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The mechanism governing plant community assembly across large-scale Gobi deserts

remains unclear. Here, we inferred the roles of different assembly processes in

structuring plant communities in the Gobi deserts of the Qinghai–Tibet Plateau by

using a phylogenetic tree, and leaf and root traits. The functional and phylogenetic

structures of 183 plant communities were assessed, and their distributions were linked

with environmental gradients. Our results demonstrated that functional convergence

was prevalent in most functional traits (75% of the traits) and accentuated when all

traits were combined. The phylogenetic structure exhibited significant divergence. We

observed the contrasting response of functional and phylogenetic assembly structures

to environmental gradients. More importantly, we found that the shifts in the functional

assembly along environmental gradients were trait-specific, with dominant roles of local

factors, such as gravel coverage and soil attributes, in determining the distribution

patterns of most traits. However, the distribution patterns of leaf P concentration (LPC),

root N concentration (RNC), and root P concentration (RPC) were mainly driven by

climatic factors. These results reveal that niche-based processes, such as abiotic filtering

and weaker competitive exclusion, are the major drivers of species co-occurrence, which

results in the widespread coexistence of phylogenetically distinct but functionally similar

species within the Gobi plant community. Our findings could improve the understanding

of plant community assembly processes and biodiversity maintenance in extremely

harsh drylands.

Keywords: Gobi deserts, Qinghai–Tibet Plateau, assembly processes, functional traits, phylogeny

INTRODUCTION

Global changes are expected to substantially influence biodiversity and ecosystem
functioning (Liu et al., 2018; Zellweger et al., 2019; Trisos et al., 2020). Hence,
uncovering the fundamental mechanism underlying the plant assembly structure is
crucial to understanding how plant communities respond to environmental changes
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(Enquist et al., 2015). Functional traits characterize the ecological
strategies used by species to respond to environmental changes
(DiAz and Cabido, 2001; Violle et al., 2007). Phylogenetic
structure measures the evolutionary lineages among species
within a community (Webb et al., 2002). Therefore, trait-
based and phylogenetic analyses can help infer the assembly
mechanisms governing plant communities (Cadotte et al., 2013;
De Bello et al., 2017;Mugnai et al., 2022). However, the functional
and phylogenetic structure exhibits distinct distribution patterns
and is subjected to different controlling processes (Garcia-
Giron et al., 2019; Wang et al., 2019). More importantly,
the relationships among functional and phylogenetic diversity
covary in different ways along environmental gradients (Bernard-
Verdier et al., 2013; Purschke et al., 2013). Therefore, the
approaches that combine trait-based and phylogenetic analyses
have been employed by an increasing number of studies.

Plant assembly processes can be predominantly explained by
niche and neutral theories (Chase and Myers, 2011; Hubbell,
2011). Niche theories focus on niche-based processes, such as
abiotic filtering and biotic interactions (Swenson et al., 2012;
Kraft et al., 2015). Abiotic filtering or weaker competitive
exclusion can lead to functionally or phylogenetically convergent
communities (Westoby and Wright, 2006; Mayfield and Levine,
2010; Backhaus et al., 2021), while biotic competition would
result in the coexistence of phylogenetically or functionally
dissimilar species (Macarthur and Levins, 1967; Cornwell and
Ackerly, 2009; Bernard-Verdier et al., 2012). The neutral theory
assumes that all individuals in plant communities are ecologically
equivalent and that the plant community structure is determined
by stochastic processes, such as birth and death of individuals,
and extinction of species in a locality (Cadotte and Tucker,
2017; Perronne et al., 2017). Multiple assembly processes work
together to govern plant communities, whereas their relative
roles depend on spatial sales and habitat types (Lhotsky et al.,
2016; Luo et al., 2019). For example, abiotic filtering would be
more important in more stressful environment, resulting plant
functional convergence (De Bello et al., 2009; Kraft and Ackerly,
2010). By contrast, biotic interaction could dominate plant
communities in a stable environment, and plant communities
would show functional divergence (Mayfield and Levine, 2010).

More importantly, variations in environmental factors can
alter the balance between different assembly processes (Lhotsky
et al., 2016; Ding et al., 2019; Wang et al., 2021a). Depending
on ecosystem types and inquiry scales, the plant community
assembly is influenced by various environmental factors such as
elevation, temperature, and soil attributes (Bernard-Verdier et al.,
2012; Luo et al., 2019; Wang et al., 2021a). Therefore, exploring
the influence of environmental factors on plant phylogenetic
and functional trait distribution may provide new insights for
predicting how plant community assembly responds to future
climate changes (Enquist et al., 2015; De Pauw et al., 2021).
However, how multiple environmental factors jointly drive the
variation in the assembly processes of plant communities across
large-scale Gobi deserts remains unclear.

The Qinghai–Tibet Plateau (TP), referred to as “the world’s
roof”, is mainly characterized by intense solar radiation, heavy
water deficit, and nutrient limitation. These environmental

regimes may lead to the unique ecological strategy and
coexistence mechanism of plant species in the Gobi deserts of
TP (Guo et al., 2011). Recently, the rate of climate warming
on the TP has been more than twice the global average (Ma
et al., 2017; Yao, 2019). Therefore, testing the relative roles of the
different processes in shaping plant functional and phylogenetic
structure in the Gobi deserts of TPmay provide new insights into
the mechanisms underlying the generation and maintenance of
plant diversity under global change. Indeed, the plant community
assembly and its determinants have been well examined in steppe
and meadow ecosystems of TP (Wang et al., 2021a,b). However,
few studies to date have focused on elucidating the assembly
processes that determine plant functional and phylogenetic
structures across the Gobi deserts of TP.

This study mainly aimed to (1) compare the variation in plant
functional and phylogenetic distribution along environmental
gradients and (2) whether and how environmental factors drive
the variation in plant assembly processes. We selected 183 plant
communities from the typical Gobi deserts of TP and assessed
functional traits and phylogenetic trees. We examined the
following hypotheses: (1) the plant functional and phylogenetic
structure was significantly convergent in harsh Gobi deserts
and (2) multiple environmental factors jointly drive the plant
assembly processes, whereas water availability plays a more
important role.

METHODS

Study Sites
Gobi deserts are the main ecosystem types in the northern
Qinghai–Tibet Plateau, which has a total area of ∼84, 928
km2. The climate of the study area is typical plateau temperate,
changing from extremely arid to arid, with strong spatial
variability in precipitation and temperature. The vegetation
types are mainly dominated by shrubby desert (SHD), dwarf
semi-arboreous desert (DSAD), semi-shrubby and dwarf semi-
shrubby desert (SHDSD), and succulent holophytic dwarf
semi-shrubby desert (SHSHD). We selected 61 sites from
the typical Gobi deserts region in northern Qinghai–Tibet
Plateau during the peak of the growing season (July-August)
of 2015, which covered major climatic zones and vegetation
types (Figure 1). Specifically, 4 sites of DASD, 23 of SHD,
31 of SHDSD, and 3 of SHSHD were selected in this study.
DASD was mainly dominated by Haloxylon ammodendron; SHD
was mainly dominated by Ephedra przewalskii, Sarcozygium
xanthoxylon, Calligonum mongolicum, Tamarix ramosissima
and Nitraria tangutorum; SHDSD was mainly dominated by
Reaumuria songarica, Sympegma regelii, Ceratoides latens and
Reaumuria kaschgarica.

Field Survey and Sampling
At each site, three 10m × 10m plots were randomly established
along a 1-km transect under representative landscape and
dominant vegetation, and geographic coordinates and elevation
of each plot were recorded with GPS. All plant species
compositions and abundance were identified and recorded at
the plot level. Gravel coverage (Gravel) by visually estimating
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FIGURE 1 | Distribution of sampling sites in Gobi deserts of northern Qinghai–Tibet Plateau.

the percent of a plot occupied by the vertical projection of
all gravel onto the ground. At each plot, 15 soil cores (0–
10 cm) were randomly collected and subsequently mixed into a
composite sample.

Approximately 30 mature but non-senescent leaves with little
damage were collected from different locations at each site
to determine leaf traits. Specific leaf area (SLA, cm2/g) was
measured by assessing the ratio of the leaf area (LA) to its
oven-dried mass. For fine-root (diameter ≤2mm) sampling was
conducted following the protocol described by Guo et al. (2011).
Specifically, for woody species, we first removed the surface soil
near the plant basal stem and then traced the intact root system
to the lateral root clusters. For herbaceous species, root samples
were obtained by separating root systems from whole plants.
Given that desert plants usually have limited fine root amounts,
root samples were collected from at least 20 individuals. The ratio
of root length (RL) to dry mass was used to calculate specific
root length (SRL, m/g). The leaf N concentration (LNC, mg/g)
and root N concentration (RNC, mg/g) was determined by dry
combustion using an elemental analyzer (FLASH2000 CHNS/O,
Thermo, American). Leaf P concentration (LPC, mg/g) and root
P concentration (RPC, mg/g) were measured using colorimetry
after digestion with H2O2-H2SO4.

Finally, eight key leaf and root traits: SLA, LA, LNC, LPC,
SRL, RL, RNC, and RPC were used in this study. LA represents
determines the size of the photosynthetic surface, while SLA can
reflect carbon assimilation and growth rate of plants (Cornelissen
et al., 2003). LNC can reflect the photosynthetic rate, plant
growth, and survival, while LPC represents the nutritional quality
and plant growth (Wright et al., 2004; Pérez-Harguindeguy et al.,
2013). RL can reflect the difficulty in extracting fine roots from
the soil, and the enormous length these roots can attain, while
SRL represents the nutrient and water absorption, root lifespan,
and relative growth rate (Pérez-Harguindeguy et al., 2013). RNC
and RPC can reflect root nutrient uptake efficiency (Freschet
et al., 2017). Therefore, we selected these eight traits to infer
functional assembly.

Environmental Variables
Soil total nitrogen content (TSN) and organic carbon content
(TOC) was measured using the Kjeldahl procedure and
K2Cr2O7 oxidation method, respectively. Soil moisture (SM)
was measured gravimetrically, and soil pH was determined by
1:2.5 (v/v) soil water aqueous extract. For climatic factors, we
obtained the data of precipitation seasonality (PS), mean annual
precipitation (MAP), temperature seasonality (TS), and mean
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annual temperature (MAT) from the Worldclim global climate
database (https://www.worldclim.org/data/index.html). Hence,
nine environmental variables (local factors: Gravel, TSN, TOC,
SM, pH; Climatic factors: MAP, PS, MAT, TS) were used in
this study.

Phylogenetic Tree Reconstruction
All species names were standardized following The Plant
List within “plantlist” package. We identified a total of 44
species that could be classified into 15 families and 35 genera
(Supplementary Table S1). After that, the species names were
linked with those in megaphylogeny using phylo.maker function
within V.PhyloMaker package, and scenario 3 approach to add
species to the phylogeny (Jin and Qian, 2019). Scenario 3 adds
missing taxa (e.g., genus or species) to the phylogeny within the
taxa with known branch lengths (Jin and Qian, 2019). Finally,
a phylogenetic tree of all 44 species was reconstructed under
scenario 3 (Supplementary Figure S1), which is similar to the
approach implemented in Phylomatic and BLADJ.

Phylogenetic Signal of Traits
Phylogenetic signals of each functional traits were quantified
using Blomberg’s K to infer the relationship between functional
and phylogenetic structure (Blomberg et al., 2003). Significant
phylogenetic signals indicate the closely related species have
similar functional traits, and functional and phylogenetic
structures showed similar patterns. The significances of
Blomberg’s K values were assessed by comparing to null
distributions by shuffling species labels at the tip of the
phylogeny 999 permutations. Additionally, all six functional
traits were log-transformed before analysis (Luo et al., 2019).

Phylogenetic and Functional Structure
Mean pairwise distances (MPD) of functional trait of all species
within the community was used to determine the functional
structure, and MPD was assessed for each of the six individual
functional traits as well as for six of the traits combined. MPD is
the mean functional and phylogenetic distance among all pairs
of species within a community, which is widely used to infer
community assembly structure in previous studies (Luo et al.,
2020; Wang et al., 2021b). Meanwhile, the phylogenetic structure
was determined as the MPD of species’ phylogenetic relatedness.
Both functional and phylogenetic MPD were calculated using
the Picante package in R. Specifically, principal components
analysis (PCA) was conducted with the vegan package to reduce
functional trait data redundancy. Trait PCA axes were used to
calculate functional structure. The standardized effect size (SES)
of functional and phylogenetic MPD was calculated using the
null model approach to infer the functional and phylogenetic
assembly mechanisms. A total of 999 null communities were
generated by randomly shuffling the species names at the tips of
the functional and phylogenetic trees. SES of MPD (SES.MPD)
was assessed using the following formula:

SES · MPD =
MPDobs − mean(MPDnull)

sd(MPDnull)

TABLE 1 | Phylogenetic signal of plant functional traits.

Functional trait Blomberg’s K P

Leaf nitrogen concentration (LNC) 0.10 0.28

Leaf phosphorus concentration (LPC) 0.10 0.31

Specific leaf area (SLA) 0.08 0.55

Leaf area (LA) 0.43 0.03

Root nitrogen concentration (RNC) 0.17 0.11

Root phosphorus concentration (RPC) 0.07 0.68

Specific root length (SRL) 0.19 0.08

Root length (RL) 0.41 0.02

Values in bold highlight the significant signal.

where MPDobs indicates the observed MPD values, mean
(MPDnull), and sd (MPDnull) indicates the mean and standard
deviation value of 999 null communities, respectively. Negative
SES.MPD values indicate the phylogenetic and functional
convergence, whereas positive SES.MPD values indicate the
phylogenetic and functional divergence. Given the non-
normality of data, the significant deviations of functional
and phylogenetic MPD from null expectations (SES = 0)
were tested using the Wilcoxon test. SES was significantly
different from 0 mean that niche-based processes dominated the
plant communities.

Statistical Analysis
All data of functional and phylogenetic structure and
environmental variables were standardized (average = 0 and
SD = 1). The major drivers of the phylogenetic and functional
structure were determined by stepwise multiple regressions
(SMR). The relationship between phylogenetic/functional
structure and the individual environmental variable was
examined by linear regression. All variables were subjected to
forward-selection until p < 0.05 for all explanatory variables.
To avoid the strong collinearity among variables, we removed
the variables following the criterion of variance inflation factor
greater than 3. Finally, hierarchical partitioning was applied to
explore the independent effect of each variable on community
assembly, using hier.part package (Walsh et al., 2003). All
analyses were carried out in R 3.6.3 (R Development Core Team,
2020).

RESULTS

Phylogenetic Signals of Functional Traits
Among eight functional traits, only LA and RL showed a
statistically significant phylogenetic signal (Table 1), whereas
the six other functional traits did not. Meanwhile, Blomberg’s
K of LA and RL were obviously <1, indicating the weaker
phylogenetic signal than expected by Brownian motion model
for trait evolution. These results may indicate that evolutionary
history or phylogenetic relationships had weak influence on
functional traits.
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FIGURE 2 | Plant phylogenetic and functional structure assessed using the mean (mean ± 95% confidence) of standardized effect size of mean pairwise distances

(SES.MPD) across 183 communities. A negative value indicates phylogenetic and functional convergence, while positive value indicates phylogenetic and functional

divergence. SLA, specific leaf area; LA, leaf area; LNC, leaf N concentration; LPC, leaf P concentration; SRL, specific root length; RL, root length; RNC, root N

concentration; RPC, root P concentration; all traits, all traits combined; **, p < 0.01; *, p < 0.05.

Functional and Phylogenetic Assembly
Structure
Null model and Wilcoxon test analysis together showed the
average SES.MPD for most functional trait was significantly less
than expected by chance across all communities, except for LNC
and LPC (p< 0.001; Figure 2). In contrast, the average SES.MPD
for LNC and LPC was higher than expected by chance across all
communities (p< 0.05). Meanwhile, the average SES.MPD for all
of the traits combined was also significantly less than expected by
chance across all communities (p < 0.001). However, we found
the average phylogenetic SES.MPD was significantly larger than
the zero value (p < 0.01).

Variation in Functional and Phylogenetic
Assembly Along Environmental Gradients
Climatic and local habitat factors together explained 14.04%
and 40.26% of the total variations in functional (all of
the traits combined) and phylogenetic SES.MPD, respectively
(Supplementary Table S2). The variation in functional (all of
the traits combined) SES.MPD was mainly explained by SM,
followed by Gravel, TS, and PS (Figure 3). However, Gravel
and PS together drove the variation in phylogenetic SES.MPD
(Figure 3). Moreover, climatic and local habitat factors together
explained 7.67%-37.84% of the total variation in SES.MPD for
eight functional traits (Supplementary Table S2; Figures 4A–H).
The variations in the SES.MPD for LPC, RNC, and RPCwasmore
influenced by climatic factors than local habitat factors, while

those of SLA, LA, SRL and RL were more strongly related to local
habitat factors (Figures 4A–H).

The plant phylogenetic structure was more divergent in
high Gravel or low PS gradient (Figure 5). Plant functional
structure (all of the traits combined) was more convergent at
low SM and PS or high Gravel and TS gradient (Figure 6,
Supplementary Figure S2). Moreover, we observed that eight
functional traits respond to climatic and local factors differently
(Supplementary Table S2, Supplementary Figure S3–S10). For
instance, the community structures of LNC and LPC were more
convergent at high pH gradient, while those of SLA, LA, and
RL were more convergent at low pH gradient. Additionally, the
community structures of LNC and LPC were more convergent
at high MAT gradient, while those of SLA and RPC were more
convergent at low MAT gradient.

DISCUSSION

Difference Between Plant Functional and
Phylogenetic Distribution Patterns
Phylogenetic information can help elucidate the evolutionary
relationships among co-existing species (Webb et al., 2002).
Phylogeny could reflect important unmeasured traits or complex
ecological strategies not easily captured by functional traits, such
as plant–Mycorrhiza and plant–pathogen interactions (Gilbert
and Webb, 2007; Cadotte et al., 2013; Montesinos-Navarro
et al., 2015). Therefore, exploring the relationship between
phylogenetic conservatism and trait evolution contributes to

Frontiers in Plant Science | www.frontiersin.org 5 July 2022 | Volume 13 | Article 952074

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Wang et al. Functional and Phylogenetic Assembly in Gobi

FIGURE 3 | Independent influence of major variables on the variations in phylogenetic (A) and functional (B) structure. All traits, all traits combined; SM, soil moisture;

PS, precipitation seasonality, PS; TS, temperature seasonality; GC, gravel coverage. ***, p < 0.001; **, p < 0.01.

FIGURE 4 | Independent influence of major variables on the variations in the standard effect size of MPD for the individual trait. MPD, mean pairwise distances. TSN,

soil total nitrogen content; TOC, soil organic carbon content; SM, soil moisture; PS, precipitation seasonality; MAP, mean annual precipitation; TS, temperature

seasonality; MAT, mean annual temperature; All traits, all traits combined; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; SLA, specific leaf

area; LA, leaf area; RNC, root nitrogen concentration; RPC, root phosphorus concentration; SRL, specific root length; RL, root length. ***, p < 0.001; **, p < 0.01;

*, p < 0.05.
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FIGURE 5 | Variations in the standard effect size of phylogenetic MPD along the gradients of Gravel (A) and PS (B). PS, precipitation seasonality; GC, gravel coverage.

FIGURE 6 | Variations in the standard effect size of functional MPD (all traits combined) along the gradients of Gravel (A) and SM (B). GC, gravel coverage; SM, soil

moisture.

better inferring community assembly mechanisms (Purschke
et al., 2013; Mugnai et al., 2022). When plant functional traits
exhibited significant phylogenetic signals, plant functional and
phylogenetic diversity generally should show similar patterns
(De Bello et al., 2017). However, the relationships between
functional and phylogenetic distribution patterns vary across
spatial scales and habitat types (Purschke et al., 2013; Wang et al.,
2019). Similarly, our study observed that eight functional traits
exhibited weak phylogenetic signals, indicating that Gobi plants
have weak phylogenetic conservatism result of the influence of
local adaptation to the Gobi harsh environment (Shigyo et al.,

2017). The K values of functional traits close to zero may reflect
the adaptive convergence processes of Gobi plants driven by
similar selection, especially for drought tolerance, which may
be better captured by an Ornstein–Uhlenbeck (OU) process of
trait evolution (Butler and King, 2004). Therefore, our findings
imply that distant relatedness could be less functionally different
because plants are restrained by desert environmental stress
toward an optimal trait value (Butler and King, 2004), which in
turn could possibly result in strong convergence among Gobi
plant species. Hence, plant communities exhibited functional
trait convergence (SES.MPD of all of the traits combined <0)
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and phylogenetic divergence (phylogenetic SES.PMD >0). In
harsh Gobi deserts, convergence in functional traits, such as
SRL and SLA, may also decrease the potential advantages
in competitive ability (Luo et al., 2016), thereby promoting
species coexistence. Together, we highlight that phylogenetic
diversity cannot be simply used as the proxy for functional
diversity; therefore, combining functional and phylogenetic
approaches is necessary to accurately determine the Gobi plant
community assembly.

Niche-Based Processes Drive Plant
Functional and Phylogenetic Assembly
The balance between different assembly processes determines
the relative strength of convergence and divergence for trait
and phylogeny. The dominance of neutral processes will
induce a random community structure (Kraft and Ackerly,
2010). Stress-dominance hypothesis believes that abiotic filtering
would dominate community assembly and leads to functional
phylogenetic convergence in a more stressful habitat, while biotic
interaction, such as competition exclusion, plays a major role
and resulting in divergence in a more favorable environment
(Schöb et al., 2013; Coyle et al., 2014). In this study, we
observed that most traits, as well as all the traits combined
exhibited functional convergence, consistent with the findings of
Chinese grasslands (Wang et al., 2021a). This may suggest that
abiotic filtering drives the Gobi plant community’s functional
structure. The environmental filtering hypothesis posits that
abiotic filtering chooses species with similar trait values within
communities (Kraft et al., 2015; Šímová et al., 2015). Abiotic
filtering would be stronger in harsher habitats, thereby further
reducing functional trait diversity (De Bello et al., 2009; Kraft
and Ackerly, 2010). A harsh and homogeneous Gobi-desert
environment would filter species toward the optimal trait value,
allowing them to cope with the strong abiotic stress and resulting
in functional convergence (Keddy, 1992; Grime, 2006). However,
the weaker competitor hypothesis also believes that relatively
weaker competitive species would be excluded by relatively
higher competitive species and can result in trait convergence
(Mayfield and Levine, 2010). Additionally, our results partly
support the importance of competitive exclusion, that is, LNC
and LPC showed functional divergence, which is similar to the
findings on desert steppe (Wang et al., 2021b). Overall, we
highlight that multiple niche-based processes, such as abiotic
filtering and weaker competitive exclusion, determine plant
functional assembly.

Our results reveal that phylogenetic structure displayed
significant divergence, which further supports the dominance
of niche-based processes in Gobi deserts. We identified a
total of 44 species of species that could be classified into 15
families and 35 genera (Supplementary Table S1). Hence,
plant species in the study area have relatively more distant
relatedness. For example, as the Gymnosperm plants, Ephedra
przewalskii is present in more than 60 plant communities
and has great distant relatedness with Angiosperm species.
However, E. przewalskii shares similar functional traits
with dominant angiosperm species, such as Calligonum

mongolicum, Nitraria sphaerocarpa, Gymnocarpos przewalskii,
and Reaumuria kaschgarica. Given the trait convergent evolution
and distant relatedness among species, abiotic filtering and
weaker competitive exclusion would select species with similar
traits but distant relatedness into the community, leading
to trait convergence but phylogenetic divergence among co-
occurring species within the Gobi community. Together, this
finding revealed that niche-based processes, such as abiotic
filtering and weaker competitive exclusion, can result in the
discrepant patterns of functional and phylogenetic distribution in
Gobi deserts.

Climatic and Local Habitat Factors Jointly
Mediate the Relative Strength of
Functional and Phylogenetic Convergence
and Divergence
The relative strength of functional/phylogenetic convergence
and divergence vary along environment gradients (Purschke
et al., 2013; Luo et al., 2019). However, plant functional and
phylogenetic distributions were driven by a wide range of
environmental factor (López-Angulo et al., 2018; Backhaus et al.,
2021; Catano et al., 2021). For example, trait convergence was
mainly driven by temperature on the Tibet Plateau, whereas
water availability governs trait convergence on Mongolian
Plateau (Wang et al., 2021a). This study found that the
distribution patterns of phylogeny and most traits were mainly
influenced by local habitat factors, such as gravel coverage and
soil condition, rather than climate. Similarly, a study on dryland
reported that soil and topographic factors exhibited a more
important influence on functional and phylogenetic diversity
(Wang et al., 2019). Water availability plays a fundamental
role in shaping ecosystem function and biodiversity (Fernandez-
Going et al., 2013; Wang et al., 2014). However, the amount of
water available to plants was not simply dependent on climatic
factors (Zhang et al., 2017). Soil attributes are key determinants
of the growth and distribution of plant species in drylands
(Maestre et al., 2003). In Gobi deserts, gravel coverage could
mediate the water availability for plant uses by affecting water
infiltration and evapotranspiration (Unger, 1971). For example,
we observed a negative correlation between gravel coverage and
soil moisture (Supplementary Figure S11). Additionally, local
discrete vegetation patches could alter the spatial heterogeneity of
water and nutrients supply by generating “fertile islands” (Okin
et al., 2004; De Graaff et al., 2014). Therefore, local factors can
largely determine the functional and phylogenetic assembly in
Gobi deserts. Whether the interactions between climatic and
local factors can drive functional and phylogenetic distribution
should be determined because this might lead to difficulty
in quantifying their individual effects precisely (López-Angulo
et al., 2018). Partly supporting the finding on United States
drylands (Butterfield and Munson, 2016), we also found that
climatic factors, such as mean annual temperature, were the
best predictor of distribution of LPC and RPC. Meanwhile, we
found that the distribution patterns of eight traits were influenced
by different local habitat factors. These findings support the
viewpoint that response of plant functional assembly structures
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to environmental gradients were trait-specific (Le Bagousse-
Pinguet et al., 2017).

A previous study reported that plant functional and
phylogenetic convergence showed a trend decreased along
the sand desertification gradient (Wang et al., 2021b). The
phylogenetic and functional structure of tree communities also
showed similar shifts along a climatic gradient in Yulong
Mountain (Luo et al., 2019). However, the shift in phylogenetic
and functional structure along environmental gradients is not
always accordant (Purschke et al., 2013; Cadotte et al., 2019).
Our study demonstrated the contrasting shift in phylogenetic
and functional structure along environmental gradients. For
example, phylogenetic structure tended to be convergent in low
gravel coverage habitat and divergent in higher gravel coverage
habitat. However, functional structure exhibited an opposite
change trend along gravel coverage gradients. Additionally, we
also found that the functional convergence tends to decrease
along soil moisture. In the study region, E. przewalskii belonging
to Gymnosperm plants mainly occurred in more stressful
environments, such as higher gravel coverage and lower soil
moisture. Relatively lower environmental stress in low gravel
coverage habitat leads to more functional distinct species, such
as shrub and herbaceous species, that can co-occur, leading to
functional divergence. However, stronger environmental stress
would reduce the tolerable range for species growth and filter
stress-avoidant species in high gravel coverage habitats (De
Bello et al., 2009; Kraft and Ackerly, 2010). As a result,
plant communities in these habitats were dominated by few
functional similarly and stress-tolerant species. Hence, plant
communities showed functional convergence but phylogenetic
divergence in these stressful habitats. This finding suggests that
particular species pool and trait convergent evolution lead to
different responses of functional and phylogenetic structures to
environmental stress.

CONCLUSION

This study elucidates the assembly mechanism of plant
community in large-scale Gobi deserts of Qinghai–Tibet Plateau
by using eight functional traits and a phylogenetic tree.
Our results demonstrated that niche-based processes, such
as abiotic filtering and weaker competitive exclusion, are
the major driver of species co-occurrences, which lead to
the widespread coexistence of phylogenetically distinct but

functionally similar species. More importantly, the shifts in the
functional assembly along environmental gradients were trait-
specific, with dominant roles of local habitat factors, such as
gravel coverage and soil attributes, in determining distribution
patterns of LNC, SLA, LA, SRL, and RL. The distribution
patterns of LPC, RNC, and RPC were mainly driven by climatic
factors. We also observed contrasting responses of functional
and phylogenetic assembly to environmental gradients. Along
the environmental stress gradient, functional convergence
tended to increase, whereas phylogenetic divergence tended to
increase. Our findings could reinforce the understanding of the
generation and maintenance of plant biodiversity in extremely
harsh drylands.
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