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Université Catholique de Louvain,
Belgium

*CORRESPONDENCE

Hongna Zhang
13692476979@139.com

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Plant Development and EvoDevo,
a section of the journal
Frontiers in Plant Science

RECEIVED 20 May 2022
ACCEPTED 20 September 2022

PUBLISHED 12 October 2022

CITATION

Pan X, Ouyang Y, Wei Y, Zhang B,
Wang J and Zhang H (2022) Genome-
wide analysis of MADS-box families
and their expressions in flower organs
development of pineapple (Ananas
comosus (L.) Merr.).
Front. Plant Sci. 13:948587.
doi: 10.3389/fpls.2022.948587

COPYRIGHT

© 2022 Pan, Ouyang, Wei, Zhang, Wang
and Zhang. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 12 October 2022

DOI 10.3389/fpls.2022.948587
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MADS-box families and their
expressions in flower organs
development of pineapple
(Ananas comosus (L.) Merr.)

Xiaolu Pan †, Yanwei Ouyang †, Yongzan Wei, Bencheng Zhang,
Jing Wang and Hongna Zhang*

Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College
of Horticulture, Sanya Nanfan Research Institute, Hainan University, Haikou, China
MADS-box genes play crucial roles in plant vegetative and reproductive growth,

better development of inflorescences, flower, and fruit. Pineapple is a typical

collective fruit, and a comprehensive analysis of the MADS-box gene family in the

development of floral organs of pineapple is still lacking. In this study, the whole-

genome survey and expression profiling of the MADS-box family in pineapple were

introduced. Forty-four AcMADS geneswere identified in pineapple, 39 of themwere

located on 18 chromosomes and five genes were distributed in five scaffolds.

Twenty-two AcMADS genes were defined as 15 pairs of segmental duplication

events. Most members of the type II subfamily of AcMADS genes had higher

expression levels in floral organs compared with type I subfamily, thereby

suggesting that AcMADS of type II may play more crucial roles in the

development of floral organs of pineapple. Six AcMADS genes have significant

tissue-specificity expression, thereby suggesting that they may participate in the

formation of one ormore floral organs. This study provides valuable insights into the

role of MADS-box gene family in the floral organ development of pineapple.

KEYWORDS

pineapple (Ananas comosus (L.) Merr.), MADS-box, expression profiling, floral organ,
syntenic analysis
Introduction

The MADS-box transcription factors are one of the important transcription factor

families in higher plants that play fundamental roles during plant development and floral

organ differentiation (Alvarez-Buylla et al., 2000; Saedler et al., 2001). The prominent

feature of the MADS-domain proteins is its MADS domain that consists of 56–58 amino
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acids (Shore and Sharrocks, 1995). The MADS domain can

recognize the CArG-box with similar 10-bp A/T-rich DNA

sequences (Folter and Angenent, 2006). In plants, MADS-box

genes can be classified into two distinct groups, namely, types I

and II, on the basis of the evolutionary relationships: type I

members are SRF-like in plant, which only have a MADS (M)

domain; type II MADS-box proteins are MEF2-like in plant,

animal, and yeast, which contain a highly conservative DNA-

binding domain (M), an intervening (I) domain, a semi-

conservative K domain, and a C-terminal region (De et al.,

2003; Smaczniak et al., 2012). The type I proteins are further

divided into Ma, Mb, and Mg subfamilies, and the type II group

also are defined as MIKC-type proteins, which comprise

MIKCC-type and MIKC*-type proteins (Yang and Jack, 2004;

Nam et al., 2004).

Flowering is a complex process that requires the cooperation

and interaction of numerous genes. Previous reports have shown

that the MADS-box genes can regulate the characteristics of

floral meristems (Riechmann and Meyerowitz, 1997; Jongmin

et al., 2003). Flowers are frequently arranged by four different

kinds of organs arranged in whorls, with sepals in the first round,

petals in the second whorl, stamens in the third round and

carpels in the fourth whorl (Günter et al., 2016). The ABCDE

model completely explains the individual development of plant

flowers and the determination of the identity of floral organs

(Theissen et al., 2000; Ma, 2000). Class-A genes determine the

sepal development, petal development requires Class-A and

Class-B genes, stamen development needs Class-B and Class-C

genes to work together, carpel development is ascertained by

Class-C genes, and ovule development is identified by Class-C

and Class-D genes (Ma, 2000). Class-E genes need to assist other

genes to participate in the determination of all flower organs and

meristems (Hugouvieux et al., 2018). In Arabidopsis, almost

every gene from this model, such as A (APETALA1) (Wang

et al., 2014), B (PISTILLATA, AP3) (Jack et al., 1992), C

(AGAMOUS) (Hugouvieux et al., 2018), D (AGAMOUS-LIKE

11) (Pinyopich et al., 2003), and E (SEPALLATA 1, 2, 3, 4) (Ditta

et al., 2004), belong to the type II MADS-box subfamily. In

addition, one of the main characteristics of MADS-box

transcription factors is their distinct tetrameric protein

complexes composed of MIKC-type MADS domain proteins,

which control gene expression and hence floral organs identity

during development (Theißen, 2001). MADS protein bind as

dimers to DNA sequences called ‘CArG-boxes’ (Theißen and

Gramzow, 2016). According to the FQM, the two protein dimers

of each tetramer recognize two different CArG-boxes and bring

them close to each other by DNA cyclization between the CArG-

boxes (Theißen, 2001; Theißen and Saedler, 2001). In recent

years, type II proteins have been increasingly recognized for

their remarkable ability to form multimeric transcription factor

complexes and their importance in plant development and

evolution. Thereby suggesting that type II MADS-box genes

play a vital role in the control of floral organ development.
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Pineapple is one of important tropical fruits with great economic

and research value (Bartholomew et al., 2002; Ming et al., 2015;

Lobo and Paull, 2017). This fruit is a typical collective fruit, and

each floret forms a separate little fruitlet, which is gathered on

the enlarged torus. When the plant height surpasses 35 cm and

the number of leaves exceeds 35, the certain concentrations of

ethephon are used to induce pineapple to bloom. The spike of

the pineapple is generally composed of 50 to 200 flowerlets. The

first flower blossoms on the bottom of the spike, followed by

other flowerlets unfold from the bottom to the top. The flower is

hermaphroditic and consists of one pistil, six stamens, three

petals and three calyxes. The petal is about 2 cm in length, with

lavender-coloured upper part and white lower part. The entire

florescence lasts for 10–15 days, during which all petals fall or

become dried and the fruit starts to develop (Zhang et al., 2016).

At present, few studies have been conducted on the

morphological and physiological basis of collective fruits,

especially the molecular mechanism. The physiological basis

and molecular mechanism of the formation of collective fruits in

pineapple should be understood. Previous studies have shown

that MADS-box genes are involved in various physiological

processes, especially with the identification of floral organs.

Thus, the exploration of the function of MADS-box genes and

the molecular mechanism of pineapple flower organ

development has received considerable interest. In the present

study, a comprehensive analysis, including the chromosomal

localization, synteny analysis, and gene duplication, was

conducted on the basis of the pineapple genome (Ming et al.,

2015). Global expression analysis of MADS-box genes in

different tissues and floral organs has been conducted by using

RNA sequencing (RNA-Seq) and quantitative real-time

polymerase chain reaction (qRT-PCR) to identify the specific

MADS-box genes involved in the different biological processes.

Six AcMADS genes demonstrate significant tissue specificity in

different floral organs. These initiatives provide a reference for

the functions of MADS-box genes in pineapple.
Materials and methods

Plant materials and treatments

The pineapple plants (Ananas comosus L. cv. Comte de

Paris) used in this study were grown in South Subtropical Crop

Research Institute, Zhanjiang, China (21°10′2″N; 110°16′34″E).
About 200 homogenous plants (20-month-old) were induced by

ethylene in early October 2019. The experimental groups were

treated with 30 ml of 400 mg·L− 1 ethylene perfusion in the

center of the pineapple, the control group used 30 ml water

instead of ethylene. The terminal buds, roots and leaf of

pineapples plants were respectively collected before treatment.

The entirely inflorescence at early spike stage (42 days after

treatment) was collected and used to analyze gene expression
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characteristics in the different tissues of pineapple. And the floral

organs of the pineapple flower, including petals, ovaries,

stamens, sepals, and styles were also collected from twenty

flowerlets in the middle of spike at 56 days after treatment

(full-bloom stage). All samples were immediately frozen in

liquid nitrogen and stored at −80°C until further use. All

samples were performed with three biological replications. All

treated tissue samples were frozen in liquid nitrogen as quickly

as possible and stored at −80°C.
Total RNA isolation and qRT-PCR

The total RNA was extracted from the pineapple tissues with

the Huayueyang RNA extraction kit (Huayueyang, China)

according to the manufacturer ’s instruct ions. The

concentration and quality of all purified RNA were checked on

1% agarose gel and Bio Photometer Plus (Eppendorf, Germany).

RNA (5 mg) was reverse transcribed to cDNA with the Revert

Aid First-Strand cDNA Synthesis Kit (Thermo Fisher

Scientific, USA).

The quantitative RT-PCR assays were conducted in the Light

Cycler 480 II (Roche, Switzerland) by using SYBR Green qPCR

Master Mixes (Thermo Fisher Scientific, USA). AcActin gene

was used as the internal control of pineapple (Azam et al., 2018).

The reaction mixture included 5 mL of 2× SYBR Green PCR

Master Mix (Applied Biosystems), a diluted cDNA template of 1

mL, and 1 mL of each primer in a final volume of 10 mL. The
qPCR conditions were as follows: 50°C for 2 min, 95°C for 2 min,

45 cycles of 15 s at 95°C, 56°C for 15 s, and 72°C for 40 s. The

2−DDCt (Livak and Schmittgen, 2001) method was used to

calculate the relative expression levels of each gene. All

quantitative PCRs were performed with three biological

replications. All primers were designed by the Primer Premier

5.0 (Lalitha, 2000) and listed in Additional file 4.
Database search and MADS-box gene
family identification in pineapple

The nucleotide and protein sequences of AtMADS genes

were searched and obtained from TAIR (http://www.

arabidopsis.org/) databases. This research investigated the

MADS proteins of pineapple, Arabidopsis, grape, banana, rice,

and maize plants. We downloaded the HMM file keeping with

the MADS domain (PF00319) from the Pfam protein database

(http://pfam.xfam.org, Pfam 31.0) and searched for the MADS-

box genes in the pineapple genome database through HMMER

3.0. The e-values lower than 0.01 and the default parameters

were selected. The MADS-box core sequences were confirmed
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by using the SMART database and the NCBI CDD web server

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).

Sequences without MADS-box domain were deleted. The length

of sequences, molecular weight, and isoelectric point (PI) of the

MADS proteins were obtained by using the compute pI/Mw tool

in the ExPASy server (http://web.expasy.org/protparam/). The

subcellular localization of the identified MADS proteins was

predicted by the cello web server (http://cello.life.nctu.edu.tw/).
Phylogenetic tree construction and
classification in pineapple MADS-box
genes

MADS-box genes of Arabidopsis and grape were used as a

reference to classify the MADS-box genes of pineapple. A single

alignment of pineapple MADS domain by using the Clustal W

program was built in MEGA6.0 software; a phylogenetic tree was

then constructed by using maximum likelihood (ML) method

(Tamura et al., 2013) with the following parameters: 1000

bootstrap replications, partial deletion, and Jones–Taylor–

Thornton (JTT) + gamma distributed (G) model.

Chromosomal location, gene duplication, and
syntenic analysis

The physical positions of the AcMADS genes on

chromosomes were identified with TBtools (Chen et al., 2020)

according to the gene location in the pineapple genome. The

tandem duplication events were defined as the single

chromosomal region contiguous homologous genes with the

original repeat, while the duplicate of the whole blocks of genes

between different chromosomes was defined as segmental

duplication (Leister, 2014). Gene duplication events were

drafted with Multiple Collinearity Scan tool kit (MCScanX)

(Wang et al., 2012). In the syntenic analysis, the genome data

of five representative species were downloaded from Ensemble

plants database, and the diagrams were visualized using the

TBtools with Dual Synteny Plotter (Chen et al., 2020).
cis-element analysis of AcMADS
promoter sequences

A 2000-bp upstream sequence from the translation

initiation codon of each AcMADS gene was gained in

genomic data of pineapple (http://pineapple.angiosperms.

org/pineapple/html/index.html) to explore the function of

AcMADS genes. All cis-element were calculated on the regions of

promoter by the PlantCARE online tool (http://bioinformatics.psb.

ugent.be/webtools/plantcare/html/) (Lescot et al., 2002).
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Expression profiling of AcMADS genes by
RNA-seq

To found the expression profile of AcMADS genes linked

with floral organ development of pineapple. The aforementioned

30 tissue samples were transported to Gene Denovo Company

(Guangzhou, China) and sequencing was performed on Illumina

Hiseq platform. The transcript abundance of each gene was

computed by FPKM values (fragments per kilobase of repeat per

million fragments mapped) (Trapnell et al., 2010). Genes with

log2 and p-value were hierarchical clustered. Heatmaps of the

RNA-seq data were generated using TBtools software (Chen

et al., 2020). And the transcriptome data have uploaded into

National Genomics Data Center database (https://ngdc.cncb.ac.

cn/). The assigned accession of the submission is: CRA006826.
The protein-protein interaction
networks functional enrichment analysis
of AcMADS

In order to further explore the function of key AcMADS

genes in flower organ development of pineapple, the protein

sequence of AcAGL11c, AcANR1b, AcAGL11a, AcBS, AcFLC2

and AcAGL11b were uploaded to the STRING database (https://

cn.string-db.org/), the interaction network which these putative

AcMADS genes involved in were investigated based on the

orthogous genes between pineapple and Arabidopsis.
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Results

Characteristics of pineapple flower

The inflorescence of pineapple emerges from leaf clumps

and looks like a pinecone. The entire inflorescence development

to bloom is approximately 1 month. The spike of pineapple is

composed of 50 to 200 florets. The blossoming order of the spike

is from the bottom to the top (Figure 1A) (Zhang et al., 2016).

The pineapple flowers are hermaphrodite and consist of three

sepals, three petals, five stamens, and one pistil (Figure 1B). The

edible part of pineapple involves the fleshy axis of inflorescence

and the ovary of florets.
Identification and classification of MADS-
box genes in pineapple

The MADS-box protein sequences were used to Hidden

Markov Model (HMM) search, and 54 candidate genes were

originally obtained. Ten erroneously predicted MADS-box genes

were removed. Finally, 44 MADS-box genes were selected and

annotated in pineapple (Supplementary Table S1). Two

maximum likelihood trees (ML) were further constructed on

the basis of the full-length sequence alignment of all AcMADS

genes together with grape and Arabidopsis to provide a reference

for the evolutionary relationship of the MADS-box family in

pineapple (Figure 2). The 44 AcMADS genes of the pineapple
A

B

FIGURE 1

Different stages and organs of pineapple floral development. (A) Different developmental stages of inflorescence. 1. Inflorescence emerging; 2.
Inflorescence swelling out; 3. Early flowering stage; 4. Full-bloom stage; 5. Flower fading stage; 6. Panoramic view of the full-bloom stage.
(B) Floral organ structure of pineapple. 1. Sepal; 2. Petal; 3. Stamen; 4. Pistil.
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can be divided into two categories, namely, type I (12) and type

II (32). In the first ML tree, type I AcMADS genes were further

classified into three subclasses: Ma, Mb, and Mg (Figure 2A).

One MIKC*-type and 27 MIKCC-type genes were showed in the

second ML tree, and the MIKCC-type genes were further classed

into 11 major groups (Figure 2B). These groups were named

after the Arabidopsis genes as follows: SVP (SHORT

VEGETATIVE PHASE), AGL12, SEP, AGL6, AP1, FLC

(FLOWERING LOCUS C) , SOC1 (SUPPRESSOR OF

OVEREXPRESSION OF CONSTANS1), AG, PI/AP3, BS

(Bsister), and ANR.
Chromosomal location and duplication
analysis of pineapple MADS-box genes

Forty-four MADS-box genes were unevenly mapped to the

18 chromosomes (Chr) and five scaffolds and named from

AcFUL2 to AcMADS42 according to their order on the

chromosomes. The largest number of six genes (13.64%) was

found in Chr01, and the other chromosomes contained less than

three AcMADS genes. Among the 44 AcMADS genes, 12 genes of

type I were distributed on 10 chromosomes and three scaffolds,

and 32 genes of type II were mapped to 17 chromosomes and 3

scaffolds. Chr04 only contained type I genes, while Chr03,

Chr05, Chr06, Chr10, Chr16, Chr20, Chr21, Chr22, and Chr24
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only had type II genes (Figure 3). Tandem duplication event

refers to a region of chromosomes within 200 kb containing two

or more genes (Holub, 2001). The gene replication events of the

MADS-box family found that one pair of genes (AcMADS7/

AcMADS8) underwent tandem repeat events within the

AcMADS gene family on Chr7 (Figure 3). These results

showed randomness and nonuniform distribution of the

AcMADS family in pineapple.
Syntenic analysis of pineapple
AcMADS genes

The segmental and tandem duplication events of theAcMADS

genes family were identified to test the duplication effect in

pineapple. In addition to the above-mentioned two tandem

duplication events, twenty-two AcMADS genes were clustered

into 15 segmental duplication events by BLASTP and MCScanX

methods against the published data of the pineapple genome

(http://pineapple.angiosperms.org/pineapple/html/index.html).

And the pineapple had retained a diploid karyotype in this study

(Figure 4, Supplementary Table S2). We found many copies of the

segmental duplicated gene pairs from the same group, such as

AcANR1a/AcANR1b. AcANR1b/AcANR1c and AcSVP1/AcSVP2

were from the ANR and SVP groups, respectively.

AcAGL11a/AcAGL11c and AcAGL11b/AcAGL11c were from the
A B

FIGURE 2

Phylogenetic analysis of type I (A) and type II (B) MADS-box genes in Arabidopsis, grape, and pineapple. The phylogenetic trees were
constructed using the ML method. The black stars represent the MADS-box proteins from the grape and Arabidopsis, then the blue and red
stars respectively represent the type I and type II MADS-box proteins from the pineapple. MADS-box proteins from the grape with the prefix
“GSVIVT” indicate “VvMADS” and “At” means “AtMADS” in Arabidopsis.
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AG group, AcFUL1/AcFUL2 were from the AP1 group, and

AcSOC1a/AcSOC1e were from SOC1. These AcMADS genes

showed highly paralogs relationship, thereby indicating that

they were obtained by gene duplication and the segmental

duplication could well be the main driving force of

AcMADS evolution.

The comparative syntenic maps between pineapple with other

five representative species (Arabidopsis, grape, banana, rice, and

maize) were performed to further derive the origin and

evolutionary mechanisms of pineapple MADS family (Figure 5).

The gene number of pineapple MADS (44) is much lower than

that of Arabidopsis (106), banana (77), rice (75), maize (75), and

grape (54). Twenty-four AcMADS genes displayed syntenic

relationship with those in banana, followed by maize (23, 52%),

rice (22, 50%), grape (10, 32%), and Arabidopsis (6, 13%) through

the whole genome-wide comparative analysis. The numbers of

orthologous pairs between pineapple and other five species

(banana, rice, maize, grape, and Arabidopsis) were 42, 42, 40,

14, and 12, respectively (Supplementary Table S3). Many collinear

gene pairs were only found in monocots but not in dicots, thereby

suggesting evolutionary difference between dicotyledonous and

monocotyledonous plants. The mutual collinear pairs involving

three AcMADS genes were identified between pineapple and all

five other species. This finding indicates that these orthologous

pairs may be derived from the same ancestor, and duplication

occurred before species divergence. These pairs may participate in
Frontiers in Plant Science 06
the evolution of MADS family.
Analysis of cis-regulatory elements in the
promoters of AcMADS genes

To explore the regulatory mechanisms of AcMADS genes, 24

types of cis-elements in the promoter sequence of AcMADS

genes were investigated and compared with the PlantCare online

database (Figure 6). Among the 24 types of cis-acting elements,

three kinds of regulatory elements of core physiological

processes including abiotic stress, hormone responsive and

growth related were investigated (Figure 6).

Among them, nine hormone-responsive elements were

found in AcMADS genes including Auxin-related elements

(TGA-element and AuxRR-core), the cis-acting element

involved in Sali-cylic Acid responsiveness (TCA-element),

Gibberellin responsive elements (TATC-box, P-box and

GARE-motif) MeJA-related element (CGTCA-motif), Abscisic

Acid (ABRE) and Ethylene (ERE). The ERE and ABRE elements

have a wide distribution in AcMADS genes, which were

identified in 37 (84%) and 39 (88.6%) AcMADS genes, among

which the sequences of AcANR1d and AcSVP2 contained 13 ERE

and 11 ABRE elements, respectively (Figure 6). These results

indicated that AcMADS genes might be related to ethylene and

abscisic acid signaling pathway.
FIGURE 3

Distribution of AcMADS genes on the pineapple chromosomes. The black vertical lines indicate the pineapple chromosome (Chr), the number is
above the Chr, and the tandemly duplicated genes were connected by the green line. The different groups of AcMADS genes were color-coded.
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The cis-acting element involved in plant development and

growth, for instance, GCN4_motif, CAT-box, and CCGTCC-

box, which they were involved in albumen development and

meristem expression. Furthermore, the elements are included

light responsive elements (BOX4 and MRE), circadian control

responsiveness (circadian), protein metabolism regulation (O2-

site), and the differentiation of the palisade mesophyll cells (HD-

Zip 1). About half of the 88.6% AcMADS genes have Box4

elements, and the sequences of AcAGL6, AcSOC1b, AcAG,

AcANR1d, AcMADS21, AcSOC1d and AcANR1e promoter

distributed plenty of Box4 elements (Figure 6). These results

provide a reference for further study of AcMADS family genes in

flower organ differentiation of pineapple.

The abiotic stresses-related elements, including ARE, GC-

motif, LTR (low temperature), MBS (drought), TC-rich repeat,

W-box and WUN-motif. In pineapple, 35 (79.5%) AcMADS

genes have ARE elements, less more than Box4 and ERE, and

20.4% of AcMADS promoter sequence contained 3 or more ARE

elements (Figure 6). Among which, the amount of AcANR1a,
Frontiers in Plant Science 07
AcMADS18, AcMADS14 and AcAP3b are up to 10, 5, 5 and

6 (Figure 6).
Tissue-specific expression patterns of
AcMADS genes in pineapple

MADS-box genes were reported to participate in plant organ

development, especially floral organ specification (Saedler et al.,

2001). The expression patterns of 44 pineapple AcMADS genes

in different tissues were obtained from the transcriptome data.

The results showed that the transcriptional abundance of MADS

genes in pineapple greatly varied in all detected samples

(Figure 7). The genes with high expression were mainly

concentrated in type II subfamily. Twenty-six AcMADS genes

(59%) were highly expressed in the flower of pineapple.

Meanwhile, 14 AcMADS genes (32%) were highly expressed in

the fruit of pineapple. Sixteen genes (36%) were expressed at low

levels or not expressed in pineapple root, bud, leaf, flower, and
FIGURE 4

Schematic representations for interchromosomal relationships and segmental duplication events of pineapple MADS genes. The gray lines
represent all collinear blocks within the pineapple genome, and the red lines denote duplicated MADS gene pairs.
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fruit (Supplementary Table S4). Multiple AcMADS genes were

specifically expressed in flower and fruit. For example, five

AcMADS genes (AcSEP1/AcSEP3/AcAGL6/AcFUL1/AcAG)

showed high transcript abundance in flower and fruit, two

genes (AcFLC1/AcPI) only demonstrated high transcript

abundance in flowers, and two genes (AcAGL12a/AcAGL12b)

only presented high expression in the roots (Figure 7A). These

results implied that MADS-box genes might participate in the

flower development of pineapple, which was in line with

previous reports (Cheng et al., 2017).

The expressions of all 44 AcMADS genes in different floral

organs were investigated to further verify the potential functions

of the AcMADS genes in the formation of floral organs

(Figure 7B). Thirty-eight AcMADS genes exhibited relatively

high expression in one or more flower organs of pineapple, and

fifteen of them were highly expressed. Most AcMADS genes with

high expression in floral organs originated from the type II

subfamily, thereby suggesting that AcMADS genes of type II may

play crucial roles in the development of floral organs of

pineapple contrast with type I (Figure 7B). Twenty-eight type

II AcMADS genes were further performed by qRT-PCR to

validate the RNA-seq results (Figure 8). The qRT-PCR results

showed that the expression profiles of most AcMADS genes were
Frontiers in Plant Science 08
consistent with RNA-Seq. Many AcMADS genes showed

obvious tissue specificity. For example, AcAGL11a only

expressed in pistil, AcAGL11c, AcBS, AcFLC2, and AcAGL11b

had specifically high expression in the ovary, and AcANR1b only

expressed in the stamen (Figure 9).
Interaction network of key AcMADS
proteins

Plant flowering is a complex physiological process that

requires multiple genes to work together. Studying protein

interaction network contributes to the exploration of the

potential functions of genes. The qRT-PCR and RNA-seq

results indicated that six AcMADS genes with specific

expressions in the floral organs of pineapple, and they were

selected to construct an interaction network through the String

Protein Interaction Database (https://string-db.org/). A total of

129 protein pairs with interactions were detected. These

interaction proteins were mainly involved in the floral organ

developmental genes and floral induction, including AP1, CO,

WUS, SEU, AP2, UFO, and LFY (Figure 10). In the protein

interaction network diagram, AcAGL11c interacted with 10
FIGURE 5

Syntenic analysis of MADS-box genes between pineapple and other five species. The gray lines represent the collinear blocks between pineapple
and other plant genomes. The red lines indicate the collinear blocks of the pineapple MADS genes. Species names: A. comosus: Ananas comosus,
A. thaliana: Arabidopsis thaliana, V. vinifera: Vitis vinifera, M. acuminate: Musa acuminate, O. sativa: Oryza sativa, Z. mays: Zea mays.
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known proteins with the largest number of interacting proteins.

AcAGL11b, AcAGL11a, AcBS, and AcFLC2 interacted with 2, 4,

6, and 8 known proteins, respectively. AcANR1b only interacted

with one known protein. These results will be beneficial to future

research and verify its biological function on the basis of

relevant experiments.
Discussion

The MADS-box genes play crucial roles in the development

of floral organs and had been investigated in multiple species

(Parenicová et al., 2003; Leseberg et al., 2006; Tyagi et al., 2007;

Velasco et al., 2010; Wang et al., 2014). However, previous

studies only analyzed some functions of AcMADS genes in the

CAM photosynthesis of pineapple (Zhang et al., 2020). In this

study, 44 genes with typical MADS domains were defined as
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MADS-box family genes, which is inconsistent with previous

research (Zhang et al., 2020; Hu et al., 2021). The number of

MADS-box in pineapple (44) is much lower than that of

Arabidopsis (106) (Parenicová et al., 2003), rice (75) (Tyagi

et al., 2007), poplar (105) (Leseberg et al., 2006), apple (147)

(Velasco et al., 2010), and grape (54) (Wang et al., 2014). The

lack of pan-grass r whole-genome duplication (WGD) event and

only having the s-WGD event during pineapple evolution may

affect the amount of AcMADS genes (Xie et al., 2018).

The AcMADS family of pineapple is classified into two

categories, namely, types I and II; the type II genes are further

divided into 11 subfamilies (Figure 2B). However, the

classification and number of type II AcMADS are slightly

different among different species. The genome-wide

duplication events are common in angiosperm evolution and

generally result in the expansion of gene families (Cannon

et al., 2004). Type II MADS genes originate from the whole
A

B C D

FIGURE 6

Organization of cis-acting regulatory elements of AcMADS genes in pineapple. (A) The number of cis-acting elements of AcMADS genes.
(B) The total amount of each cis-acting elements as a percentage of hormone-responsive elements. (C) The total amount of each cis-acting
elements as a percentage of stresses-related elements. (D) The total amount of each cis-acting elements as a percentage of the cis-acting
element involved in plant development and growth.
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genome replication, while type I genes are mainly duplicated by

small-scale and recent duplications (Airoldi and Davies, 2012).

In our studies, 22 of the 44 MADS-box genes are associated

with segmental duplication events, which are higher than that

of the Arabidopsis (Parenicová et al., 2003). The exploration of

the genes related to flower development and flowering remains

to be a major research topic. MADS-box genes play a major

role in determining the identity of floral organs (Li et al., 2020),

and most type II genes are extensively expressed in the

reproductive organs and lowly expressed in vegetative organs

(Sheng et al., 2019). In this study, 38 AcMADS genes are

expressed in one or more tissues, and 13 of them are

specially expressed in flowers. The type II of AcMADS genes

are highly expressed compared with type I in flower organs

(Figure 7B), thereby indicating that the type II MADS genes

might play more important roles in the flower development of

pineapple. This finding is consistent with previous reports (Li

et al., 2020). The ABCDE model is a classical model of plant

flower development (Kanno et al., 2003; Litt and Kramer,

2010). In Arabidopsis, AP1 acts as a gene for flower meristem

and organ morphology to promote the development of petals

and sepals (Ma, 2000; Portereiko et al., 2006). Besides,

OsMADS15 and OsMADS18 were activated in the rice

meristem at phase transition (Kobayashi et al., 2012). In
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pineapple, two homologous genes of class-A (AcFUL2 and

AcFUL1) are identified. The expression of AcFUL2 and

AcFUL1 was notably higher in petals and sepals than in other

floral tissues, respectively (Figure 8), which is in line with its

expected function in sepal identity specification. Our results

showed that two AP1-like genes were uniformly expressed in

pineapple floral organs. This similar expression pattern in

floral organs was also for AP1-like genes in Arabidopsis

(Mandel et al., 1992) and rice (Arora et al., 2007). The main

function of class-B genes (AP3 and PI) is to determine the

development of the second round of petals and the third round

of stamens in Arabidopsis (Kanno et al., 2003). Two AP3-like

(AcAP3b and AcAP3a) and one PI-like (AcPI) genes from the

class-B genes are identified in pineapple and have similar

expression patterns (Figure 8). Rice OsMADS16/SPW1 and

maize SILKY1 (SL) mRNA were detected mainly in the stamen

during floral development, besides the expression of TaAP3

was obviously accumulated in mature female organs (Paollacci

et al., 2007). For pineapple, AP3a and AP3b show a similar

expression pattern: mainly in stamen and style development,

whether AcPI was highly expressed only in style (Figure 8).The

expression features of class-B genes in pineapple are similar to

those of Arabidopsis, which participate in the second and third

rounds of floral organ formation. Additionally, these genes in
A B

FIGURE 7

Expression patterns of the pineapple MADS genes, the transcript abundance of AcMADSs was computed by FPKM values. (A) Hierarchical
clustering of the expression patterns of AcMADS genes in the different tissues of pineapple. (B) Expression profiles of AcMADS genes in
pineapple floral organs.
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FIGURE 8

Expression patterns of 28 type II AcMADS genes in pineapple floral organs by qRT-PCR. The error bars represent the standard deviations of
three biological replicates. Se: Sepal, Pe: Petals, St: Stamen, Ov: ovary, and Sty: Style.
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pineapple may also be involved in the formation of the fourth

round of pistil.

AG is a typical class-C gene and essential for the

identification of stamens and carpels (Pinyopich et al., 2003).

Four AcMADS genes of class-C were detected in pineapple

(Figure 2B). AcAGL11c, AcAGL11a, and AcAGL11b are

specifically highly expressed in the pistil, and AcAG shows

high expression in the stamen and pistil (Figure 8). AcAGL11c
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and AcAGL11a, AcAGL11c and AcAGL11b are also involved into

the segment replication events (Figure 4). These results show

that these genes of class-C might play similar roles in the

development of stamen and pistil of pineapple. The

homologous genes of AG are involved in the development of

stamen and carpel in pineapple, which was consistent with

previous reports (Pelaz et al., 2000). In Arabidopsis, the SEP

proteins are functionally important to form higher MADS-box
A B

C D

E F

FIGURE 9

The expression of AcMADS genes in different floral organs by TBtools. The transcript abundance of AcMADSs were computed by FPKM values and
visualized by TBtools. Red module represents tissue high expression and blue module showed low expression.
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protein complexes (Acri-Nunes-Miranda and Mondragón-

Palomino, 2014; Favaro et al., 2003). Genetic and molecular

studies have shown that class-E genes (SEP1/2/3/4) have an

obvious redundant function in flower development and are

necessary to determine all four whorls of the flower organs

(Favaro et al., 2003; Acri-Nunes-Miranda and Mondragón-

Palomino, 2014). In pineapple, two SEP-like genes (AcSEP1

and AcSEP3) were identified (Figure 2B). AcSEP3 was highly

expressed throughout the petal, stamen and style, and AcSEP1

was highly expressed in all floral organs (Figure 8). AcSEP3 is

more likely to have an important role in class-E function because

it had higher expressions than AcSEP1 in all organs except

sepals. Additionally, AcSEP3 homologs AtAGL9 and OsMADS7/

8 also play relatively important roles in Arabidopsis and rice

(Soza et al., 2016; Wu et al., 2017) (Figure 7B). By comparing the

expression patterns of MADS genes in pineapple and the

functions of their previously reported homologs, we inferred

candidate MADS genes in pineapple that may be involved in

floral organ development.

Six genes have significantly specific expression in one or two

floral organs of pineapple (Figure 9). AcAGL11c, AcAGL11a, and

AcAGL11b belong to the AG subgroup, while AcANR1b, AcBS,

and AcFLC2 belong to the ANR, BS, and FLC subgroups

(Figure 2B). AcANR1b is specifically expressed in the stamens;

however, homologous gene AtAGL16, which negatively regulates
Frontiers in Plant Science 13
flowering transition through FLOWERING LOCUS T (FT), is

not found in stamens (Hu et al., 2014). This finding indicates

that AcANR1b could play a novel and key role in the

development of pineapple stamens. BS (AT5G23260.2) might

be involved in the developmental regulation of the endothelium,

which may be essential for ovule development (Xu et al., 2017).

AcBS, a homologous gene of AtBS, is specifically expressed in the

ovary of pineapple, manifested that AcBS might be involved in

the development of ovary, and may be essential for the

formation of female gametophyte of pineapple. AcFLC2, which

is homologous with FLC is a flowering repressor in Arabidopsis

(Richter et al., 2019), is also specifically expressed in the ovary of

pineapple. However, the involvement of AcFLC2 gene in pistil

development is yet to be reported. These AcMADS genes could

directly or indirectly determine the formation of pineapple floral

organs and provide a reference for further exploring the

molecular mechanism of pineapple flower formation, but their

potential functions still need to be further verified by

systematic experiments.
Conclusions

In this study, the evolution and functional differentiation of

the MADS-box genes of pineapple were comprehensively
frontiersin.org
FIGURE 10

Functional interaction network between AcMADS proteins and other related proteins according to the orthologs in Arabidopsis. Pink line:
experimentally determined; green line: gene neighborhood; red line: gene fusions; blue line: gene co-occurrence; cyan line: text mining; black
line: co-expression.
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analyzed, and the expression profile of the AcMADS genes in the

floral organ were proposed. The type II AcMADS genes played

crucial roles in the development of floral organs of pineapple.

AcAGL11c/AcAGL11a/AcAGL11b of the AG subfamily and

AcBS of the TTI6 subfamily were highly related to ovary

development and pistil formation. AcANR1b of the ANR

subfamily controlled the formation of stamens. Thus, these

genes can be identified as candidate genes for vector

construction and further functional analysis. These genes

provided resources for exploring the regulation network of

pineapple flowering and references for the genetic

improvement of transgenic crops and traditional breeding.
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