fact, the AC image represents the image containing the specific
depth tissue information matched with the used structured light
frequency. In this study, although black background was used in

the process of image acquisition, it is inevitable that there may
be some potential noises. Therefore, background segmentation
was performed. The mask background segmentation method
was used, and the DC image was used for template creation due
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to the clear contrast between the orange object and background.
It can be noticed from the mask image shown in Figure 4
that only the orange object was completely segmented. Thus,
a simple multiplication operation, that is, mask multiplied by
the DC (or AC) image, can realize the background removal of
the original DC (or AC) image. The RT image is also shown
in Figure 4. Compared with DC and AC images, the contrast
between the decaying area and the surrounding healthy surface
in the RT image was more obvious. More importantly, in
the RT image, the surface illumination of the overall orange
was relatively uniform, which was conducive to the accurate
extraction of texture features and the establishment of effective
classification models.

Selection of spatial frequency

Figure 5 shows the demodulated AC images and intensity
distribution curves. In detail, Figures 5A–C show AC images
at three spatial frequencies of 0.05, 0.15, and 0.25 cycle mm−1,
respectively, and the pixel intensity curves corresponding to the
black solid lines in the AC images. The pixel intensity curve
was shown at the bottom of each AC image. It corresponded
to all pixels on the black solid line across the decayed area
in the corresponding AC image. By visually inspecting three
AC images, the contrast between the decayed area and healthy
area increased gradually with the increase of frequency. It
indicated that the accurate recognition of decayed oranges was
directly related to the used spatial frequency of structured light.
For the three frequencies studied, the frequency of 0.25 cycles
mm−1 was the best one. However, it can also be seen that

the characteristics of the orange epidermis, such as lenticels,
were also enhanced with the increase of frequency, which
may negatively affect the extraction of texture features. The
change of intensity on the sample surface, especially the pixel
intensity difference between healthy area and decayed area, can
be observed from the pixel intensity distribution as shown in
Figure 5. Due to the uneven brightness on the orange surface,
the pixel intensity value of the edge region of the sample was
usually lower than that of the middle region. From the intensity
curve, it can be seen that the pixel intensity of the edge area
of the sample in the AC image was even lower than that of
the defect area. Therefore, it was difficult to segment defects by
using the threshold method. According to three pixel intensity
curves, the pixel intensity difference between the decayed area
and healthy area of orange in the AC image at 0.25 cycles mm−1

was the largest. The reason may be that the decaying tissue
was located on the surface or sub-surface of the fruit, and the
penetration depth of light into the fruit tissue gradually focused
on the orange surface with the increase of frequency, which
was helpful to detect the decaying tissue. By comparing the
pixel intensity difference between healthy and decayed pixels,
the spatial frequency of 0.25 cycles mm−1 was determined as
the optimal one for subsequent analysis.

Ratio images and demodulation
images of the representative samples

Figure 6 shows the ratio image and intensity distribution
curves. The RT image at the spatial frequency of 0.25 cycle
mm−1 and the pixel intensity curve corresponding to the

FIGURE 5

The demodulated AC images and intensity distribution curves. (A) The spatial frequency of 0.05 cycles mm−1. (B) The spatial frequency of 0.15
cycles mm−1. (C) The spatial frequency of 0.25 cycles mm−1.
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black solid line in the RT image are shown in Figures 6A,B,
respectively. Figure 6C shows the intensity distribution curve
of pixels after median filtering with 3 × 3 structural element.
Compared with the AC image in Figure 5C, the uneven
surface brightness on orange in the AC image was significantly
improved in the RT image. In Figure 6B, it can be seen that
the low intensity of the edge area was raised to a higher
level, and the pixel intensity difference between the healthy
and decay areas was more obvious compared with Figure 5C.
However, it should also be noted that the noise caused by orange
surface lenticels always exists in the RT image. After filtering,
this noise was effectively eliminated, as shown in Figure 6C.
This result showed that image ratio processing and filtering
can significantly improve the uneven illumination on the fruit
surface and increase the intensity contrast between the decayed
and healthy areas.

As an example, RGB, DC, AC, and RT images of seven
typical samples are shown in Figure 7. The first six were
decayed samples and the last one was a healthy sample. In the
actual detection, there were differences in the decay degree of
oranges, and the decayed areas on oranges were also randomly
distributed in the field of view of the camera. Therefore, the
selected six decayed samples contained different sizes of decay
spots, and these spots were randomly distributed on orange
in the image. It can be seen in Figure 7 that it was not easy
to identify any decayed region in RGB and DC images, which
showed that it was difficult to detect the early decay of oranges
by traditional color and monochrome machine vision systems.
However, all the decayed areas were clearly seen in AC and RT
images. It indicated that the structured light reflection imaging
technology can be effectively used to detect decayed oranges,
and the detection ability was rarely affected by the degree of

FIGURE 6

The ratio image and intensity distribution curves. (A) The spatial frequency of 0.05 cycles mm−1. (B) Intensity distribution curves. (C) Intensity
distribution curves after filtering.

FIGURE 7

RGB, DC, AC, and RT images of the representative orange samples.
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.7 decay and location of defect distribution. However, the detection
ability for all samples needs to be further verified.

Classification results based on full
features

In order to further ascertain the ability of SIRI technology
to detect the early decay of oranges, four classification models
including PLS-DA, SVM, LS-SVM, and KNN were established
based on fourteen texture features extracted from independent
DC, AC, and RT images. All models and the corresponding
classification results for samples in the calibration set and the
test set are listed in Table 3. For PLS-DA models, the number
of the optimal LVs was 13, 9, and 14, respectively, when DC,
AC, and RT images were used for modeling. For SVM models,
the optimal combination of (C/g) was (9.19/0.099), (1024/0.01),
and (891.44/0.01) in terms of three types of input images.
For LS-SVM models, the optimal combination of (γ/σ2) was
(767.98/175.99), (379287.2/1451.86), and (1585313.66/2344.96),
respectively. For KNN models, the corresponding K value was
5, 1, and 1 for three types of input images, respectively. The
classification performance of all models was evaluated according
to the indexes of TPR, TNR, and ACC. It can be seen that the
results of different classification models were quite different.
For texture features extracted from DC and AC images, the
performance of the LS-SVM model was the best, and TPR, TNR,
and ACC of the model were 81.3, 96.9, and 88.6%, and 89.3, 95.4,
and 92.1%, respectively. For texture features extracted from RT
images, the PLS-DA model obtained the optimal classification
result with TPR, TNR, and ACC of 96.7, 97.7, and 97.1%,
respectively. In general, for each type of classifier, the model
established based on DC image texture features was the worst,
followed by the classification model established based on AC
image texture features, and the classification model established
based on RT texture features obtained the best classification
performance. This result was similar to the analysis in the

FIGURE 8

The x-loading weights of different features.
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above sections. Among all the classification models, the PLS-
DA model, combined with the RT image, achieved the best
classification accuracy. For samples in the prediction set, TPR,
TNR, and ACC of the PLS-DA model were 98, 100, and
98.8%, respectively.

Optimization of features

The above research showed that an effective model for the
classification of decayed oranges can be constructed based on
14 texture features of the RT image, and 14 features were also
acceptable for rapid model construction and analysis. However,
each texture feature contributed differently to the classification
of decayed oranges. Thus, some features may negatively affect
the prediction performance (such as accuracy and stability) of
the model. Therefore, it was necessary to further optimize the
features based on raw 14 texture features. Table 3 indicates
the PLS-DA model is the best for the classification of decayed
oranges. Thus, the x-loading weights of different features
extracted from RT images were analyzed to select the effective
features. The x-loading weight curve is shown in Figure 8.
Those texture features, whose absolute value of loading was
greater than 0.1 and located at the peak or valley of the loading
curve, were selected as important texture features (or called the
optimal texture features). According to the above criteria, eight
texture features, numbered 1, 2, 6, 8, 9, 10, 11, and 12, were
selected. To further evaluate the effectiveness of these features,
the selected texture features were used as inputs to establish
four kinds of classification models (PLS-DA, SVM, LS-SVM, and
KNN), and the results are shown in Table 4. For comparison,
the selected eight texture features from DC and AC images
were also used as inputs to establish the classification models.
The results are also shown in Table 4. By comparing between
Tables 3, 4, it can be seen that the classification performance of
the models established based on eight features was similar to that
of the models established based on fourteen features. Similar
to Table 3, the optimal parameters of all models are listed in
Table 4. For DC, AC, and RT images, the overall classification
accuracy ranges of four types of models were 81.4–85%, 86.4–
90.4%, and 92.9–96.4%, respectively. Moreover, similar to the
full features models, the PLS-DA model developed based on
the eight texture features of the RT image achieved the best
classification accuracy. For samples in the prediction set, TPR,
TNR, and ACC of the PLS-DA model were 98, 100, and 98.8%,
respectively. These results were the same as the full-feature PLS-
DA model, which further showed that feature selection can
optimize the classification model.

In previous studies on early decay detection in citrus,
hyperspectral imaging was one of the most attractive
technologies and achieved superior detection performance.
For example, Li et al. (2019) used visible and near-infrared
hyperspectral imaging to identify the early decayed oranges. T
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Seven wavelength images in the spectral region of 500–1,050 nm
were finally determined to develop the multispectral image
detection algorithm and obtained classification accuracies of
97.3 and 100% for decayed and healthy oranges, respectively.
Zhang et al. (2020) used a similar system to detect decayed
mandarins. Although only two wavelength images were
extracted and used in the algorithm, the recognition accuracy
of decayed fruit was low (only 90.57%). Luo et al. (2022)
proposed a multispectral image processing algorithm for
the decayed orange detection combined with four feature
wavelength images based on hyperspectral imaging technique,
achieving an overall classification accuracy of 98.6%. Although
hyperspectral imaging can be used for the detection of
decayed citrus fruits, the expensive construction cost and the
time-consuming data acquisition/processing greatly limit the
practical application of this technology. Wavelength selection
is helpful to build a rapid multispectral detection system,
but there is no practical application case for multispectral
imaging detection of decayed citrus. In fact, there are still many
problems to be solved in hyperspectral imaging technology
(Lu et al., 2017b). In this study, the constructed SIRI system
has low cost and fast data acquisition speed, and this study
has indicated that SIRI can obtain similar or better detection
performance for the early decay detection in oranges compared
with hyperspectral imaging.

Conclusion

This study proposed a new SIRI technology combined with
a visible LED lamp and a monochrome camera and successfully
demonstrated the feasibility of detecting oranges with early
decay. The spatial frequency of 0.25 cycles mm−1 was proved
to be superior to spatial frequencies of 0.051and 0.15 cycles
mm−1 for detection of the decayed oranges. Compared with
DC and AC images, the RT image was more suitable for
decay detection due to uniform orange surface illumination
and clear contrast between decayed and healthy areas. By using
x-loading weight analysis, eight important texture features,
namely angular second moment, contrast, sum average, sum
entropy, entropy, difference variance, difference entropy, and
information measures of correlation, were extracted from 14
texture features. Four types of classification models, including
PLS-DA, SVM, LS-SVM, and KNN, were established using all
the fourteen texture features and the selected eight texture
features based on DC, AC, and RT images. The classification
results indicated that four kinds of models based on the RT
image had better performance than those models established
based on DC and AC images. Therefore, it can be considered
that the RT image can improve the ability of the original DC
or AC image in the detection of decayed oranges. Among all
models, the PLS-DA model, combined with the RT image,
achieved the best classification accuracy, regardless of the

models established based on full features or important features.
For all samples, the PLS-DA model with full features and
the selected eight features obtained classification accuracy of
97.1 and 96.4%, respectively. The similar classification accuracy
indicated that the selected eight texture features could be used
to construct the models for the detection of oranges with early
decay. All results confirmed that the proposed SIRI technology
based on a visible LED lamp and a monochrome camera,
combined with texture feature classification models, can be used
to identify oranges with early decay.
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