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Starch is the principal carbohydrate source in maize kernels. Understanding

the genetic basis of starch content (SC) benefits greatly in improving

maize yield and optimizing end-use quality. Here, four double haploid (DH)

populations were generated and were used to identify quantitative trait loci

(QTLs) associated with SC. The phenotype of SC exhibited continuous and

approximate normal distribution in each population. A total of 13 QTLs for

SC in maize kernels was detected in a range of 3.65–16.18% of phenotypic

variation explained (PVE). Among those, only somepartly overlappedwithQTLs

previously known to be related to SC. Meanwhile, 12 genes involved in starch

synthesis and metabolism located within QTLs were identified in this study.

These QTLs will lay the foundation to explore candidate genes regulating SC

in maize kernel and facilitate the application of molecular marker-assisted

selection for a breeding program to cultivate maize varieties with a deal of

grain quality.
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Introduction

Maize (Zea mays L.) is one of the important crops in the world. Starch is the main

component of maize kernel, which accounts for about 70% of kernel weight and is the

main energy source to supply adequate food to humans and feed animals and is a source

of demand in bio-ethanol production and other industrial applications (Nelson and Pan,

1995; Balter, 2007). Therefore, understanding processes related to starch biosynthesis

in maize kernel is of fundamental biological interest, and such knowledge also benefits

agricultural applications by providing means to improve grain yield and quality in seed

production (Comparot-Moss and Denyer, 2009; Jeon et al., 2010).

To elucidate genetic variation in starch biosynthesis and regulation, over the past

few years, numerous quantitative trait locus (QTL) studies have been carried out using

different mapping methods and populations, and many QTLs associated with starch

content (SC) in maize kernel have been revealed (Liu et al., 2008; Wassom et al., 2008;

Zhang et al., 2008; Li et al., 2009;Wang Y. Z. et al., 2010; Cook et al., 2012; Guo et al., 2013;

Nancy et al., 2014; Yang et al., 2014; Dong et al., 2015; Alves et al., 2019). For instance, six
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QTLs were identified in a recombinant inbred line (RIL)

population, and four genes were considered candidate genes

likely acting as direct regulators of starch biosynthesis (Wang

et al., 2015). A genome-wide association study (GWAS)

revealed 27 QTLs involving 39 candidate genes that are

associated with amylose content, including transcription factors,

glycosyltransferases, glycosidases, and hydrolases (Li et al.,

2018). Eight QTLs were revealed in an intermated B73×Mo17

population, and the gene encoding GLABRA2 expression

modulator was nominated as the candidate gene of a major

QTL by GWAS and the gene co-expression network analysis

(Lin et al., 2019). Recently, in a total of 50, 18 novel QTLs

were identified by integrating single linkage mapping, joint

linkage mapping, and GWAS in a multi-parent population

containing six RIL populations (Hu et al., 2021). Thus, although

commonQTLs associated with SC has been reported in different

studies, unique QTLs were always specialized in the context of

distinct populations and parents, which prompt us to conduct

further investigations using relevant germplasm to extend our

knowledge on the genetic basis of SC.

Distinct strategies of mapping populations were featured

with strengths and limitations, which caused great impacts on

the outputs of QTL (Odell et al., 2022). In particular, different

types of populations tend to vary with two main characteristics:

(1) their ability to capture genetic diversity and (2) their power

to detect QTL of small effect (Odell et al., 2022). Double haploid

(DH) segregating populations have been commonly used in

QTL analysis for several particular advantages (Chaikam et al.,

2019). Complete homozygosity of DH lines allowsmore accurate

phenotyping over multiple locations and years compared to

families in early selfing generations (Foiada et al., 2015; Yan

et al., 2017). In addition, DH populations enable the removal of

any residual heterozygosity, ensuring replicates are genetically

identical (Odell et al., 2022). Moreover, the relatively high

genetic variance in DH lines increases selection response by

stabilizing the heritability of various traits during perse and

test cross evaluation (Bordes et al., 2006; Gallais and Bordes,

2007; Mayor and Bernardo, 2009). In this study, we utilized four

DH populations derived from the practical breeding program

to further dissect the genetic basis and QTLs controlling the

phenotypic variation of SC in maize kernels. We intended to

mine novel alleles and genes from DH populations to improve

the starch content of advanced maize germplasms in-house.

Materials and methods

Plant materials

Four DH populations (SC1, SC2, SC3, and SC4) including

345, 275, 134, and 258 lines, respectively, were developed from

biparental crosses of eight inbred lines exhibiting the variation in

SC (Table 1). These parental lines belonged to elite inbred lines

that were widely used by the breeding program at Maize Yufeng

Biotechnology LLC to optimize grain nutritional quality. Parents

of SC1 and SC2 belonged to Reid Yellow Dent germplasm, and

parents of SC3 and SC4 belonged to maize Lancaste germplasm

(Table 1). Plants were grown in Liaoning province, China (LN,

40◦‘82′N, 123◦56′E) with three replication blocks in 2021. Each

line was grown in a single-row plot with a row length of 150 and

60 cm between rows under natural field conditions. All plants

in each row were self-pollinated and harvested after maturity.

Kernels from the middle part of three well-grown ears were

bulked for the measurement of starch. We declared that all the

collections of plant and seed specimens related to this study

were performed in accordance with the relevant guidelines and

regulations by theMinistry of Agriculture (MOA) of the People’s

Republic of China.

Starch content measurement and
phenotypic data analysis

The starch content in maize kernels was determined by

using a near infrared reflectance (NIR) spectrometer (DA 7250,

Perten Instruments Inc., Sweden). The reflectance spectra were

collected in a range of 400 to 2500 nm with 10-nm intervals in

the NIR region. Each sample was bulked with at least 50 kernels

and scanned three times.

R Version 4.0.1 (www.R-project.org) was used to perform

all statistical analyses as previously described (Zhang et al.,

2021). The variances of SC were estimated by using the R ‘AOV’

function. The model for the variance analysis was as follows:

y = µ + αg + βe + ε, where αg is the effect of the gth line,

βe is the effect of the eth environment, and ε is the error. The

effects in the model were defined by random. The broad-sense

heritability as h2 = σg
2/(σg

2 + σε

2/e) (Knapp et al., 1985) was

calculated by using these variance components, where σ2g is the

genetic variance, σ2
ε
is the residual error, and e is the number

of environments. The best linear unbiased predictor (BLUP)

value of each line was calculated to eliminate the influence of

environmental effects by using a linear mixed model. The model

was yij = µ + ei + fj + εij, where yij is the phenotypic value of

individual j in environment i,µ is the grandmean, ei is the effect

of different environments, fj is the genetic effect, and εij is the

random error. Both genotype and environment were considered

as random effects in the R function “LME4”.

Genotyping and constructing a genetic
linkage map

All lines were genotyped with the GenoBaits Maize

1K marker panel containing 4,589 SNP markers that

were developed by Mol Breeding Biotechnology Co., Ltd.,
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TABLE 1 Phenotypic performance, variance, and broad-sense heritability of starch content (SC) in the four double-haploid (DH) populations.

Trait a Populations

SC1 SC2 SC3 SC4

Parents

means± SD (%) AJ517001 72.10± 0.47 AJ517003 75.10± 0.41 KB519001 73.91± 0.99 KB519003 72.99± 0.46

AJ517002 73.67± 0.35 AJ517004 70.45± 0.51 KB519002 75.80± 0.34 KB519004 71.90± 0.89

p-valueb 0.058ns 0.009** 0.0194* 0.1312ns

DHs

Size 345 275 134 258

means± SD (%) 71.18± 1.31 71.55± 2.34 73.85± 1.65 72.90± 1.98

Range (%) 66.38–74.76 61.22–75.46 67.40–77.71 64.87–76.97

σg
2 c 1.45 4.41 2.11 3.25

σe
2 d 1.09 1.35 1.29 1.31

σε

2e 1.53 3.68 1.34 3.26

h2 (%)f 73.90 78.20 82.52 74.94

aSC; bP value based on a t-test evaluating two parental lines; cgenetic variance; denvironmental variance; eresidual variance; fbroad-sense heritability (h2); *p ≤ 0.05, **p ≤ 0.01, ns no

significant different.

Shijiazhuang, China (http://www.molbreeding.com/), based on

genotyping by target sequencing platform in maize (Guo et al.,

2019). The SNP positions in the B73 reference genome Version

3 were converted to those in Version 4 using CrossMap Version

2.0.5 (Zhao et al., 2014). SNPs with minor allele frequency

(MAF) < 0.1 or missing rate > 0.6 were filtered out in each

population. Finally, high-quality SNPs in each population were

then used to construct the genetic linkage maps via the R/qtl

package functions est.rf and est.map (Broman et al., 2003) with

the kosambi mapping method.

QTL mapping

The quantitative trait loci were analyzed by the composite

interval mapping (CIM) method implemented in Windows

QTL Cartographer 2.5 (Wang S. et al., 2010). The genome

was scanned at every 1.0 cM interval between markers using

a 10 cM window size. The forward and backward stepwise

regressions with five controlling markers were conducted to

control the background from flanking markers. The empirical

logarithm of the odds (LOD) threshold was determined by

the 1,000 permutations at a significance (p < 0.05) and used

to identify the significant QTLs (Churchill and Doerge, 1994).

These threshold LOD values ranged from 2.86 to 3.09 in

four DH populations, respectively. For clarity, we used 3.00

as the LOD threshold for the four DH populations. With

the 1.5-LOD support interval method, the confidence interval

for each QTL position was estimated (Lander and Botstein,

1989). The additive × additive epistatic interactions were

performed by the “ICIM-EPI” method in IciMapping Version

4.2 (Li et al., 2008).

Results

Phenotypic variation and heritability in
kernel SC

Eight inbred lines (SC with a range of 70.45–75.80%) were

used to develop four DH populations, which included 134–

345 lines, respectively (Table 1). The SC exhibited continuous

and approximate normal distribution in each DH population

with a range of 61.22–77.71% (Figure 1, Table 1). The analysis

of variance (ANOVA) revealed that the genotype variance was

greater than the environmental variance in all populations,

indicating that phenotypic variations were mainly controlled

by genetic factors. Broad-sense heritability estimates were

calculated and showed moderate to high heritability for SC

in the four DH populations, with a range of 73.90–82.52%

(Table 1). Together, these results indicated that the majority of

SC variations are controlled by genetic factors and are suitable

for further QTL mapping.

Genotyping and genetic linkage map

All DH lines in four populations were genotyped using

the GenoBaits Maize 1K marker panel containing 4,589 SNP

markers and further refined by eliminating SNPs with MAF <

0.1 or missing rate > 0.6. This resulted in a total of 776, 1,164,

831, and 1,216 polymorphic SNPs, with their precise physical

positions mapped on the B73 reference sequence Version 4.

In each DH population, the missing rate of SNPs in most

lines was <2% (Supplementary Figure S1). Four linkage maps

spanned a total of 775.88, 858.86, 627.75, and 773.21 cM genetic
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FIGURE 1

Phenotypic variations in starch content (SC) in the four double-haploid (DH) populations. The x-axis shows the SC and the color triangle

represents the parents.

distances, respectively (Supplementary Figure S2). The average

genetic distance between every two adjacent markers was 1.01,

0.74, 0.76, and 0.64 cM in each DH population, respectively

(Supplementary Table S1).

Identification of QTLs for SC in four DH
populations

The quantitative trait locus mapping for SC in the four DH

populations and the related genetic features are summarized

in Table 2. In total, 13 QTLs were identified with a LOD

threshold of above 3.00 in the four populations (Table 2,

Figure 2) and distributed on chromosomes 1, 3, 4, 5, 7, 8,

and 9. The average of QTL genetic intervals was 9.82 cM

in a range of 4.95–17.20 cM. The average of QTL physical

intervals was 46.51Mb in a range of 5.60–149.78Mb. The

average of the total PVE explained by all identified QTLs in a

population was 26.13 and ranged from 12.80 (SC1) to 41.57%

(SC3). This was less than broad-sense heritability (Tables 1, 2),

suggesting that only part of the QTLs have been detected in

bi-parent populations.

In SC1, three QTLs (qSC-1-1, qSC-1-2, and qSC-1-3)

were detected on chromosomes 3, 4, and 8, respectively. The

phenotypic variation explained by these QTLs was 3.65–6.38%

and explained by the additive effect of all QTLs was 12.8%.

The parental AJ517001 allele at qSC-1-1 and qSC-1-2 increased

the SC, while the parental AJ517002 allele increased the SC

at qSC-1-3.

In SC2, a total of four QTLs (qSC-2-1, qSC-2-2, qSC-2-3,

and qSC-2-4) were identified on chromosomes 1, 4, 5, and 8,

respectively. The phenotypic variation of qSC-2-1 and qSC-2-

4 was <10%, whereas the phenotypic variation of qSC-2-2 and

qSC-2-3was 10.58 and 16.12%, respectively, suggesting that qSC-

2-2 and qSC-2-3 are two major QTLs controlling SC in SC2. The

phenotypic variation explained by the additive effect of all QTLs

was 31.4% and the parental AJ517003 allele at all QTLs in this

population increased the SC.

In SC3, a total of three QTLs (qSC-3-1, qSC-3-2, and qSC-

3-3) were detected on chromosomes 3, 7, and 9, respectively.

The phenotypic variation explained by each individual QTL

was 8.03-16.18%. qSC-3-2 and qSC-3-3 were the major QTLs

explaining the phenotypic variation of 16.18 and 13.32%,

respectively. The phenotypic variation explained by the additive

effect of all QTLs was 41.57%, and the allele from parental

KB519002 at these QTLs increased the SC.

In SC4, a total of three QTLs (qSC-4-1, qSC-4-2, and

qSC-4-3) were identified. Among those, qSC-4-1 and qSC-4-

2 were located on chromosome 1, and qSC-4-3 was located

on chromosome 5. The phenotypic variation explained by

these QTLs was 5.32–8.43%, and the phenotypic variation

explained by the additive effect of all QTLs was 18.73%.

Parental KB519003 allele at qSC-4-1 and qSC-4-3 increased

the SC, while parental KB519004 increased the SC at qSC-4-

2.

Additionally, the additive × additive epistatic interaction

analysis was also investigated. However, no epistatic interactions

could be detected, indicating that the genetic component of SC

in these DH populations is mainly characterized by additive

gene actions.

Genetic overlap of QTLs in the four DH
populations with other populations

To evaluate genetic overlaps among different mapping

populations, the 1.5-LOD support interval of QTLs in the

four DH populations and in other populations for the SC

previously reported were compared. QTLs with overlapping

support intervals were considered common QTLs. Among the

four DH populations, a 2.56Mb overlap was observed between

qSC-2-1 and qSC-4-2.

Importantly, a total of 93 overlaps were detected after

comparing the four DH populations with results from all types

of other populations, including RILs (Cook et al., 2012; Guo

et al., 2013; Yang et al., 2013; Nancy et al., 2014; Dong et al.,

2015; Lin et al., 2019; Hu et al., 2021), F2:3 families (Liu et al.,
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2008; Zhang et al., 2008; Li et al., 2009; Wang Y. Z. et al., 2010),

and backcross-derived lines (Wassom et al., 2008) (Figure 3,

Supplementary Table S2). For instance, qSC-1-1 colocalized with

JLM10 (Hu et al., 2021); qSC-1-2 colocalized with qSTA4-3 (Hu

et al., 2021); qSC-1-3 colocalized with JLM24 and qSTA8-1 (Hu

et al., 2021); qSC-3-1 colocalized with qCT-3-1 (Dong et al.,

2015); qSC-4-1 colocalized with qSTA1-1 (Hu et al., 2021) and

qzSTA1-1-1 (Yang et al., 2013); and qSC-4-3 colocalized with

qCT-5-1 (Dong et al., 2015), stc5 (Guo et al., 2013), qSTA5-3 and

qSTA5-5 (Hu et al., 2021), qSTA1-5-1 and qSTA1-5-2 (Wang Y.

Z. et al., 2010), and qxSTA2-5-1 (Yang et al., 2013). These results

suggest that, although unique QTLs are constantly specialized

in each individual population, some genetic loci may have a

common effect on SC among different populations.

Discussion

QTL mapping precision

The starch content in maize kernel is a complex quantitative

trait. Elucidation of QTLs or genes controlling phenotypic

variation of SC could decipher the genetic architecture of starch

in maize kernel (Huang et al., 2021). Molecular markers are

useful tools to efficiently facilitate the selection process. SNP

markers are the most frequent variations in genomes, and the

application of SNPmarkers in plant breeding has guaranteed the

precision of QTL mapping and genetic analysis (Bhattramakki

et al., 2002;Mammadov et al., 2012; Flutre et al., 2022; Kaur et al.,

2022). In the present study, a total of 13 QTLs were distributed

on chromosomes 1, 3, 4, 5, 7, 8, and 9. Three QTLs (qSC-

2-2, qSC-3-1, and qSC-4-3) spanned a large physical interval

(111.41-149.78Mb), partly due to the limited size of themapping

DH population. The other QTLs spanned physical intervals of

<50Mb, and two spanned <10 Mb.

Genetic basis of SC in our DH populations

The starch content in the four DH populations examined

in this study exhibited a broad range of phenotypic variations

with normal distribution. The genetic analysis indicated that

SC is highly heritable and the heritability is fairly high in all

populations, indicating a superior genetic effect on SC in DH

populations. In addition, except for environmental variation,

none of the QTLs were shared by all DH populations, reflecting

the complexity of SC regulation in diverse maize populations.

Most of these QTLs had moderate additive effects. The PVE

for each QTL ranged from 3.65 (qSC-1-2 in SC1) to 16.18%

(qSC-3-2 in SC3). These results suggested that a few large-

effect QTLs, together with a large number of minor-effect QTLs,

mainly contributed to the genetic component of SC. This is

consistent with the quantitative nature of SC, reflecting the
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FIGURE 2

The distribution of SC quantitative trait loci (QTLs) across the entire genome in the four DH populations. The upper of each picture displays a

logarithm of the odds (LOD) score (y-axis) against the physical position (x-axis) of markers, while the bottom of the picture displays the additive

e�ect (y-axis) against the physical position (x-axis) of markers. (A–D) designated SC1, SC2, SC3, and SC4, respectively.

FIGURE 3

Co-localization of SC QTLs in maize kernels identified in the current and previous studies. The QTLs identified in the four DH populations are

represented on top. QTLs detected in previous studies are displayed in the form of references. The lower layer shows the number of detected

QTLs.
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FIGURE 4

Association of candidate genes with kernel starch QTLs. The QTLs identified in four DH populations are represented as vertical rectangles of

di�erent colors next to each chromosome. The horizontal light blue bars on each chromosome show the positions of the 471 identified genes.

The left labels denote known genes that co-localized with the QTLs. The vertical dark green lines indicate the positions of 12 well-known genes

encoding key enzymes in maize starch metabolism.

complexity of starch biosynthesis and accumulation in maize

kernels (Glowinski and Flint-Garcia, 2018).

The results of QTL detection derived from different studies

may exhibit consistency to a certain degree across different

germplasms/genetic backgrounds and environments. Indeed,

QTLs including qSC-2-2, qSC-2-3, qSC-3-2, and qSC-3-3 with

the highest contribution to phenotypic variation (10.58–16.18%)

displayed a high degree of overlap with regions associated for

SC in multiple former studies (Wassom et al., 2008; Zhang

et al., 2008; Cook et al., 2012; Yang et al., 2013; Nancy et al.,

2014; Dong et al., 2015; Alves et al., 2019; Lin et al., 2019;

Hu et al., 2021). Meanwhile, our QTLs with the second largest

effect (3.65–8.43%) showed less degree of overlap with other

studies (Liu et al., 2008; Li et al., 2009; Wang Y. Z. et al., 2010;

Guo et al., 2013). Moreover, qSC-4-2 is a new QTL, which is

definitely worth conducting further research on this QTL via

near-isogenic lines (NILs), fine mapping, molecular marker-

assisted selection (MAS), and ultimate cloning. Furthermore,

considering that each of the four DH populations was developed

from biparental crosses, the derived QTLs could only explain the

variation between the two parents in regulating SC. Therefore,

it would be necessary to assess SC in extra germplasms to get

a comprehensive insight into the genetic factors regulating the

natural variation of SC.

Importance of QTLs relevant to SC in
maize genetic and breeding

The starch content in maize kernel is regulated by many

genes (Zhong et al., 2020). Outstanding progress has been made

in the understanding of the genetic and biochemistry of starch

synthesis, which involves the coordinated activities of a series

of starch metabolic enzymes, including sucrose synthase (SUS),

adenosine 5’diphosphate-glucose pyrophosphorylase (AGPase),

starch synthases (SSs), starch branching enzymes (BEs), and

starch debranching enzymes (DBEs) (Nelson and Pan, 1995).

Candidate genes underlying QTLs associated with SC may

be suggested in view of the co-location of QTLs with

genes encoding these enzymes (Prioul et al., 1997; Thévenot

et al., 2005). Moreover, the co-location analysis could provide

information about the functional relationships between gene

expression and some QTLs of the starch biosynthesis pathway

(Thévenot et al., 2005). Our study involved 471 genes in the
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glycolysis, sucrose, and starch pathway, of which 123, including

12 well-known genes encoding key enzymes in maize starch

regulation of synthesis and metabolism, were located within

QTL intervals (Figure 4, Supplementary Table S3).

The starch synthesis pathway in maize endosperm initiates

with the cleavage of sucrose into fructose and UDP-glucose,

which is catalyzed by SUS (Nelson and Pan, 1995). Sus2 is one

of three SUS-encoding genes in maize (Duncan et al., 2006)

and is located inside qSC-4-1. Transactivation of Sus1 and Sus2

by Opaque2 is an essential supplement to sucrose synthase-

mediated endosperm filling in maize, indicating that Sus2

might have a unique role in cytoplasmic sucrose metabolism

(Deng et al., 2020). IVR2 in qSC-4-3 is annotated to be one

of the vacuolar invertases in the maize genome (Kim et al.,

2000). It is also a key enzyme of carbon metabolism in both

source and sink tissues that irreversibly hydrolyze sucrose

to fructose and glucose and regulates sugar accumulation in

sink organs (Juárez-Colunga et al., 2018). This gene was also

identified in a GWAS study and linked with natural variation

in the amylose content (Li et al., 2018). Brittle2 (Bt2) in qSC-

2-1 encodes the small unit of AGPase, which catalyzes the

upstream products converting into adenosine 5’diphosphate-

glucose (ADPG), that is, the glucosyl donors of amylose and

amylopectin (Preiss et al., 1990) and the first rate-limiting

enzyme in the starch biosynthetic pathways (Ma et al., 2021;

Finegan et al., 2022). ZMHXK3a in qSC-3-1, PHI1 in qSC-4-2,

and TPI3 in qSC-1-3 also play very important roles in glycolysis

and starch metabolism. ZMHXK3a encodes a hexokinase, which

catalyzes the conversion of glucose to glucose-6-phosphate (Xiao

et al., 2016). PHI1 encodes phosphohexose isomerase 1 that

converts fructose into glucose-1-phosphate and TPI3 encodes

triosephosphate isomerase isozymes representing the cytosol

and involved in glycolysis (Wendel et al., 1989). WX1 and SS1

in qSC-3-3 and SS2C in qSC-4-3 belong to starch synthases.

WX1 encoding granule-bound starch synthase I (GBSSI) is solely

responsible for amylose production (Shure et al., 1983), whereas

SS1 (Knight et al., 1998) and SS2C (Yan et al., 2009) encoding

soluble starch synthases are responsible for the synthesis of

amylopectin. SBE1 in qSC-4-3 encodes an isozyme of SBE

that generates amylopectin by cleaving internal amylase a-(1,4)

glucosidic bonds and transferring the reducing ends to C6

hydroxyls to form a-(1,6) bonds (Jiang et al., 2013). Besides,

SBE1 was shown to be related to amylose content and starch

molecular structure (Zhong et al., 2021). SU1 in qSC-2-2 encodes

the DBE isoforms ISA1, which is responsible for the ordering

of branch linkages and linear chains as depicted in the widely

accepted cluster model of the amylopectin structure (James et al.,

1995).

Conclusion

In the present study, we interpreted the genetic basis and

QTL mapping of SC in four DH populations. A total of 13 QTLs

accounted for 12.80–41.57% of the starch variation, with four

QTLs explaining that more than 10% of the phenotypic variation

were identified. One novel QTL has never been reported in any

previous studies. These results indicated that the phenotypic

variation in SC is coordinated by large-effect QTLs and minor-

effect QTLs. Our results further enhanced the understanding of

genetic variation in SC and offered prospective routes to modify

SC through molecular marker-assisted selection in the maize

breeding program.
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