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Maize stomatal responses
against the climate change
Laura Serna*

Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain

Drought and heat, in the context of climate change, are expected to increase

in many agricultural areas across the globe. Among current abiotic stresses,

they are the most limiting factors that influence crop growth and productivity.

Maize is one of most widely produced crops of the world, being the first in

grain production with a yield that exceeded 1.1 billion tons in 2021. Despite

its wide distribution in semi-arid regions, it is highly vulnerable to climate

change, which triggers important losses in its productivity. This article explores

how maize yield may persevere through climate change by focusing on the

stomatal regulation of gas exchange. The emerging picture unravels that

maize copes with drought stress by reducing stomatal size and stomatal pore

area, and increasing stomatal density, which, in turn, reduces transpiration

and photosynthetic rate. When drought and heat co-occur, heat enhances

stomatal response to drought stress. To avoid plant heat damage, the decline

in stomatal aperture could trigger the expansion of the distance of action,

from the longitudinal leaf veins, of ZmSHR1, which might act to positively

regulate ZmSPCHs/ZmICE1 heterodimers, increasing the stomatal density.

Only when drought is not very severe, elevated CO2 levels reduce yield losses.

The knowledge of the upcoming climate changes together with the prediction

of the developmental and physiological stomatal responses will allow not only

to anticipate maize yield in the next years, but also to contribute to the correct

decision-making in the management of this important crop.
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Introduction

Drought and heat stresses are the major limiting factors for crops growth and
productivity (Fahad et al., 2017; Gupta et al., 2020; Jaldhani et al., 2022), and they
cause the greatest annual loss of crops (Lipiec et al., 2013; Ray et al., 2015; Gupta et al.,
2020). Worryingly, climate change, resulting from increasing emissions of greenhouse
gases, is threatening crops yield, and food security, through increased temperatures
and alterations of rainfall patterns (IPCC, 2021). The changes in rainfall patterns,
which agree with climate models (Räisänen, 2002; Kharin et al., 2007; Wetherald, 2010;
Fischer et al., 2013), are decreasing the frequency of the storms and increasing their
intensity in many regions of the planet (Räisänen, 2002; Kharin et al., 2007; IPCC, 2013).
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This substitution of evenly distributed rainfall for an increased
precipitation variability increases the risk of drought due to loss
of water through runoff. Elevated temperatures also contribute
to inducing drought because the rapid water loss from plant
tissues and soil surface, and when they are too elevated can
induce direct damage on crops (Wahid et al., 2007). Drought
and heat stresses, both individually and in combination, have
a deep impact on the agricultural sector, which, unfortunately,
translates into a strong threat to food security.

One of the world’s most widely produced crops is maize,
being the first in grain production with a production that
exceeded 1.1 billion tons in 2021 (FAS, USDA, 2022). It
belongs to the grass family Poaceae, which includes more than
10,000 species (Kellogg, 1998), with other important crops such
as wheat (Triticum aestivum), rice (Oryza sativa), or barley
(Hordeum vulgare). Maize was domesticated from teosinte (Zea
mays ssp. Parviglumis), at the tropical Balsas River valley in
Mexico (Matsuoka et al., 2002; van Heerwaarden et al., 2011),
and continued to spread north and south across the Americas
(Matsuoka et al., 2002). Currently, it is cultivated across a
wider area than any other major crop, being the United States,
China, and Brazil the top producers (FAO, 2021; Figure 1A).
Besides its primary use for food, it can also be processed into a
variety of industrial products, including glue, industrial alcohol,
and fuel ethanol (Ranum et al., 2014). Sixty one percent of
global maize production is used as livestock feed and 13% for
human consumption (OECD/FAO, 2021; Figure 1B). Despite
the low percentage used directly for human consumption, it is
an essential element of the diet of millions of people in Sub-
Saharan Africa, where its use is expected to increase because the
rapid growth of its population (OECD/FAO, 2021).

Despite its adaptation to a wide array of agro-ecologies,
which explains its wide distribution, maize is highly vulnerable
to climate change. It is cultivated in semi-arid environments,
facing drought, heat, and combinations of these factors (Cairns
et al., 2012; Zhao et al., 2016). Rojas et al. (2019), for example,
by analyzing both the annual mean precipitation and specific
growing seasons and areas found that reduced precipitation will
impact, before 2040, maize production in southern Africa and
Europe. Considering that the variability of precipitation is an
essential factor because water availability during a given stage of
plant developmental influences plant production at later stages
of the life cycle (Brouwer and Heibloem, 1986; Kranz et al.,
2008; Al-Kaisi and Broner, 2009; Hashim et al., 2012; Halubok
and Yang, 2020), it is likely that more regions of the globe with
maize crops will be concerned. In addition, in the context of
climate change, not only changes in rainfall patterns affect maize
growth, but also increases in temperature. Certainly, it is known
that temperatures above 35◦C negatively impact the vegetative
and reproductive growth of maize, from germination to grain
filling (Hatfield et al., 2011). The Russian invasion of Ukraine
will also affect maize production, with a decline of Ukraine
maize production for 2022/2023 of 54% relative to last year (FAS,

USDA, 2022). Moreover, the impact of climate change on maize
will be more pronounced considering that global population is
predicted to rise, in the least drastic scenario, from 7.7 billion
currently to 9,7 billion in 2050 (Adam, 2021). The greatest
climatic impact, in addition, falls on South Africa (SADC, 2016;
Rojas et al., 2019), where maize is an essential element of the diet
of its population (SADC, 2016; OECD/FAO, 2021), and where,
together with other regions in Southern Africa, the persistent
socioeconomic vulnerability enhances the negative impact of
climate change (Leichenko and O’Brien, 2002; Niang et al.,
2015).

This article explores the consequences of climate change on
both maize productivity and stomatal development (stomatal
density and stomatal size) and function. Drought, through
alterations in the stomatal development and function, reduces
both transpiration and photosynthetic rate (Zhao et al., 2015;
Hussain et al., 2019). When drought and heat co-occur, plants
experience a reduction in transpiration rate, photosynthetic rate,
and biomass accumulation, which are more severe than those
induced by drought stress individually (Hussain et al., 2019). In
addition, the alterations in stomatal function are physiologically
buffered, to avoid plant heat damage, with changes in the
stomatal density possibly induced by the expansion of the
distance of action, from the longitudinal leaf veins, of ZmSHR1.
Given that crop yields must improve despite the potentially
negative consequences of increasing temperatures and changing
precipitation patterns, this stomatal response to climate change
alerts about the future of maize cultivation, and it demands a
search for solutions to deal with the impact of climate change
on its productivity. Even more so considering that only when
drought is not very severe, maize benefits from increased CO2

levels reducing yield losses (Webber et al., 2018). This mitigation
of the drastic effects of drought is due to a reduction in
stomatal transpiration, which improves water use efficiency, and
consequently, the water content of the soil (Long et al., 2004;
Leakey et al., 2006, 2009; Ghannoum, 2009; Manderscheid et al.,
2014).

Effects of drought and heat on
maize crop productivity

Although there are other factors that affect maize
production, drought and heat are, without a doubt, two of
the most important. Certainly, there are several works that
show the relevance of these factors on maize yield in distinct
parts of the world (Table 1). Maitah et al. (2021), for example,
demonstrated the influence of precipitation, from 2002 to
2019, on maize yield in the Czechia. They found that both
total yield and yield rate increased from 1961 to 2010, but they
dropped after 2010, just when precipitation also decreased.
After 2010, there was also a trend of increasing temperature
that correlates with a decrease in total yield and yield rate
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FIGURE 1

World maize production and uses. (A) Maize production by country in 2020/2021. The United States, China, and Brazil are the top producers.
Production is expressed in million metric tons. Data source: USDA, Foreign Agricultural Service, Global Market Analysis. (B) Global uses of maize
in 2021. Maize is used as food and animal feed, and as a source of biofuel. It can also be processed into a wide range of useful chemicals. Data
source: OECD/FAO, 2021; forecast.

(Maitah et al., 2021). Data from more than 20,000 historical
maize trials in Africa, from 1999 to 2007, combined with daily
temperature and precipitation data, showed that each additional
degree day above 30◦C reduced the final yield by 1% under
optimal rainfed conditions, and by 1.7% under drought ones
(Lobell et al., 2011). This is telling us that the ability of maize
to cope with rising temperatures depends on the availability of
water. Certainly, plant cooling takes place through transpiration
(Curtis, 1936), which needs soil moisture. Outside Europe
and Africa, specifically in Khyber Pakhtunkhwa (Pakistan), an
analysis of maize yield between years 1996 and 2015 also showed
that precipitation has a positive effect in maize productivity,
while elevated temperatures have a deleterious impact (Khan
et al., 2019). In the United States, maize yield losses, from
1959 to 2004, were due to increased evaporative demand and
subsequent water supply depletion, which was induced by high
temperatures (Lobell et al., 2013). Together, this suggests that,
at least up to a certain temperature, drought, induced by a
deficiency of precipitation or elevated temperatures, causes a
decrease in maize productivity.

Estimations of the effect of drought and heat on maize yield
in various regions of the world, from mid- to late-21st century,
have been also realized (Table 1). In Europe, climate change by
2050 will reduce maize yield by 20% (Webber et al., 2018). In
addition, drought stress versus heat stress is the main driver
of losses for maize yield, even in low-yielding years (Webber
et al., 2018). In agreement with modeling analysis (Schauberger
et al., 2017), elevated CO2 concentration will be able to mitigate
such losses only when drought is not too severe (Webber et al.,
2018). It is also expected a drop of 10.1% in maize yield toward
the middle of the century in Turkey, and it is associated to
drought and/or heat stress (Dellal et al., 2011). In sub-Saharan
Africa, maize yield was estimated for two 10-year periods, 2056–
2065 and 2081–2090, unraveling changes from >+6 to <−33%

(Waha et al., 2013). The authors found that the importance of
changes in temperature and precipitation in maize yield will
depend on the study region. For example, in southern parts
of Mozambique and Zambia, the Sahel and parts of eastern
Africa, a reduction of the wet season precipitation will cause a
decrease in maize yield, prevailing over the effect of increased
temperatures (Waha et al., 2013). Although, as the authors
suggested, the model may have underestimated the damage
that elevated temperatures will produce. Projections of changes
in precipitation and temperature in the United States showed
that maize yield, by 2050 and relative to 2013–2017 period,
will reduce by 39–68% depending on the climate scenario (Yu
et al., 2021). When the authors incorporated to the model the
estimated effects of climate-neutral technological advances, the
net change in yield ranged from (−)13 to 62%, questioning,
interestingly, the usefulness of scientific efforts in adapting crops
to extreme conditions of heat and drought (Yu et al., 2021).
Considering the total maize production in the world, twenty-
first-century projections using state-of-the-art climate and crop
model suites, but excluding changing farming practices, and
adaptations such as breeding hardier crop varieties, suggest that
mean maize productivity, at the end-of-century, will shift from
+5 to −6% (SSP126) and from +1 to −24% (SSP585) (Jägermeyr
et al., 2021).

Despite some models omit CO2 fertilization effect (Dellal
et al., 2011; Waha et al., 2013), which alleviates yield losses
when drought is not too intense (Webber et al., 2018),
drought and heat are reducing, and will continue to do so,
maize yield in many regions of the world. The intensity of
this effect depends not only on the genotypes, but also on
environmental conditions and, therefore, on time and location
of these crops. The inclusion in the models of changing farming
practices, adaptations such as breeding hardier crop varieties
and economic incentives is essential to anticipate the effect of
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TABLE 1 Observations and estimations of maize yield and drivers of its change.

Region Period Drivers of yield changes and effect on
yield

References

Czechia 2002–2019 Decrease in precipitation and increase in
temperature decreased from 7.73 t/ha (2001–2010)
to 7.67 (2011–2019) maize yield, even considering
technological and management improvement in
production

Maitah et al.,
2021

Africa 1999–2007 Each additional degree day spend above 30◦C,
changed the final yield by −1% under optimal
rainfed conditions, and by −1.7% under drought
ones

Lobell et al.,
2011

Khyber
Pakhtunkhwa

1996–2015 Increase in precipitation increased maize yield, and
increase in temperature decreased maize yield

Khan et al., 2019

The
United States

1959–2004 Increase in evaporative demand induced by
elevated temperatures decreased maize yield

Lobell et al.,
2013

Europe 2050 Drought will change maize yield −20% Webber et al.,
2018

Turkey 2050 Drought and heat will change maize yield −10.1% Dellal et al., 2011

Sub-Saharan
Africa

2056–2065 and
2081–2090

Drought or heat, depending on space, will change
maize yield from >+6 to <−33%

Waha et al., 2013

The
United States

2050 Drought or heat, depending on the climate
scenario, will change maize yield from −39 to
−68% (relative to 2013–2017).
And from −13 to +62% (relative to 2013–2017),
incorporating to the model the estimated effects of
climate-neutral technological advances

Yu et al., 2021

World End-of-century Climate change will change maize yield from +5 to
−6% (SSP126) and from +1 to −24% (SSP585),
excluding changing farming practices and maize
adaptations

Jägermeyr et al.,
2021

climate change on maize crop yield and to design strategies
for its mitigation. Because in the next 50 years climate extreme
events will alternate with normal ones (IPCC, 2021), and
varieties adapted only to extreme events reduce their yield (Yu
et al., 2021), there is an urgent need not to make varieties more
resilient to extreme drought and heat, but to adapt these varieties
to a wide variety of conditions.

Maize stomatal response to
drought and heat stresses

Plants have developed multiple responses at the
developmental, physiological, and molecular levels that
enable them to escape, avoid, and/or tolerate unfavorable
environmental conditions (Gupta et al., 2020; Chávez-Arias
et al., 2021). Avoidance of drought and/or heat stress damage
includes changes in stomatal number and/or function (Gupta
et al., 2020; Chávez-Arias et al., 2021). Stomatal pores open to
absorb CO2 for photosynthesis, and close to prevent water loss
through transpiration (Blatt et al., 2017). It is widely known
that drought stress induces stomatal closure reducing water
loss (Taiz and Zeiger, 2006). However, in some regions of the

world, maize not only faces low water availability, but also
elevated temperatures (Hu et al., 2015; Zhao et al., 2016). For
a century, it has been known that transpiration reduces leaf
temperature (Curtis, 1936). Therefore, stomatal closure to
prevent transpiration, also triggers leaf heating. But how does
maize solve the dilemma of avoiding water loss and, at the same
time, heating the leaves when growing under both drought and
high temperatures?

Specifically in maize, with the typical grass stomata
consisting of two dumbbell-shaped guard cells (Stebbins and
Shah, 1960; Serna, 2011), severe water deficit (40–50% field
capacity) leads to a decrease in the size and opening of the
stomata and an increase in stomatal density (Zhao et al.,
2015; Figure 2A). The latter is possibly associated with the
need for cooling through transpiration. Anyway, this stomatal
response to drought negatively impacts stomatal conductance,
photosynthetic rate and transpiration (Zhao et al., 2015;
Hussain et al., 2019). The reduction in the stomatal size
has an important advantage because it increases the speed
of stomatal movement (Aasamaa et al., 2001; Hetherington
and Woodward, 2003), resulting in a decrease in water loss
by transpiration. But it also implies a reduction in the
assimilation of photosynthetic CO2, and in the yield of the
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plant. Nonetheless, the negative correlation between stomatal
density and transpiration rate in maize is stronger than that
with photosynthetic rate, indicating that leaf water use efficiency
tends to increase (Zhao et al., 2015). As expected, when
the temperature increases, the stomatal aperture area does
too, which increases the stomatal conductance and the rate
of transpiration (Zheng et al., 2013), avoiding the heating
of the leaves. Hussain et al. (2019) also found that heat
stress (38◦C for 15 days) increases the rate of transpiration,
but it decreases the photosynthetic rate (these changes were
not statistically significant). This decrease in photosynthetic
rate is obviously due to non-stomatal limitations, such as
alterations in electron transport capacity and activity (Way
and Oren, 2010; Zafar et al., 2018). Certainly, exceeding 35◦C
degrades maize chlorophyll (Hatfield et al., 2011; Hussain
et al., 2019), and compromises protein activity with strong
impact on carbon assimilation (Chaves et al., 2016). However,
the combination of heat and drought generates a reduction
in stomatal conductance, transpiration rate, photosynthetic
rate, biomass accumulation and, ultimately, yield, with these
reductions being more severe than those induced only under
drought stress (Hussain et al., 2019). Therefore, heat enhances
the stomatal response to drought, possibly associated with a
reduction in stomatal pore area accompanied by an increase
in stomatal density, which in turn reduces transpiration, but
it also increases leaf temperature (Figure 2A). This reduction
in transpiration associated with high water use efficiency has
costs in terms of lower rates of CO2 assimilation and reduced
yield, possibly through a direct decrease in CO2 uptake, and
an increase in leaf temperature that negatively impacts protein
activity. Taking theses stomatal responses into account, it is
likely that the increased frequency of extreme events induced
by climate change, such as heat waves, will exacerbate maize
yield loss.

Only under certain drought
conditions, maize benefits from
elevated CO2 levels

Climate change includes not only rising temperatures,
changes in precipitation patterns and increasing frequency
of extreme weather events, but also increased atmospheric
concentrations of CO2. In maize, heat enhances the
stomatal response to drought, decreasing water loss through
transpiration (Hussain et al., 2019). This protective response
to drought has costs in terms of lower CO2 assimilation, which
is manifested by a decrease in the photosynthetic rate and, by
extension, in the accumulation of biomass (Hussain et al., 2019).
Will maize benefit from increased CO2 levels, avoiding a decline
in growth and yield, when water is scarce, and temperatures
rise?

Increased atmospheric concentrations of CO2 stimulate
photosynthesis and yield of C3 species (Long et al., 2004;
Leakey et al., 2009; Kimball, 2016). However, C4 species
concentrate CO2 at the site of Rubisco, and the enzyme
is saturated with the current CO2 levels (Furbank et al.,
1989; Jenkins et al., 1989; von Caemmerer and Furbank,
2003; Ghannoum, 2009). Therefore, the increase of
CO2 concentration should not induce any effect on the
photosynthetic rate of these plant species. Agree with this,
several works have shown the insensitivity of C4 species,
including maize (Leakey et al., 2006; Markelz et al., 2011;
Manderscheid et al., 2014; Ruiz-Vera et al., 2015), to increases
in CO2 levels under sufficient water supply (Leakey et al., 2009;
Kimball, 2016), and except for one paper showing that maize
benefits from CO2 enrichment (Driscoll et al., 2006). However,
while the effects of increased temperature on photosynthesis
and growth of well-watered maize plants remain unchanged at
elevated CO2 levels compared to current ones (Kim et al., 2007),
when water becomes limiting, increased levels of atmospheric
CO2 levels improve their photosynthesis and growth (Leakey
et al., 2006; Markelz et al., 2011; Manderscheid et al., 2014).
However, and according to model analysis (Schauberger
et al., 2017), CO2 levels can alleviate the negative impact
of drought only when it is not too severe (Webber et al.,
2018).

In C4 species, the alleviation of the negative effects of
drought under elevated CO2 levels is due to a reduction in
stomatal transpiration, improving water use efficiency and,
consequently, the water content of the soil (Long et al., 2004;
Leakey et al., 2006, 2009; Ghannoum, 2009; Manderscheid
et al., 2014). However, this reduction in transpiration, on the
other hand, increases leaf temperature (Curtis, 1936; Kimball
et al., 1999; Gray et al., 2016), which may intensify heat stress,
impacting maize yield (Ruiz-Vera et al., 2015). Therefore, maize
may benefit from increased CO2 levels only when the drought
is not too severe, and temperatures do not reach very extreme
values.

Possible molecular mechanism of
maize stomatal development in
response to climate change

Changes in stomatal density can greatly impact a plant’s
water use efficiency and, consequently, drought tolerance.
Grasses develop their stomata in rows positioned at the
flanks of underlying longitudinal leaf veins (Stebbins and
Shah, 1960). This position of stomatal files may result
from an inhibitory signal transmitted from the vein to
overlying epidermal cells and/or from an inductive signal
transmitted to epidermal cells at a specific distance from
the vein (Hernandez et al., 1999). One such candidate for
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FIGURE 2

Maize stomatal response to climate change. (A) Heat enhances the maize stomatal responses to drought stress. Drought reduces stomatal size
and opening, and increases stomatal density, which, in turn, reduces transpiration and photosynthetic rate. When drought and heat coexist,
plants experience a reduction in transpiration rate and photosynthetic rate, possibly related to a reduction in stomatal size and opening,
accompanied by an increase in stomatal density. This triggers a reduction in biomass accumulation, which is more severe than that induced by
drought stress. (B) Possible molecular mechanisms of stomatal response to climate change. Drought stress, individually or in combination with
high temperatures, reduces stomatal opening by increasing abscisic acid (ABA) levels. This stomatal response could trigger the increase of the
distance of action of ZmSHR1 from the longitudinal leaf veins. ZmSHR1 might act to positively regulate ZmSPCHs/ZmICE1 heterodimers,
increasing the number of stomatal files and, consequently, the stomatal density.

this inductive signal is ZmSHR1, since transgenic rice lines
expressing this gene in an expanded domain, compared to the
vascular-specific expression domain of its orthologous OsSHR2
gene, produce supernumerary stomatal files between veins
(Schuler et al., 2018).

In Arabidopsis, entry into stomatal lineage is controlled
by the basic helix-loop-helix (bHLH) protein SPEECHLESS
(AtSPCH) and its more distantly related bHLH heterodimer
partners INDUCER OF CBF EXPRESSION1 (AtICE1) and
SCREAM2 (AtSCRM2) (MacAlister et al., 2007; Kanaoka
et al., 2008). Proteins encoded by the duplicated SPCH
homologs in Brachypodium, BdSPCH1 and BdSPCH2,
also redundantly control stomatal lineage initiation, with
loss-of-function of both BdSPCH1/2 (bdspch1 bdspch2)
triggering a stomata-less phenotype, and gain-of-function
by overexpression of BdSPCH2 inducing ectopic stomatal
development in new cell files (Raissig et al., 2016). In
addition, BdICE1, but not BdSCRM2, drives stomatal
lineage initiation (Raissig et al., 2016). This suggests
that BdSPCHs/BdICE1 heterodimers regulate entry into

the stomatal lineage. In maize, there are three copies
of SPCH-like genes and one copy of ICE1/AtSCRM2-
like genes (McKown and Bergmann, 2020), suggesting that
stomatal initiation is also controlled by ZmSPCHs/ZmICE1
heterodimers.

ZmSHR1, through an unknown mechanism, might act to
positively regulate these ZmSPCHs/ZmICE1 heterodimers in
epidermal files that flank leaf veins and, thus, to promote
stomatal initiation (Figure 2B). Thus, drought stress, by
increasing abscisic acid (ABA) levels, reduces stomatal opening
(Munemasa et al., 2015; Zhao et al., 2015), which, to avoid
plant heat damage, could increase the number of stomatal
files and, consequently, the stomatal density, by expanding
the expression domain of ZmSHR1 (Figure 2B). Drought
could also decrease the stomatal distance within epidermal
files, but the molecular mechanism behind this regulation is
unknown. Under adequate water supply, ZmSHR1 expression
in expanded domains by genetic manipulation would produce
supernumerary stomatal rows between veins and, consequently,
increased stomatal density. This would reduce excess heat by
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increasing transpiration and would, possibly, improve
maize yield.

Future considerations

Climate change is increasing the frequency of extreme
events such as heat waves (IPCC, 2021). The heat is intensifying
the effect of the drought in maize by decreasing gaseous
exchange through the production of smaller stomata and
reducing their opening (Zhao et al., 2015; Hussain et al., 2019).
Since photosynthesis is saturated at current CO2 levels in C4
species (Kimball, 2016), this response could be beneficial in
mitigating hydraulic demand. However, decreased transpiration
will increase leaf temperature, which will cause damage to plants
in specific locations of the planet. Under this climatic context,
the combination of plant breeding and agronomic management
is required to avoid yield losses. Under adequate water
supply, targeted genetic manipulation through the production
of genotypes characterized by an increase in stomatal size
and/or density could regulate leaf temperature by increasing
transpiration, thus preventing tissue damage. However, under
water restrictions, close monitoring of plant temperature could
prevent tissue damage caused by, for example, heat waves,
through timely irrigation. Earlier sowing could also help
rainfed maize adapt to climate change in some regions with
higher water demand in warmer periods. Even more if we
consider that the greatest yield losses occur when drought
stress prevails in the pre-tasseling stage (Anjum et al., 2017),
and high temperatures near the anthesis stage (Gabaldón-Leal
et al., 2016). In any case, adaptation strategies must be local,
and they must consider both agronomic management and
well-adapted genotypes.

Since varieties adapted only to extreme drought and/or heat
reduce their yield (Yu et al., 2021), selection or production
of varieties more resilient to extreme events, but also adapted
to a wide variety of conditions, is essential to avoid yield
losses. To achieve this, genetic modifications aimed at modifying
stomatal density and/or opening could be combined with those
aimed at modifying enzymes that regulate the photosynthetic

process. For example, as Pignon and Long (2020) suggested,
maize mutants with reduced carbonic anhydrase activity could
be combined with transgenic maize overexpressing Rubisco to
improve photosynthesis and water use efficiency under elevated
CO2 levels. In addition, the combination of modifications in
these characters with others that are not related to the stomatal
response could improve the adaptation of maize to climate
change.
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