AUTHOR=Alam Hasnain , Zamin Muhammad , Adnan Muhammad , Ahmad Nisar , Nawaz Taufiq , Saud Shah , Basir Abdul , Liu Ke , Harrison Matthew Tom , Hassan Shah , Alharby Hesham F. , Alzahrani Yahya M. , Alghamdi Sameera A. , Majrashi Ali , Alharbi Basmah M. , Alabdallah Nadiyah M. , Fahad Shah TITLE=Evaluating the resistance mechanism of Atriplex leucoclada (Orache) to salt and water stress; A potential crop for biosaline agriculture JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.948736 DOI=10.3389/fpls.2022.948736 ISSN=1664-462X ABSTRACT=

The development of food and forage crops that flourish under saline conditions may be a prospective avenue for mitigating the impacts of climate change, both allowing biomass production under conditions of water-deficit and potentially expanding land-use to hitherto non-arable zones. Here, we examine responses of the native halophytic shrub Atriplex leucoclada to salt and drought stress using a factorial design, with four levels of salinity and four drought intensities under the arid conditions. A. leucoclada plants exhibited morphological and physiological adaptation to salt and water stress which had little effect on survival or growth. Under low salinity stress, water stress decreased the root length of A. leucoclada; in contrast, under highly saline conditions root length increased. Plant tissue total nitrogen, phosphorus and potassium content decreased with increasing water stress under low salinity. As salt stress increased, detrimental effects of water deficit diminished. We found that both salt and water stress had increased Na+ and Cl uptake, with both stresses having an additive and beneficial role in increasing ABA and proline content. We conclude that A. leucoclada accumulates high salt concentrations in its cellular vacuoles as a salinity resistance mechanism; this salt accumulation then becomes conducive to mitigation of water stress. Application of these mechanisms to other crops may improve tolerance and producitivity under salt and water stress, potentially improving food security.