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Precise and site-specific nitrogen (N) fertilizer management of vegetables is

essential to improve the N use efficiency considering temporal and spatial

fertility variations among fields, while the current N fertilizer recommendation

methods are proved to be time- and labor-consuming. To establish a

site-specific N topdressing algorithm for bok choy (Brassica rapa subsp.

chinensis), using a hand-held GreenSeeker canopy sensor, we conducted field

experiments in the years 2014, 2017, and 2020. Two planting densities, viz,

high (123,000 plants ha−1) in Year I and low (57,000 plants ha−1) in Year II,

whereas, combined densities in Year III were used to evaluate the effect of five

N application rates (0, 45, 109, 157, and 205 kg N ha−1). A robust relationship

was observed between the sensor-based normalized difference vegetation

index (NDVI), the ratio vegetation index (RVI), and the yield potential without

topdressing (YP0) at the rosette stage, and 81–84% of the variability at high

density and 76–79% of that at low density could be explained. By combining

the densities and years, the R2 value increased to 0.90. Additionally, the rosette

stage was identified as the earliest stage for reliably predicting the response

index at harvest (RIHarvest), based on the response index derived from NDVI

(RINDVI) and RVI (RIRVI), with R2 values of 0.59–0.67 at high density and 0.53–

0.65 at low density. When using the combined results, the RIRVI performed

6.12% better than the RINDVI, and 52% of the variability could be explained.

This study demonstrates the good potential of establishing a sensor-based N

topdressing algorithm for bok choy, which could contribute to the sustainable

development of vegetable production.
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Introduction

Nitrogen (N) is the key nutritional driver determining
crop yield and quality, especially for vegetables (Dunn et al.,
2015). However, N fertilizer use is highly inefficient, and
often only 10–30% of the N applied in the field can be
absorbed by the crop, with a substantial amount of N
loss to the environment, resulting in soil and water quality
deterioration (Zhu et al., 2005; Shi et al., 2009; Song et al.,
2009). The amount and timing of the N application are
the two important factors determining the N-use efficiency
(NUE) (Bijay-Singh et al., 2015; Zotarelli et al., 2015). In this
sense, the diagnosis of field plant N status and appropriate
fertilizer-application recommendations have become a critical
component of ensuring high yields and good quality vegetable
crops. Since small farms characterize agriculture in many
countries, as reported, 73% of farms are smaller than 1 ha
and 85% are smaller than 2 ha, especially in China where over
80% of households operate less than 0.6 ha of farmland (Tan
et al., 2013; Lowder et al., 2016). Fine-tuned monitoring of N
status of both field and crop has been challenging, and over-
fertilization is a common occurrence. In these smaller-scale
operations, further complicated by variable fertility histories
and rotation systems, the temporal and spatial variation in
soil fertility among fields has additionally restricted efficient
fertilizer-N utilization (Jin and Jiang, 2002; Lowder et al., 2016).
Therefore, a site-specific topdressing N-management strategy
must be developed that reflects spatial variabilities and plant
N availability to improve NUE in vegetable production systems
(Dobermann et al., 2003).

Numerous recommendation systems have been developed
and tested for improving the N-fertilizer management
of vegetable crops, such as the Nmin methods, the
Kulturbegleitenden Nmin-Sollwerte System, and the N-Expert
system (Burns, 2006; Schmidt et al., 2009). These existing
systems are mainly based on soil testing and plant analysis;
however, the cost and time required for soil and plant testing,
the slow turnaround time, and high prediction errors among
fields have limited the adoption of these methods by local
farmers (Jin and Jiang, 2002; Ma et al., 2007). In recent years,
significant progress in investigating remote-sensing technology
as a real-time N diagnostic tool has been made, and related
approaches have been applied to many crops (Samborski et al.,
2009). Some proximal optical sensors, such as chlorophyll
meters, Dualex instruments, and portable canopy sensors,
have been used for determining the N status of vegetables
(Gianquinto et al., 2011; Padilla et al., 2018). Among these,
hand-held active canopy sensors have shown the potential to
detect plant N status with high temporal and spatial resolution
at the canopy level and have received much attention because
of their superior operational efficiency over direct contact
leaf sensors and relatively low cost compared to hyperspectral
sensors (Raun et al., 2005; Xia et al., 2016).

One of the commonly used hand-held active canopy sensors
is the GreenSeeker optical sensor, which measures reflectance
from the plant canopy in the red and near-infrared wavelength
region and provides two typical plant indices: the normalized
difference vegetation index (NDVI) and the ratio vegetation
index (RVI) (Yao et al., 2012). The canopy reflectance to
visible light is primarily dependent on the chlorophyll content
contained in the leaf palisade layer and the near-infrared
reflectance depended upon the structure of the mesophyll cell
and the cavities between cells, thus the NDVI and RVI indices
can detect plant N status and make N recommendation (Olfs
et al., 2005). Canopy characteristics have been used to guide
the N management of many cereal crops, e.g., winter wheat,
corn, and rice (Lukina et al., 2001; Barker and Sawyer, 2010;
Ali et al., 2014). Although the GreenSeeker sensor has been
widely used for cereal crops, there has been limited use for
N-fertilizer management in vegetable crops due to their special
nutritional characteristics, fertilization, regimes, and soil fertility
level; therefore, it cannot be used by just replacing the crop
in the equation, and the usability, application procedures, and
accuracy of the GreenSeeker sensor need to be restudied in the
new system (Tremblay et al., 2011; Ji et al., 2017). Previous
studies have mainly focused on in-season N-status estimation of
a specific vegetable, but protocols for determining the variable
N-application rate considering the spatial variation of vegetable
crops are urgently needed (Jones et al., 2007; Tremblay et al.,
2011; Dunn et al., 2015; Padilla et al., 2018). Moreover, plant
density is one of the most important agronomic factors in
practice, and sensor readings and N requirements change at
different densities (Raun et al., 2002). It is unknown whether a
hand-held active canopy sensor like the GreenSeeker sensor can
be used for the N management of leafy vegetables with different
plant densities.

Bok choy (Brassica rapa subsp. chinensis) is a popular
leafy vegetable that originated in China over 1,500 years
ago. Currently, it is widely cultivated and consumed in
China and north-eastern Asia for its antioxidant benefits
and winter hardiness (Heimler et al., 2006; Zhang et al.,
2014). In particular, it is a popular leafy vegetable in the
Taihu Lake region of southern China, and compared with
a previous study, there seems to be a large opportunity for
N-fertilizer reduction for bok choy in this region (Zhang
et al., 2016). Key questions, therefore, were whether the
GreenSeeker sensor may be employed to produce N-fertilizer
recommendations for bok choy and whether a sensor-based
topdressing N-management strategy could reduce N-fertilizer
applications without sacrificing yields. We hypothesize that the
GreenSeeker sensor would be used to make N recommendation
of bok choy with different densities, and the N fertilizer rate
would be reduced considering temporal and spatial soil fertility.
In our study, a 3-year field experiment of bok choy with
different densities and N-application rates was conducted in
the Taihu Lake region. The objectives were to (i) determine
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whether the sensor-based N diagnosis model could be applied
to bok choy with different plant densities, (ii) identify the
suitable growth stage and plant index between NDVI and
RVI for bok choy to make accurate predictions of yield
without additional N (YP0) and the response index (RI) with
topdressing N, and (iii) develop an accurate sensor-based
N-fertilizer topdressing strategy for bok choy to improve the
N-use efficiency.

Materials and methods

Study site

Field experiments with bok choy (Brassica rapa subsp.
chinensis) were conducted in 2014 (Year I), 2017 (Year II), and
2020 (Year III) in Yixing (31◦16′N, 119◦54′E), Jiangsu Province,
which is located in the center of the Taihu Lake region in

south-eastern China. This region has a sub-tropical monsoon
climate, with a mean annual air temperature and rainfall
of 15.7◦C and 1,177 mm, respectively. The distribution of
precipitation and temperature during the experimental period is
shown in Figure 1. Bok choy was planted in a new vegetable field
(a traditional bok choy-radish-cabbage rotation was applied in
each field every year), and the soil type at the experiment site
was classified as hydroagric Stagnic Anthrosol by the Chinese
soil taxonomic classification (Gong, 1999), with a pH (H2O)
of 6.25, an electrical conductivity (EC) of 0.48 mS cm−1, and
the soil organic matter content, total N, NO3

−-N, and NH4
+-

N were 18.5 g kg−1, 1.06 g kg−1, 84.2 mg kg−1, and 24.6 mg
kg−1, respectively.

Experimental design

In Years I and II, 2,680 kg ha−1 manure (consisting of
45 kg N ha−1) and 24 kg P ha−1 from calcium superphosphate

FIGURE 1

Monthly precipitation (R, mm) and average air temperature (T, ◦C) at the experiment site in cropping Years I, II, and III.

TABLE 1 Detailed experimental design.

Year Plant density Transplanting
date

Harvest date Nitrogen application
rate (kg N ha−1)

Plot area (m2) Experimental
function

Year I 123,000 plants ha−1 22 October 20 December N1 (45+0), N2 (45+64), N3
(45+112), N4 (45+160)

33.6 Modeling

Year II 57,000 plants ha−1 30 October 7 January N1 (45+0), N2 (45+64), N3
(45+112), N4 (45+160)

33.6 Modeling

Year III 123,000 and 57,000
plants ha−1

3 November 13 January N0 (0), N1 (45+0), N2 (45+64),
N3 (45+112), N4 (45+160)

16.8 Modeling

Year III 87,500 plants ha−1 Farmer practice Farmer practice Farmer practice 4.0 Validation
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and 47 kg K ha−1 using potassium sulfate were applied to
all treatments at transplanting as basal fertilizer. In addition,
four chemical N rates were employed, designated as N1, N2,
N3, and N4 (0, 64, 112, and 160 kg N ha−1, respectively),
supplied as urea. The inorganic N fertilizer was applied in two
splits: 30% at transplanting and 70% at the beginning of the
5–6 true-leaf stage. A randomized complete block design with
three replications was used, and each plot measured 33.6 m2

(7.0 m × 4.8 m). To test the influence of plant densities, a high
density (HD) was employed in Year I, with 123,000 plants ha−1,
while in Year II, a low density (LD) with 57,000 plants ha−1

was used. In Year III, a split experiment was conducted with
two densities of HD and LD, and each plot measured 16.8 m2

(3.5 m× 4.8 m). And two no-N fertilizer treatments (only 24 kg
P ha−1 from calcium superphosphate and 47 kg K ha−1 using
potassium sulfate) under HD and LD, with three replications
each, were added to test the effect of soil background nitrogen
supply potential.

Seedlings were grown in a small nursery first and then
transplanted at the two-leaf stages into the experimental plots.
In Year III, 24 plots (4.0 m2 plot each−1) located adjacent to the
experiment site were established as a validation field; a moderate
plant density (87,500 plants ha−1) was chosen in the validation
field. The N management of the validation field was designed
according to local farmer practice, and the plots were arranged
randomly. The corrective N-management strategy was tested
to determine N fertilizer application at the rosette stage using
the experimental data, and the detailed experimental design is
shown in Table 1.

Data collection

A GreenSeekerTM (Trimble Inc., Sunnyvale, CA,
United States) hand-held sensor was used to collect reflectance
data using red (671 ± 6 nm) and near-infrared (780 ± 6 nm)
radiation. The sensor was positioned horizontally and parallel
to the crop row approximately 60 cm above the crop canopy in
each plot except the border rows by holding the GreenSeeker
and walking at a constant speed, and the average of four
measurements of independent rows from each plot was
reported. Two vegetation indices (NDVI and RVI) were
calculated by the internal software, and the calculations are as
follows (Tremblay et al., 2009):

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

RVI =
ρNIR

ρRed
(2)

Where:
ρ NIR = reflectance at the near-infrared (NIR) region;
ρ Red = reflectance at the red region.

Sensor readings were collected at four growth stages (the
5–6 true-leaf, rosette, cupping, and harvest stage), and the
exact sensing dates are presented in Table 2. The yield of each
plot was determined from the aboveground fresh biomass of
the bok choy adjusted to the water content of 90%. As for
the validation field, the sensor readings of four stages and
harvest yield were collected like those in the experimental
plots. Additionally, the average N concentration of harvest
bok choy was estimated by randomly sampling plants from
24 validation fields in the research region. Plant samples were
oven-dried at 105◦C for 30 min, then dried at 70◦C to a
constant weight, and later ground into fine powder to determine
N concentration by a modified Kjeldahl digestion method
(Xia et al., 2016).

YP0, YPN, RI calculation, and
N-fertilizer use efficiency evaluation

To evaluate the potential of using the GreenSeeker sensor to
estimate bok choy yield potential without additional N (YP0),
only treatments that received preplant N applications were
used for the yield prediction model (including N1 treatment
in Years I and II and N0 and N1 treatment in Year III). And
YP0 can be estimated by the empirical exponential relationship
between yield and NDVI or RVI measurements of all N
treatments collected by the GreenSeeker sensor, YP0 = a∗eb

∗NDVI

or YP0 = a∗eb
∗RVI (Teal et al., 2006; Ji et al., 2017). The

YPN was calculated by multiplying the YP and RIHarvest values
estimated by RINDVI (RIRVI) (Raun et al., 2005; Yao et al.,
2012). Johnson and Raun (2003) introduced the response
index (RI) as a measure of a plant’s response to additional N
fertilizer. The RI is determined by comparing treatments or
farm practice with a reference plot, which was traditionally
used as the highest N-rate plot and represents an area where
N is not a yield-limiting factor (Johnson and Raun, 2003;
Lofton et al., 2012a). In our study, a 205 kg N ha−1 (160 kg
N ha−1 from chemical fertilizer plus 45 kg N ha−1 from
manure) treatment for bok choy was used as the reference plot.
RINDVI (RIRVI) was calculated by dividing the mean NDVI
(RVI) of the reference plots by the average measurement of
other N-treated plots, while RIHarvest was calculated by dividing
the mean yield of the reference plots by the yield of other
N-treated plots.

TABLE 2 Sensing dates of bok choy at the four specific growth stages.

Year 5–6 true-leaf
stage

Rosette
stage

Cupping
stage

Harvest
stage

Year I November 10 November 22 December 2 December 15

Year II November 15 November 27 December 14 December 28

Year III November 17 December 2 December 20 January 11
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The recovery efficiency (RE) and agronomic efficiency (AE)
were computed as follows to assess the N-use efficiency of
N-fertilizer input (Ali et al., 2014):

RE(%) =

total N uptake in N fertilized plot
− total N in no N plot

quantity of N fertilizer applied in N fertilized plot
× 100% (3)

AE kg yield/kg N applied

=
yield in N fertilized plot − yield in no N plot

quantity of N fertilizer applied in N fertilized plot
(4)

Statistical analysis

NDVI, RVI, and yield variation between different N fertilizer
treatments and plant densities were subjected to one-way and
two-way analyses of variance (ANOVA) and a Duncan multiple-
comparison test with SPSS (ver. 20.0 for Windows, SPSS Inc.,
Chicago, IL, United States). All the regression coefficients in
the study were calculated and plotted by Origin 8.5 (OriginLab
Corporation, Northampton, MA, United States).

Results

Yield responses to different N rates and
plant densities

Bok choy yields showed a significant response to different
N rates and densities (Figure 2; Supplementary Table 1). The

yields were greatly enhanced by increasing N rates in both years
and densities. The yields of bok choy under N2, N3, and N4
treatments were increased by 31.9, 50.6, and 50.4% in Year I
and 9.8, 44.4, and 48.4% in Year II. In Year III, yields under
N1 to N4 treatments were 8.5–78.4% and 13.8–63.9% higher
than the N0 treatment, and 29.8–64.3% and 7.9–40.9% higher
than the N1 treatment at high- or low density, respectively. The
yields increased as the N rate increased up to N3, but no further
significant increase was observed beyond N3, suggesting that
112 kg N ha−1 as urea accompanied 45 kg N ha−1 from organic
fertilizer was the optimum N rate for bok choy. As shown in
Figure 2A, the yield difference between Years I and II was rather
significant, and the actual yield of bok choy in Year II was 36.3–
46.9% lower than that in Year I, suggesting that plant density has
a significant influence on the final yields of bok choy at harvest,
since the plant population in Year II was less than half of that in
Year I. The yield in Year III also confirmed the effect of plant
density, and 26.6–40.2% gap was observed (Figure 2B). Also,
because of frost damage during the growing period, the yield in
Year III was significantly lower than that in Years I and II, but
a similar yield response trend was observed. Thus, the yield of
bok choy was significantly increased as the N-application rate
up to 157 kg N ha−1, and plant densities may have a remarkable
influence on yields at harvest.

In-season prediction of YP0

Current N recommendation strategies are mainly “yield-
based,” and YP0 is the possible attainable yield with no
additional N (Raun et al., 2002). In practice, accurately
estimating YP0 at the early stage was the first step in determining
a site-specific N-management strategy to achieve optimum
yields. Compared with three common types of regression
equations (Supplementary Table 2), the empirical exponential

FIGURE 2

Yield responses of bok choy to different chemical N fertilizer rates in Years I, II (A), and Year III (B). Treatments N0, N1, N2, N3, and N4 received 0,
45, 109, 157, and 205 kg·N·ha−1 in the growth season, respectively. Different letters indicate significant differences among various N application
rates in the specific year at the P < 0.05 level.
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TABLE 3 Relationships between sensor-based measurements (NDVI and RVI) and yield potential without additional topdressing N application (YP0)
of bok choy at different densities of high density (HD) and low density (LD).

Growth stage Index HD LD

Equation R2 RMSEa Equation R2 RMSE

5–6 True-Leaf NDVI y = 3.05e3.92x 0.68 0.73 y = 2.60e1.65x 0.70 0.35

RVI y = 1.90e0.63x 0.68 0.74 y = 1.75e0.48x 0.72 0.34

Rosette NDVI y = 1.13e4.01x 0.81 0.57 y = 1.20e3.75x 0.79 0.31

RVI y = 1.05e0.72x 0.84 0.53 y = 0.76e0.86x 0.76 0.32

Cupping NDVI y = 1.08e3.04x 0.16 1.20 y = 5.91e−1.20x 0.03 0.64

RVI y = 1.85e0.33x 0.15 1.20 y = 6.09e−0.22x 0.03 0.64

Mature NDVI y = 4.98e0.15x 0.01 1.30 y = 0.99e2.88x 0.20 0.58

RVI y = 4.64e0.044x 0.01 1.31 y = 1.16e0.43x 0.21 0.58

Pooled NDVI y = 11.76 x−0.062DAT+2.72 0.42 0.96 y = 8.23x−0.053DAT+3.07 0.36 0.65

RVI y = 1.83x−0.059DAT+2.80 0.40 0.98 y = 1.43x−0.044DAT+2.45 0.35 0.65

aRMSE means the root mean square error; DAT means days after transplanting.

FIGURE 3

Relationship between in-season estimates of yield potential without additional N topdressing (YP0) at the rosette stage calculated using the
normalized difference vegetation index (NDVI) (A) and the ratio vegetation index (RVI) (B) in Years I, II, and III.

model was used to determine the relationship between YP0

and the sensor-based vegetation indices (NDVI and RVI) for
bok choy across growth stages (Table 3). NDVI and RVI
could accurately estimate YP0, but the relationship was not
robust across all stages. At the 5–6 true-leaf stage, a low
correlation was noted between sensor measurements and YP0,
and the determination coefficient ranged from 0.68 to 0.72
(Table 3). The highest R2 was obtained at the rosette stage,
and 81–84% of YP0 of the variability under HD and 76–
79% of the variability under LD could be explained by RVI
and NDVI. However, at the cupping and harvest stage, a
significantly weaker relationship was observed, and 1–21%
of the yield variations could be explained (Table 3). In a
comparison between the two sensor-based vegetation indices,
NDVI and RVI, almost the same accuracy in predicting YP0 was
found at each stage.

Regression analyses (Table 3) suggest that the rosette stage
was the most appropriate stage for YP0 prediction in both
years and densities, which coincides with the optimum time
for topdressing N to bok choy during production. However, for
practical application purposes, it would be more convenient to
build a general model to predict the yield potential of vegetables
with different plant densities. The fitting curves of pooled sensor
readings (NDVI and RVI) and YP0 with different densities
among years at the rosette stage are presented in Figure 3.
By combining all years-densities data, the sensor-based yield
prediction model could explain 89–90% of the YP0 variation.
Between the two indices, RVI performed similarly to NDVI.
Additionally, the plant density showed a significant effect on
YP0, and the YP0 under HD treatments were much higher than
that of LD; thus, the data points for HD treatment are located
on the upper section of the line, while LD treatment data are
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positioned on the lower portion of the fitting curves; however,
the trend was similar for both densities (Figure 3).

In-season prediction of N response
index

Aside from the accurate prediction of YP0, the degree to
which a crop responded to additional N fertilizer was also a
key component in determining the appropriate N-management
strategy. Table 4 shows the relationships between RIHarvest and
RINDVI (or RIRVI), which were computed from the NDVI (or
RVI) readings collected at each stage. RINDVI and RIRVI were
significantly correlated with RIHarvest, but the parameters were
different among the stages. The sensor-based RIs can accurately
predict RIHarvest after the 5–6 true-leaf stage, and the rosette
stage was the earliest stage for which RIHarvest estimation was
conducted, with R2 values of 0.59–0.67 under HD treatment
and 0.53–0.65 under LD treatment. After the rosette stage, a

weaker relationship was observed for both RINDVI and RIRVI;
furthermore, those later stages were too late for topdressing N.
Therefore, the rosette stage was the most appropriate stage for
conducting the RIHarvest prediction, which was consistent with
the growth stage for YP0 prediction. After using a combined
equation to explain the variation across years and densities
at this stage, a weaker, but still significant, relationship was
observed relative to that of individual densities. The accuracy
of the RVI-based model and the RMSE value was 6.12% higher
and 8.70% lower, respectively, than that seen with the NDVI-
based model (Figure 4), with RVI explaining 52% of RIHarvest

variability. This result confirms the superiority of the RVI-based
model in explaining RIHarvest variability.

Model validation

The exponential and linear equations developed from
the RVI measurements at the rosette stage were used to

TABLE 4 Relationship between RINDVI and RIRVI with RIHarvest (y in the equations) of bok choy across years at different densities of high density (HD)
and low density (LD).

Growth stage Index HD LD

Equation R2 RMSE Equation R2 RMSE

5–6 True-Leaf RINDVI y = 1.73x−0.45 0.31 0.27 y = 1.13x+0.10 0.26 0.23

RIRVI y = 1.88x−0.59 0.17 0.30 y = 1.58x−0.35 0.16 0.24

Rosette RINDVI y = 3.57x−2.44 0.67 0.19 y = 1.79x−0.73 0.65 0.16

RIRVI y = 3.18x−2.05 0.59 0.21 y = 1.87x−0.76 0.53 0.18

Cupping RINDVI y = 3.11x−1.95 0.60 0.21 y = 1.65x−0.59 0.57 0.17

RIRVI y = 1.80x−0.64 0.62 0.20 y = 1.47x−0.40 0.58 0.17

Mature RINDVI y = 3.20x−1.95 0.44 0.24 y = 2.01x−0.87 0.52 0.18

RIRVI y = 0.51x−0.62 0.59 0.21 y = 1.44x−0.29 0.49 0.19

Pooled RINDVI y = 2.71x+0.0019DAT-1.66 0.31 0.21 y = 1.34x−0.0015DAT-0.19 0.41 0.18

RIRVI y =−0.57x+0.0067DAT+1.68 0.20 0.27 y =−1.34x+0.0017DAT+2.60 0.41 0.18

FIGURE 4

Relationships between the response index calculated with yield (RIHarvest) and the response index calculated with NDVI (RINDVI) (A) and RVI
(RIRVI) (B) at the rosette stage of bok choy growth in Years I, II, and III.
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predict YP0 (YP0 = 0.86e0.79 ×RVI, R2 = 0.90) and RIHarvest

(RI = 2.71 × RIRVI-1.60, R2 = 0.52) at either the high or low
plant density of bok choy. To validate the reliability of the YP0

and RIHarvest prediction model for different densities, we tested
the model using an independent data set obtained from the
validation field with a moderate plant density (87,500 plants
ha−1) in Year III. According to the results of the YP0 and
RI prediction models, the rosette stage was the most suitable
growth stage, so RVI measurements obtained at that stage were
used for validation to determine the relationship between the
predicted YP0 and RIHarvest and the actual values. As shown
in Figure 5, the observed YP0 was highly correlated with
the predicted YP0 (R2 = 0.60) in almost a 1:1 relationship,
with a slope of 0.89. For RIHarvest, the predicted value was

slightly higher than the observed results, but a good relationship
(R2 = 0.84) was observed, with a slope of 1.12. In general, the
data points of the two validation equations were all scattered
evenly around the 1:1 line. This confirms the potential of
applying the in-season YP0 and RIHarvest prediction model to
various plant populations.

Strategy for in-season site-specific N
management for bok choy

In practice, the potential yield with added N fertilization
(YPN) can be estimated by multiplying YP0 and RI; the
N requirement is then determined by multiplying the yield

FIGURE 5

Relationship between the observed and predicted YP0 (A) and RIHarvest (B) in the validation field.

TABLE 5 Estimation of sensor-based topdressing N amounts at different densities using the experimental data for bok choy.

Plot Fertilizer N application (kg N ha−1) YP0 (Mg
ha−1)

Yield/YPN
(Mg ha−1)

RE (%) AE (yield/kg
N)

Reduced nitrogen
fertilizer (kg N ha−1)

Fixed N rate a Recommended
N rate b

Total

Hc-Plot 1 109 58.77 167.77 8.33 10.74 19.49 23.18 37.23
H-Plot 2 109 54.41 163.41 8.74 11.10 20.84 25.54 41.59
H-Plot 3 109 56.99 165.99 7.86 10.19 17.88 20.12 39.01
H-Plot 4 109 48.88 157.88 5.42 7.33 9.85 17.90 47.12
H-Plot 5 109 43.41 152.41 5.48 7.17 9.64 17.54 52.59
H-Plot 6 109 47.45 156.45 5.31 7.15 9.33 16.97 48.55
Ld-Plot 7 109 37.97 146.98 4.83 6.38 12.45 13.74 58.02
L-Plot 8 109 37.87 146.88 5.19 6.74 13.81 16.20 58.12
L-Plot 9 109 36.08 145.08 5.19 6.67 13.71 15.92 59.92
L-Plot 10 109 31.73 140.73 3.88 5.12 7.69 13.99 64.27
L-Plot 11 109 34.44 143.44 4.00 5.34 8.40 15.27 61.56
L-Plot 12 109 29.07 138.07 3.76 4.89 6.93 12.60 66.93

aFixed N rate suggested the N application rate of 45 kg N ha−1 organic fertilizer and 19 kg N ha−1 chemical N fertilizer at transplanting as base fertilizer plus 45 kg N ha−1 chemical N
fertilizer at 5–6 true-leaf stage according to the nutrient requirement pattern. bRecommended N rate suggested the topdressing N application rate calculated at the rosette stage by the
site-specific N-topdressing algorithm. cH, high-density plot; dL, low-density plot. RE and AE stand for N recovery efficiency and agronomic efficiency.
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response by plant N concentration and average NUE (Raun
et al., 2005). In our study, the RVI is superior to the NDVI
measurement for predicting YP0 and RIHarvest.

Thus, the site-specific N-topdressing algorithm for bok choy
is expressed as follows (Raun et al., 2005; Yao et al., 2012):

Nrate =
[(YP0 × RI)− YP0] × N%

NUE
(5)

where YP0 = 0.86e0.79 × RVI and RI = 2.71× RIRVI-1.60.
The NUE used in the formula is defined as the NUE

of the additional N input. However, there is no consensus
yet on determining the vegetables’ NUE, as it depends on
various soil and environmental factors, fertilizer management,
and treatments applied (Barker and Sawyer, 2010; Li et al.,
2017). In our study, the average NUE in the research region
of vegetable crops topdressing N fertilizer was approximately
15%; thus, the NUE in the formula was initially set at 15% for
bok choy. Additionally, the N% expressed in the model was
the average N content of bok choy at harvest; according to our
investigation, the harvested N concentration of bok choy in
the Taihu Lake region was approximately 5.5% (Supplementary
Table 3). Based on the above discussion, the NFOA for bok choy
can be established.

Evaluation of the sensor-based N
topdressing algorithm of bok choy

Practically, a field optimum N rate is typically recommended
for the whole region and then adjusted to the specific rate
for a certain field based on the spatial variation (Zhu, 2006;
Yao et al., 2012). Therefore, a practical precision-driven N
topdressing algorithm for bok choy was proposed for the Taihu
Lake region, using 45 kg N ha−1 from manure as basal N
fertilizer plus a 112 kg N ha−1 chemical N fertilizer split-
applied at the transplanting and 5–6 true-leaf stage, at 30
and 40% proportion according to the nutrient requirement
pattern followed by determination of the need for additional
topdressing N at the rosette stage using the RVI-based NFOA
(Zanão Júnior et al., 2005).

To address whether the sensor-based topdressing
N-management strategy could reduce N fertilizer application
without sacrificing yields, we examined the proposed
N-management strategy using the plots with approximately
equal N application rates in Years I, II, and III at high or low
density. The data in Table 5 show the outcomes of normal farm
practice and the sensor-based N-topdressing strategy. A similar
yield was obtained under the traditional farm fertilizer practice
and the sensor-based topdressing strategy, at both high and low
density (Table 5). According to our calculation, the amount
of N recommended ranged from 43.41 to 58.77 kg N ha−1

under the high-density treatment and from 29.07 to 37.97 kg
N ha−1 under the low-density treatment. The recommended
rate was significantly lower than that employed as part of the
normal farm practice, especially for the low-density treatment.

When appropriately prescriptive N fertilizer amounts were
applied and a sensor-based corrective N strategy was conducted,
average increases of 14.91 and 31.17% of RE and 3.60 and
4.58 kg yield/kg N of AE by fertilizer N over normal farm
practice were observed at high and low densities, respectively.
Therefore, a reduction of 18.16–32.65% N can be achieved by
using the sensor-based approach compared to N-management
practice in conventional farming. Additionally, when compared
with the optimum N rate at 157 kg N ha−1, the amount of
the sensor-based NFOA was almost equal to, or slightly less
than, the optimum N rate, and the fertilizer rate gap between
the NFOA-calculated fertilizer rate and the optimum N rate
reflecting the soil fertility variation among plots.

Discussion

Sensor-based approaches used for
assessing the crop N management of
vegetable crops

Optical sensors have been a promising alternative approach
for non-destructive crop monitoring (Ali et al., 2020). However,
few studies have paid attention to the sensor-based N
fertilizer management in vegetable production systems. This
phenomenon was partly owing to the complicated canopy
architecture of vegetable crops which would complicate the
work of the sensor (Padilla et al., 2018). The RVI determined
by the GreenSeeker sensor had a significant relationship with
YP0 (R2 = 0.90) and RIHarvest (R2 = 0.52) (Figures 3, 4), the
RVI performed better than the NDVI on account of its higher
sensitivity vis-a-vis the former during the early vegetation and
maturity stages, especially at high plant densities (Li et al.,
2013). Given the different fitting results of the YP0 and RIHarvest

prediction model in Years I, II, and III, it may be influenced by
the climate differences between years to some degree (Figure 1),
and this need to have more validation (Raun et al., 2005; Ji et al.,
2017). When considering the variation in yield between years,
which may be due to the impact of vegetable stubble changes,
pests and diseases pests during a particular year, and adverse
weather, it did not influence the use of optical sensors (Liu et al.,
2008; Li et al., 2017). Moreover, the YP0 and RIHarvest prediction
model would not be affected even if the relatively yield fluctuates
(Figures 3, 4). To sum up, compared with the results for rice and
sugarcane, the findings of our study were as good as, or better
than, the predictions for other crops (Lofton et al., 2012b; Yao
et al., 2012); therefore, the YP0 and RI index of bok choy could
be reliably assessed by using the GreenSeeker sensor.

A sensor-based site-specific N
topdressing strategy of bok choy

Determining the correct amount of topdressing N is
a critical step toward enhancing NUE and ensuring the
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productivity and quality of vegetable crops (Zhou et al., 2017).
However, the complicated canopy architecture and the relatively
short growth cycle of bok choy and other vegetables relative
to that of grain crops (e.g., corn and rice) has caused difficulty
in determining the proper timing and amounts of topdressing
N for vegetables (Lukina et al., 2001; Barker and Sawyer,
2010; Lofton et al., 2012b; Ali et al., 2014; Xia et al., 2016).
In addition, the coexistence model of chemical N fertilizer
and organic fertilizer in the vegetable production system and
the uncertainty of the N mineralization capacity of organic
fertilizer significantly increases the difficulty of determining
the amount of topdressing N (Chen et al., 2006; Ren et al.,
2014). As found, the total yield of N4 in Years I, II, and
III was slightly lower or equal to that of N3 treatment, and
no significant difference was observed, therefore the N4 rate
was selected as the non-N limiting treatment. And an average
organic fertilizer application rate used by local farmers (about
45 kg N ha−1) from manure was applied as the basal fertilizer
to all treatments as part of the total N input, and, thus, the
amount of topdressing N could be quantitatively assessed and
the sensor-based NFOA was used in our study to establish the
amount of topdressing N fertilizer at the rosette stage of bok
choy Eq. 5, and the recommended N-fertilizer strategy was
thus proposed for the Taihu Lake region (Zanão Júnior et al.,
2005; Zhu, 2006; Yao et al., 2012). According to preliminary
estimation, the sensor-based topdressing strategy could reduce
the total N input by 18.16–32.65% without sacrificing yields
and could improve RE by 14.91–31.17% and AE by 16.10–
30.82% over traditional farming practices (Table 5), which is
consistent with findings for rice, where site-specific sensor-
based N management increased the partial factor productivity
of farmers by 48% without significantly affecting grain yield
(Li et al., 2009).

Effect of plant density on yield and the
sensor-based prediction model

Plant density is one of the most important agro
nomic management practices that influence crop yields
(Lama et al., 2018; Adams et al., 2019). The yield of high-
density plots (123,000 plants ha−1) was 26.6–46.9% higher
than that of low-density plots (57,000 plants ha−1) under each
N-application rate (Figure 2). This result is consistent with
the finding for willow, where a plant density of 20,000 plants
ha−1 resulted in a higher yield than a density of 15,000 plants
ha−1 (Wilkinson et al., 2007). Plant density can also influence
vegetation coverage and measured vegetation indices and,
thus, affects sensor-based N predictions (Yao et al., 2015). In
addition, as the plant population or density increases, vegetation
coverage also increases, and the by-plot coefficient of variation
decreases (Supplementary Table 4; Arnall et al., 2006), thus
the effect of plant density on the YP0 and RIHarvest predictions

was assessed. The combined year-density fitting curves showed
a more precise prediction of YP0 than the individual ones,
with the R2 value increasing by 5.62–15.56% (Table 3 and
Figure 3), suggesting that plant density would affect sensor
readings, and higher plant densities resulted in higher sensor
values; however, plant density had no effect on YP0 predictions.
The validation result of the YP0 and RIHarvest predictions, at
a moderate plant density (87,500 plants ha−1), confirmed the
possibility of applying the estimation model to various densities
(Figure 5), which is consistent with previous research on rice
(Xue et al., 2014).

Optimum timing for making accurate
YP0 and RIHarvest predictions

The growth stage is an important factor in predicting YP0

and RIHarvest by canopy sensors (Yao et al., 2012; Bijay-Singh
et al., 2015). The NDVI and RVI had a significant relationship
with YP0, but the relationship was not stable across different
stages (Table 3), which was similar to that for rice, where NDVI
and RVI could explain at most 50% of the aboveground biomass
variability due to interference from soil and water background
in the early growth stages (Gnyp et al., 2014). The totally
poor accuracy of the YP0 prediction model observed under low
density relative to that observed at high density was partly due to
the relatively lower plant density and stronger soil background
interference in the growth stages (Table 3; Cao et al., 2015). At
the rosette stage, the accuracy of the YP0 prediction increased
for both years and densities, and the R2 was significantly higher
than that in other growth stages. However, at later stages, the
relationship seemed weak, as the plant canopy began to close
and the sensor became saturated at this stage and could not
make satisfactory predictions (Ali et al., 2014; Ji et al., 2017).
Thus, the rosette stage was the most appropriate stage for
YP0 estimation.

Similarly, the RIHarvest prediction was variable across stages
(Table 4). For both the NDVI- and RVI-based RIHarvest

prediction models, accuracy was relatively low at the 5–6
true-leaf stage for the possible effect of input N had not yet
manifested. At later growth stages, the R2 of the RIHarvest

prediction model increased by over 90.32–150.00% that of
the 5–6 true-leaf stage in experimental years. However, sensor
measurements at the harvest stage were not conducted, since it is
not desirable to apply N at this stage of growth (Xue et al., 2014).
That is consistent with the results of Lofton et al. (2012b)
for sugarcane, where a short interval after fertilization was
not suitable for estimating the RIHarvest of cane tonnage and
sugar yield, but the RINDVI at 4 and 5 weeks after fertilization
could capture changes in RIHarvest (Lofton et al., 2012b).
Therefore, the rosette stage represented the optimum stage for
conducting RIHarvest prediction, and this period was also ideal
for topdressing N if needed.
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Conclusion

The development of a sensor-based N-management strategy
can provide an effective tool for site-specific topdressing
recommendations. It was hypothesized that the GreenSeeker
sensor could be used for in situ N fertilizer management
and topdressing recommendation of bok choy. Through the
three-year field experiment, it was confirmed that the active
canopy sensor could be used to reliably estimate the YP0

and RIHarvest of bok choy at the rosette stage, and the RVI
functioned better than the NDVI. In addition, the across-
years/densities models and the validation results confirmed the
potential of the sensor-based model to be applied to different
plant densities. A practical and environmentally friendly N
management strategy for bok choy in the Taihu Lake region is
proposed, and it consists of using 45 kg N ha−1 from manure
as basal N fertilizer and a 112 kg N ha−1 split-applied at the
transplanting and 5–6 true-leaf stage, at 30 and 40% of the
total. The remaining N should be based on the optical sensor
prediction at the rosette stage. According to our estimation, a
reduction of 1/5–1/3 N can be achieved by using the sensor-
based approach. This strategy can improve the NUE of bok choy,
is more suitable for practical applications, and has the potential
to contribute to the sustainable development of vegetable
crops. The current experiment represents an important field
validation for the development and implementation of vegetable
N-management strategies but was conducted with a limited
site-year design, and NFOA parameters warrant optimization
and testing with more data in future work. Further work is
needed to validate the fertilizer reduction potential in on-farm
applications and to explore its applicability with more site-
year data.
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