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Feature importance network 
reveals novel functional 
relationships between biological 
features in Arabidopsis thaliana
Jonathan Wei Xiong Ng , Swee Kwang Chua  and 
Marek Mutwil *

School of Biological Sciences, Nanyang Technological University, Singapore, Singapore

Understanding how the different cellular components are working together to 

form a living cell requires multidisciplinary approaches combining molecular 

and computational biology. Machine learning shows great potential in life 

sciences, as it can find novel relationships between biological features. Here, 

we  constructed a dataset of 11,801 gene features for 31,522 Arabidopsis 

thaliana genes and developed a machine learning workflow to identify linked 

features. The detected linked features are visualised as a Feature Important 

Network (FIN), which can be  mined to reveal a variety of novel biological 

insights pertaining to gene function. We demonstrate how FIN can be used 

to generate novel insights into gene function. To make this network easily 

accessible to the scientific community, we  present the FINder database, 

available at finder.plant.tools.1
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Introduction

Recent advances in computational approaches and experimental workflows have made 
obtaining genome-wide biological and genomic data relatively easy and commonplace. The 
high-throughput data capture different biological features for DNA (e.g., sequence, 
methylation, chromatin accessibility, and chromatic conformation) and RNA (e.g., 
sequence, abundance, structure, and modification) for hundreds of plants (Mahood et al., 
2020; Hassani-Pak et al., 2021). However, the sheer volume of biological data presents a 
challenge for deriving biological meaning from it. As such, identifying how different 
biological features link to each other, and how they interact with genomic information 
remains a significant challenge (Rhee and Mutwil, 2014; Greener et al., 2021).

Until recently, the main approach to determine how biological features are linked 
would use complex statistical approaches that might be sensitive to the quality of the data 
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(Rhee and Mutwil, 2014). Fortunately, machine learning has 
emerged as a popular technique in many biological contexts, to 
make predictions based on biological information fed into it. This 
is because some machine learning algorithms are efficient enough 
to handle massive data sets that exhibit high amounts of noise, 
dimensionality, and/or incompleteness, and make minimal 
assumptions about the data’s underlying probability distributions 
and generation methods (Mahood et al., 2020). Machine learning 
methods can usefully be segregated into two primary categories: 
supervised or unsupervised learning methods. Supervised 
methods are trained on labelled examples and then used to make 
predictions about unlabelled examples, whereas unsupervised 
methods find structure in a data set without using labels (Libbrecht 
and Noble, 2015; Chang et al., 2021).

Machine learning has been used to predict gene function in 
multiple contexts, such as predicting specialised metabolism genes 
(Moore et al., 2019), and computational assignment of GO terms 
to genes (Zhai et al., 2016; Kulmanov et al., 2018; Zwaenepoel 
et al., 2018; Kang et al., 2019; Sureyya Rifaioglu et al., 2019; Fu 
et al., 2020; Littmann et al., 2021). For example, Moore et al. used 
around 10,000 features on a dataset of around 5,000 genes to 
predict specialised metabolism genes, achieving a true positive 
rate of 87% and a true negative rate of 71%. Kulmanov et  al. 
(2018), Sureyya Rifaioglu et al. (2019), and Littmann et al. (2021) 
used protein sequences as the sole data source for GO term 
prediction. A recent study (Cheng et  al., 2021) used an 
evolutionarily-informed machine learning approach within and 
across species to predict genes affecting nitrogen utilisation in 
crops, and showed how their approach is also useful in 
mammalian systems.

Machine learning can be also used to infer gene regulatory 
networks. For example, a study showed that plant metabolism is 
transcriptionally coordinated via developmental and stress 
conditional processes (Tang et  al., 2021). Another approach, 
named Expression Prediction via Log-linear Combination of 
Transcription Factors (EXPLICIT), correctly predicted gene 
expression patterns from transcription factor information. 
EXPLICIT also enabled inference of transcription factor regulators 
for genes functioning in diverse plant pathways, including those 
involved in suberin, flavonoid, lateral root, xylem, and the 
endoplasmic reticulum stress response (Geng et al., 2021). Thus, 
with the ability to correctly predict gene function and regulation 
from high-dimensional data, machine learning has a great 
potential to transform biology.

However, while achieving accurate predictions is a key aim of 
machine learning, understanding which biological features 
contribute to making these predictions can reveal how the 
different biological features are linked. Fortunately, some machine 
learning approaches are interpretable, as they provide feature 
importance scores that quantify how important a feature is in 
predicting the target feature. When five categories of features, gene 
sequence, protein sequence, network topology, homology, and 
gene ontology-based features, were used to predict essential genes 
in Caenorhabditis elegans, the topology feature category provided 

the highest discriminatory power for essentiality prediction 
(Aromolaran et al., 2021). In using machine learning to predict 
Arabidopsis thaliana secondary metabolism genes, it was shown 
that multiple genetic features, such as tandem duplication, 
coexpression with paralogs, expression levels, conservation, and 
gene coexpression are predictive of secondary metabolism genes 
relative to general metabolism genes (Moore et al., 2019).

Using reported regulatory pairs in A. thaliana along with gene 
expression and molecular information (Zaborowski and Walther, 
2020), the authors of that study aimed to discern the molecular 
determinants of high expression correlation of transcription 
factors and their target genes. Specific molecular determinants, 
such as transcription factor family assignment, stress-response 
process involvement, and young evolutionary age of target genes 
were found particularly indicative of high transcription factor 
target gene correlation.

The above examples showcase the power of machine learning 
in identifying information that explains the molecular wiring of 
plants. However, the above-mentioned studies focused on specific 
aspects of gene function (essentiality, specialised metabolism, and 
gene regulation), which precludes us from understanding how the 
different properties of genes are important for their function. In 
addition, while developing useful machine learning models for 
such purposes poses a challenge, a second challenge would be to 
present them in a user-friendly way in which biologists, especially 
those without a computational background, would be  able to 
access and understand. Such databases exist for many areas of 
plant biology. Aranet predicts gene function using function gene 
networks (Lee et  al., 2015). SUBA is a database containing 
experimental and computational predictions of Arabidopsis 
subcellular protein locations (Hooper et al., 2017). CoNekT-Plants 
are a database of tissue specific gene expression for seven plant 
species (Proost and Mutwil, 2018). However, to our knowledge, 
no databases that portray an extensive machine learning analysis 
of various A. thaliana genetic characteristics exist.

To address this, we constructed an extensive dataset of 31,522 
A. thaliana genes, drawn from 11,801 features from multiple 
biological and genomic categories. These features were obtained 
from a literature search to identity studies where researchers have 
generated a wide range of computational and experimental data 
on A. thaliana. Examples of such studies include focused on plant 
secondary metabolism genes (Moore et  al., 2019), and the 
identification of essential plant genes (Lloyd et al., 2015).

Arabidopsis thaliana is the plant with most publicly available 
experimental data. Unfortunately, for non-model species, such a 
range of experimental data is absent. For example, for Gene 
Ontology (GO) terms based on experimental evidence, 91,436 
A. thaliana annotations are present, compared to a few hundred 
annotations for other plants (obtained from http://amigo.
geneontology.org/amigo/search/annotation at 30 May 2022). 
Hence, other plant species were not used.

We then used a machine learning workflow on this dataset to 
test the predictability of all features and observed that certain 
features are more predictable than others. Using feature 
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importance values derived from our workflow, we constructed a 
Feature Importance Network (FINder), which can be  used to 
study which of the 11,801 features are putatively functionally 
related. To make our analyses publicly-available, we created an 
online database, finder.plant.tools.2 With FINder, we exemplify 
how potential novel biological relationships amongst features can 
be identified.

Materials and methods

Sequence information

Primary transcripts of A. thaliana coding sequences (CDS) 
and protein sequences are obtained from Phytozome (http://
phytozome.jgi.doe.gov/pz/portal.html; Goodstein et al., 2012).

Gene expression features

Gene expression levels as measured by transcript per million 
(TPM) values, and gene specificity measure (SPM) values were 
obtained from EVOREPRO (www.evorepro.plant.tools; Julca 
et al., 2021). Differential gene expression (DGE) features were 
obtained from RNA sequencing (RNA-seq) data from 
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/; Athar et al., 
2019), and processed with kallisto (Bray et al., 2016) and sleuth 
(Pimentel et  al., 2017). Amplitude and time points of peak 
expression of diurnal genes, was downloaded from diurnal.plant.
tools (https://diurnal.sbs.ntu.edu.sg/; Ng et al., 2020).

Gene family, phylostrata, and genomic 
information features

Gene families, defined as orthogroups, as well as phylostrata 
corresponding to each gene, were downloaded from EVOREPRO 
(Julca et al., 2021). Smaller numbers (starting from 1) indicate 
older phylostrata and larger numbers (ending at 21) indicate 
younger phylostrata. Gene family size, single copy, and tandemly 
duplicated genes were also identified.

Protein domain and biochemical features

InterProScan 5.44-79.0 (Jones et  al., 2014) on A. thaliana 
protein sequences was run, and the number of protein domains 
(Pfam), disordered regions (MobiDBLite) and transmembrane 
helices (TMHMM) were obtained. The total number of domains 
in each gene, protein length, isoelectric point (pI), and molecular 

2 http://finder.plant.tools/

weight of proteins were obtained, with the last two from the 
Isoelectric Point Calculator (IPC; Kozlowski, 2016).

Biological network features

Biological network features were made from Protein protein 
interaction (PPI; BioGRID, https://thebiogrid.org/; Stark et  al., 
2006), gene coexpression (EVOREPRO; Julca et al., 2021), gene 
regulatory (Zaborowski and Walther, 2020), and functional gene 
networks (Aranet, http://www.inetbio.org/aranet/; Lee et al., 2015). 
For all networks, two network centrality measures and degree and 
betweenness centrality were calculated. A markov cluster (MCL) 
algorithm (Van Dongen, 2000; Enright et al., 2002) was used to 
cluster the PPI, gene regulatory and functional gene networks. The 
heuristic cluster chiselling algorithm (HCCA; Mutwil et al., 2010) 
was used to cluster the gene coexpression network through the 
calculation of highest reciprocal rank (HRR). HRR defines the 
mutual coexpression relationship between two genes of interest.

Experimental GO terms as features

Gene annotations in the form of gene ontology (GO) terms 
were downloaded from The Arabidopsis Information Resource 
(TAIR, http://arabidopsis.org; Berardini et al., 2015). Only gene 
annotations with experimental evidence codes EXP, IDA, IPI, 
IMP, IGI, and IEP were selected.

Cis-regulatory element features

Cis-regulatory element names and families were downloaded 
from the Arabidopsis Gene Regulatory Information Server 
(AGRIS) database (https://agris-knowledgebase.org/; Yilmaz et al., 
2011). Their frequency per gene was calculated.

Multi-omics (genomic and 
transcriptomic associated) features

Multi-omics features, in the form of GWAS and transcriptome-
wide association studies (TWAS) were downloaded from the 
Arabidopsis thaliana multi-omics association (AtMAD) database 
(http://119.3.41.228/atmad/index.php; Lan et  al., 2021). The 
number of times each gene was associated with each phenotype 
trait was counted.

Evolutionary/conservation and 
epigenetic features

Homologous features were obtained from the EVOREPRO 
database (Julca et  al., 2021). Nucleotide diversity, methylation 
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status of gene bodies, and sequence conservation features were 
obtained from a 2015 study (Lloyd et al., 2015).

Protein post-translational modification 
features

Protein post-translational modification (PTM) features were 
obtained from the Plant PTM Viewer (http://www.psb.ugent.be/
PlantPTMViewer; Willems et  al., 2019). For each gene, the 
number of each PTM together with the amino acid which it 
occurs in, was counted.

Data preprocessing

All features were combined to create a dataset comprising 
11,801 features and 31,552 genes for machine learning 

(Supplementary Data 1). Missing categorical features were filled 
with 0. Missing continuous features were filled with their 
respective mean values, and continuous features were standardised 
(z-score normalisation). Features with >50% of missing values 
were not included in the dataset. Care was taken to ensure only 
the training set was used to calculate these mean values and for 
the standardisation process, to prevent data leakage.

The dataset is a matrix of numerical values, consisting of 
11,801 features (columns) and 31,552 genes (rows). These values 
were used as inputs into model training. In the case of the random 
forest model, the model output would be a binary (0 indicating 
absence of the class, 1 indicating presence of the class) value for 
predicting categorical features, and a continuous value for 
predicting continuous features.

Since our dataset has many features, overfitting during model 
training can be a problem. One way to reduce this problem would 
be to perform feature selection and/or dimensionality reduction. 
However, this may not always be necessary as some models, such 
as random forest do demonstrate resistance to overfitting due to 
sample bootstrapping and node splitting.

Machine learning, time trial

To determine a suitable machine learning model which gives 
a good balance of performance and time taken to train, we tested 
logistic regression, random forest, balanced random forest, linear 
support vector machine (SVM), and adaboost.

To improve the model performance and estimate the time it 
takes to analyse all features, we  set out to identify suitable 
hyperparameters. The range of hyperparameters tested for the 
time trial is given in Table 1.

We used a randomised search with 10 iterations within a 
nested 5-fold cross-validation approach. In a k-fold nested cross 
validation approach, the inner k-fold is used for hyperparameter 
optimization during random search, while the outer k-fold fold is 
used to test the model, hence the equivalent of k test/validation sets 
would be used. Such an approach was used to train the model with 
hyperparameter optimization, so as to minimise data leakage.3 The 
F1 metric was used to score models due to unbalanced sample sizes 
between the positive and negative classes. Genes labelled with the 
specific feature used as the class label are in the positive class, while 
genes which do not have that feature, are in the negative class. 
Before model training, for the specific GO term used as the class 
label, all parent and child GO terms related to that class label were 
removed. Parent and child GO terms are identified using 
GOATOOLS (Klopfenstein et  al., 2018). Parent and child GO 
terms need to be removed to prevent data leakage during model 
training, as GO terms used as class labels are associated with their 
corresponding parent and child GO terms. This approach was also 

3 https://scikit-learn.org/stable/auto_examples/model_selection/plot_

nested_cross_validation_iris.html

TABLE 1 HPs tested for time trial.

Model Hyperparameter Range of values

Adaboost n_estimators (maximum number  

of estimators in model)

100, 120, 130, 150, 

and 200

learning_rate (weight applied to  

each classifier at each training 

iteration, a higher learning rate 

increases the contribution of each 

estimator)

0.6, 0.625, 0.65, 

0.675, and 0.7, 

0.725, 0.75, 0.775, 

and 0.8

Balanced random 

forest

max_features (number of features to 

consider when looking for the best 

split in the tree)

sqrt, 0.1, 0.2, 0.3, 

0.4, 0.5, and 0.75

n_estimators (maximum number of 

estimators in model)

50, 100, 200, 500, 

and 1,000

max_depth (maximum depth of the 

tree)

10, 20, 50, 70, 100, 

125, 150, 200, 500, 

and None

Logistic regression C (inverse of regularization strength, 

smaller values specify stronger 

regularization)

0.0001, 0.001, 0.01, 

0.1, 1, 10, 100, 1,000, 

and 10,000

Linear SVM C (inverse of regularization  

strength)

0.0001, 0.001, 0.01, 

0.1, 1, and 10, 100, 

1,000, and 10,000

Random forest ccp_alpha (complexity parameter, 

used to determine extent of tree 

pruning)

0, 0.1, 0.001, and 

0.001

max_features (number of features  

to consider when looking for the 

best split in the tree)

sqrt, 0.1, 0.2, 0.3, 

0.4, 0.5, and 0.75

n_estimators (maximum number  

of estimators in model)

50, 100, 200, and 

500

max_depth (maximum depth of  

the tree)

20, 50, 100, 200, and 

None
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used for downstream machine learning applications, and 
modifications from this approach will be specified.

Identification of optimal 
hyperparameters for random forest

To find the optimal hyperparameters for the random forest 
models, we chose 71 GO terms (Supplementary Table S5), that 
contained between 5 and 1,000 genes. The set of random forest 
hyperparameters tested is given in Table 1. The Out of Bag (OOB) 
F1 metric was used to score models. We used random search to 
estimate the optimal hyperparameters with 20 iterations for each 
GO term. We divided the OOB scores into three groups: high 
(OOB F1 ≥ 0.7), medium (0.5 ≤ OOB F1 < 0.7), and low (OOB 
F1 < 0.5) scoring.

To identify hyperparameters that were frequently found in the 
high performing group, we used two approaches. In the first one, 
we selected the most frequently occurring hyperparameter value. 
In the second, we selected the most frequently occurring group of 
values. Hyperparameters chosen from these two methods were 
used to train random forest models for the 71 GO classes. 
Additionally, default hyperparameters, and hyperparameters 
optimised for each GO class were also used. The selected 
hyperparameter values were tested on both original and shuffled 
data obtained by randomly shuffling the dataset columns.

Construction of models for 9,535 
features

To construct models for each feature, each feature would 
be selected as the prediction target and the remaining features 
would be used as the training features (the dataset). For GO terms, 
we removed child and parent features of a GO term that is used as 
a prediction target (label). GO terms with <10 genes were not used 
as targets. A total of 9,535 features were used as prediction targets 
in our workflow. The OOB F1 score was the metric used for 
categorical features, while the OOB R2 score was the metric used 
for continuous features. We  used the hyperparameters that 
resulted in best overall performance, as estimated in “Identification 
of optimal hyperparameters for random forest”: ccp_alpha = 0.001, 
max_features = 0.2, n_estimators = 50, and max_depth = 200.

Feature importance network 
construction

Construction of the network utilised the concept of calculating 
mutual ranks between feature pairs. To remove poorly predictable 
features, only features which scored ≥0.4 with the OOB F1 (for 
categorical features) or R2 (for continuous features) metric were 
selected for mutual rank calculations, which left 1,475 features. 
For these predicted features, all their nonzero feature importance 

values were converted into ranks, with the feature with the largest 
feature importance value given a rank of one, and the feature with 
the smallest feature importance value given the largest rank. The 
mutual rank of each pair was then calculated by taking the 
geometric mean of both ranks, as described in ATTED-II 
(Obayashi et al., 2009). The formula for calculating mutual ranks 
is given here:

 
MR AB Rank A B Rank B A( ) = Ö ®( )* ®( )( )

In the formula, MR stands for mutual rank, MR(AB) refers to 
the MR of features A and B, and Rank(A → B) refers to the feature 
importance rank which A has with respect to B. Rank(B → A) 
would refer to the inverse.

To find a MR cut-off, the top 10% of the MR values (53,080 
MR values were obtained corresponding to 53,080 feature pairs) 
were used to build the network, comprising 1,342 nodes and 5,308 
edges. Edge weights were created by inverting a list of feature 
pairs, sorted by mutual ranks. An inversion is done since smaller 
mutual ranks indicate a stronger link between features, whereas a 
larger edge weight indicates the same idea. As such, the 
constructed network is a network of features, with putative 
biological links between them depicted by edges.

Feature importance network analysis

The feature importance network was analysed to identify 
biologically relevant groups of features. Overall network metrics, 
which are betweenness centrality, clustering coefficient and 
degree, were calculated using Cytoscape 3.8.2 (Shannon 
et al., 2003).

A permutation test was used to identify statistically 
significantly associated feature categories, which are defined as 
each row of the table given in Table 2. First, the number of edges 
between all possible feature category pairs was calculated. Next, 
the features in all feature category pairs were shuffled 10,000 
times, and we compared the number of edges after shuffling, with 
the number of edges before shuffling (the original number of 
edges). The calculated empirical value of p indicates whether the 
original number of edges is significantly depleted as compared to 
random chance. p values were corrected using the Benjamini–
Hochberg correction (Benjamini and Hochberg, 1995).

Data analysis and availability

All data processing and analysis tasks, unless otherwise stated, 
used python 3.8.6 and its associated libraries for data science, such 
as pandas 1.1.4, numpy 1.19.4, scipy 1.6.1, and statsmodels 0.13.0. 
Networks were constructed and analysed using networkx 2.5 
[Proceedings of the Python in Science Conference (2008): 
Exploring Network Structure, Dynamics, and Function using 

https://doi.org/10.3389/fpls.2022.944992
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ng et al. 10.3389/fpls.2022.944992

Frontiers in Plant Science 06 frontiersin.org

NetworkX], and analysis and visualisation of the feature 
importance network also made use of Cytoscape 3.8.2 (Shannon 
et al., 2003) and its associated apps. Machine learning was done 
by scikit-learn 0.23.2 (Pedregosa et al., 2011) while the balanced 
random forest model was trained using imbalanced-learn 0.7.0 
(Lemaître et  al., 2017). Data visualisation was done using 
matplotlib 3.4.2 (Hunter, 2007), seaborn 0.11.1 (Waskom, 2021), 
and ptitprince 0.2.5 (Allen et al., 2021).

The machine learning dataset, together with scripts used, are 
available from a github repository.4 Raw data used to create this 
dataset is available as Supplementary Data 1.

4 https://github.com/jonng1000/ml_plant

TABLE 2 Summary of features used.

Feature type Feature name (number of features) Feature purpose

Gene expression SPM (9) Expression specificity

TPM (6) Gene expression levels

DGE (436) Differential gene expression

Diurnal (13) Diurnal gene expression, amplitude and time point

Gene family Orthogroups (2) Gene family size

Phylostrata Phylostrata (1) Phylostrata which genes belong to

Genomic information Single copy genes (1) Single copy genes in the same gene family

Tandemly duplicated genes (1) Tandemly duplicated genes in the same gene family

Protein domain MobiDBLite (1) Prediction of disordered domains regions

Pfam (2761) Collection of protein families

TMHMM (1) Prediction of transmembrane helices

Number of domains (2) Number of protein domains

Biochemical Length of peptide (1) Shows how long each peptide is

Molecular weight (1) Molecular weight of peptide

Isoelectric point (pI) (1) pI of peptide

PPI Network centrality (2) Degree and betweenness centrality

Network clusters (1295) Cluster size and ID

Gene coexpression Network centrality (2) Degree and betweenness centrality

Network clusters (279) Cluster size and ID

GO terms GO terms (3645) Experimentally determined gene annotations

cis-regulatory elements cis-regulatory

element names (82)

Gene regulation

cis-regulatory

element families (15)

Gene regulation

Multi-omics GWAS (33) Genomic loci within genes, correlated with phenotype traits

TWAS (28) Gene expression level, correlated with phenotype traits

Gene regulatory network Network centrality (2) Degree and betweenness centrality

Network clusters (55) Cluster size and id

Properties (76) Biological characteristics of transcription factors and their target genes

Aranet gene-interactions Network centrality (2) Degree and betweenness centrality

Network clusters (2957) Cluster size and id

Evolution Homologs (22) Presence of A. thaliana homolog in 22 species

Nucleotide Diversity (1) Nucleotide diversity calculated from A. thaliana accessions

Epigenetics Gene body methylation (1) Whether gene body is methylated

Conservation Sequence conservation (3) Protein sequence % identity to fungi, plants, and metazoans

Percent identity to paralogs (1) Maximum percent identity from BLAST to closest paralog

dN/dS values (4) dN/dS substitution rates between A. thaliana paralogs, and homologs from three plant species

Paralog dS (1) dS with putative paralog

PTMs Protein PTM (58) Protein PTM frequency

The first column describes the feature type. The second describes the feature name and parentheses indicate the number of features per name. The third column contains the feature 
description.
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Database development

The frontend is hosted on github and uses React.js and 
cytoscape.js (Franz et al., 2016). The frontend code is available as 
a github repository.5 The REST API backend uses python flask 
which retrieves data from Google Cloud Storage. The backend is 
hosted on Google App Engine.

Results

Assembly of 11,801 features for 31,552 
Arabidopsis genes

We used 11,801 features for 31,522 A. thaliana genes, drawn 
from a wide variety of 37 categories (Supplementary Table S1; 
Table  2). Gene expression features include SPM, TPM, and 
differential gene expression (DGE) features. Gene SPM values 
(expression specificity, indicating whether a gene is, e.g., 
specifically expressed in roots) were obtained from nine organs, 
stem, female, male, leaf, flower, seeds, root, apical meristem, and 
root meristem. From TPM values from these organs, six summary 
statistics were calculated, which are mean, median, maximum, 
minimum, and variance calculated by square of SD and variance 
calculated by median absolute deviation divided by the median 
(MAD). DGE features were derived from 218 conditions, and each 
condition was used to create two features, which are the up and 
downregulated status for genes.

Genomic and evolutionary features include gene family 
(orthogroup), phylostrata, protein domains, gene regulation, and 
homolog features. One type of gene family size was calculated by 
counting the number of A. thaliana genes in the gene family, 
whereas the second type was calculated by counting the number 
of genes from all species in the gene family. For each orthogroup, 
its last common ancestor was assigned as its phylostrata. One 
method of counting the number of protein domains counts the 
total number of domains in each gene, while the other counts the 
total number of unique domains. Seventy six features describing 
biological characteristics of transcription factors (TFs) and their 
target genes (TGs) were also obtained from the gene regulatory 
network. An A. thaliana gene is defined to have a homolog with a 
particular species if that species has a gene in the same orthogroup 
as that A. thaliana gene.

To conclude, we ended up with 9,535 features as targets, as 
2,266 GO term features were removed as they had <10 genes per 
term. As such, 11,801 features were used in our machine learning 
workflow to predict 9,535 targets.

5 https://github.com/Sweekwang/golabel

Finding the optimal machine learning 
model

To identify which machine learning method produces the 
most accurate predictions, we  tested five methods [logistic 
regression, random forest, balanced random forest, linear support 
vector machines (SVM), and adaboost] and used the F1 score, 
which is the harmonic mean between precision and recall, to score 
the models. In addition, due to the resource intensiveness of the 
pipelines, we also noted the training time needed for finishing 
model training. For the time trial, 16 well annotated GO cellular 
component terms were used as labels (i.e., prediction targets; 
Supplementary Table S2). Both logistic regression and linear SVM 
produced warnings as their algorithms could not converge with 
the specified number of iterations (a hyperparameter), thus their 
results were not reliable.

Therefore, a second time trial was conducted, to determine the 
number of iterations needed for convergence and the time taken. 
Two GO classes, GO:0016020 and GO:0005829, were used 
together with all five models, with 10 random search iterations 
and 5-fold nested cross-validation. This would allow for a fair 
comparison of the time taken of all five models to be made, as a 
suitable number of iterations for logistic regression and linear 
SVM was used to ensure convergence. Using only two GO classes 
would help to ensure that all models were trained in a reasonable 
amount of time.

We observed that the random forest showed consistently high 
F1 scores (Figure 1A), and a reasonable amount of time to train 
(Figure 1B; Supplementary Figure S1; Supplementary Table S3). 
In addition, random forests allow one to use the out-of-bag (OOB) 
score to test the model, hence saving time by removing the need 
for a test/train split.

Machine learning models can be further tuned by adjusting 
their hyperparameters. To determine the suitable 
hyperparameters for the random forest model by considering 
model scores and training time, we tested the influence of four 
hyperparameters on the prediction performance of 71 GO 
labels (Supplementary Table S5). These are cost-complexity 
pruning (ccp_alpha), maximum number of features for each 
split in the tree (max_features), number of trees in the forest 
(n_estimators), and maximum depth of the tree (max_depth). 
We  investigated four methods to identify the best 
hyperparameters. The first method identified which individual 
hyperparameter values are most frequently found among the 
best-performing models of the 71 GO terms. The second 
method identified the most frequently occurring groups of 
hyperparameters. The third method used the default 
hyperparameters (which are ccp_alpha = 0.0, max_
features = auto, n_estimators = 100, and max_depth = none). The 
fourth method used hyperparameters individually optimised 
for each GO term, which represents the most computationally 
intensive approach to estimate the hyperparameters, as each 
model has to be optimised individually with cross-validation 
(Supplementary Tables S6, S7).
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The outcome of the analysis revealed that the individually 
optimised hyperparameters produced the best-performing models 
(Figure  1C; average F1 = 0.46). Conversely, the default 
hyperparameters performed the worst (Figure  1C; average 
F1 = 0.09), showing that optimised hyperparameters can 
dramatically improve the performance of the models. 
Furthermore, two most frequent groups of parameters (group 1 
and 2, average F1 scores of 0.41505 and 0.41536 respectively) and 
most frequent individual HP (F1 0.41504) performed comparably 
to the individually optimised HP (Figure 1C). These results show 
that “individually selected” and “groups” of hyperparameters 
perform very similarly to “individually optimised” 
hyperparameters. Based on these results, an “individually selected” 
hyperparameter values method was chosen to build models for 
each of the 9,535 features. To verify that our random forest 
workflow was able to perform better than random chance, we used 
the found HPs on both original and randomly shuffled data. 
Results show that our workflow with the selected hyperparameters 
performs better than random chance (Supplementary Figure S2) 
and hence were used for model training on all features.

Calculating the predictive performance 
of biological features

To investigate which biological features can be predicted well by 
our machine learning model, for each of the 9,535 features we built 
a random forest model. To score the performance of each model, 
we used the OOB F1 score for categorical features (0 and 1 represent 
poor and perfect performance, respectively), while for continuous 
features we used the OOB R2 score (<0, 0, and 1 indicate predictions 
worse than always predicting the mean value of the target, poor 
performance (predict mean value of the target regardless of input) 
and perfect performance, respectively, Figure 2).

We set out to investigate how well the different types of 
features could be predicted. Features that could be predicted well 
(defined as lightly coloured squares to the right of the clustermaps 
and indicated by the green circles, in Figures 2A,B) comprise of 
homolog features, diurnal timepoints, single copy, cis-regulatory 
element families, orthogroups, phylostrata, and biochemical 
features. Conversely, features that could not be predicted well are 
all other features. While most GO terms and DGE are not 
accurately predicted, some of them have high scores (Figure 2A). 
To determine if the number of genes in each GO term influences 
model scores, a plot of scores against the number of genes was 
made (Figure  2C). This scatterplot showed a moderate but 

statistically significant relationship between the number of genes 
and OOB F1 score (Pearson’s r = 0.46, value of p = 8.79e−72). This 
indicates that increasing the number of genes in GO terms does 
positively influence model performance. Thus, the performance 
of machine learning models will be improved by the inclusion of 
more biological data for more genes.

Construction of feature importance 
network

To investigate the biological relationships between features, 
we identified which features are mutually predictive of each other, 
and used this observation to infer biological relationships between 
them. To do this, we constructed a Feature Importance Network 
(FIN), where nodes represent machine learning features and edges 
represent features with putative biological relationships. To obtain the 
FIN, mutual ranks of feature pairs were calculated and the top 10% 
of them were used to construct the network. This is based on the 
assumption that these represent features that are mutually predictive 
of each other, which implies biological relationships between them. 
A total of 1,475 nodes (features) and 53,080 edges (mutual ranks) 
were present before applying the top 10% cutoff and after applying it, 
1,342 nodes and 5,308 edges were selected to build the FIN.

The top 10% cut-off of mutual ranks was used similarly to 
other studies on gene expression (Mutwil et  al., 2010). The 
threshold also resulted in a good balance between the number of 
edges in FIN, and the number of nodes with connections 
(Supplementary Figure S5). At 10% cut-off, most nodes (features) 
are connected, with the fewest edges, resulting in a compromise 
between the readability and richness of information.

To analyse the topology of the network, we first investigate the 
node degree of the FIN, and we observed a power-law distribution 
(Figure 3A). This is consistent with a scale-free network topology 
observed in many biological networks such as metabolic (Kim 
et al., 2019), RNA (Panni et al., 2020), protein (Pastor-Satorras 
et  al., 2003), and gene coexpression (van Noort et  al., 2004) 
networks. The distribution of the mutual ranks (Figure 3B) is like 
the HRR distribution of the gene coexpression data used in our 
study (Figure  3C). Given that gene coexpression networks are 
known to be scale-free (Emamjomeh et al., 2017), this observed 
similarity can lend support to our inference of the scale-free nature 
of the FIN. Therefore, this network topology could imply that while 
many features are biologically linked to only a few others, a 
minority of features are biologically linked to many others.

FIGURE 1

Evaluation of machine learning algorithms. (A) F1 scores (y-axis) of 16 GO cellular location terms (x-axis). The algorithms are logistic regression 
(average F1 score 0.32), balanced random forest (0.26), adaboost (0.41), random forest (0.43), and linear SVM (0.35). The predictions were 
performed five times, and the error bars represent the 95% CI. (B) Time (y-axis) taken to train the different machine learning models to finish 
training. The predictions were performed five times on GO terms GO:0005829 (cytosol) and GO:0016020 (membrane). (C) OOB F1 score (y-axis) 
for the 71 GO terms using different sets of hyperparameters. “Individually selected HP” refers to random grid search to optimise hyperparameters 
for each GO term individually. “Default HP” means that default hyperparameters are used. “Groups of HP (group 1)” and “(group 2),” refers to the 
most frequent hyperparameter group observed after optimizing HPs for the 71 GO terms. “Most frequent individual hyperparameter” refers to the 
most frequent individual hyperparameter chosen after optimizing for the 71 GO terms.
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To visualise the FIN, we  grouped the nodes (features) 
according to their corresponding categories (Table  2). While 

we  observed many edges between the features of the same 
category, we also observed many edges between features from 
different categories (Figure 4). An example of such an observation 
is in the DGE features (yellow circle, Figure 4), where they share 
many biological relationships with one another, while also having 
relationships with other feature types. The complex web of 
interactions between the features shows a complex relationship 
between the features of Arabidopsis genes.

The node degree distribution of the feature categories in the FIN 
varies across categories (Figure 5). GO terms are observed to have low 
node degrees in general (top blue circle, Figure 5), while DGE features 
have a comparatively higher node degree distribution (bottom blue 
circle, Figure 5). This implies that GO terms tend to be less functionally 
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FIGURE 3

Characteristics of feature importance network. (A) Power-law 
distribution of node degrees. (B) Distribution of mutual ranks 
(MR) of feature importance values. (C) Distribution of highest 
reciprocal rank (HRR) of gene coexpression values in the 
coexpression network used in our study.
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FIGURE 2

OOB F1 or R2 scores (x-axis) of the biological features. (A) F1 
scores (x-axis) for categorical features (y-axis). (B) R2 continuous 
feature scores. (C) F1 scores (y-axis) of GO terms vs. number of 
genes in each GO term (x-axis).
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linked to other features, while DGE features exhibit more functional 
links. Orthogroup and phylostrata (top yellow circle), transmembrane 
helices, biochemical features (length and molecular weight of peptide) 
and number protein domains (middle yellow circle), and network 
features (bottom yellow circle), are feature categories which exhibit 
high node degree distributions (Figure 5). This implies that they share 
functional links with many other features. The network features with 
a high node degree distribution are the cluster size feature of their 
respective biological networks, which are connected to many cluster 
ID features (Box 1, 2, 5, and 7 in Figure 4).

Identification of functionally-related 
feature categories

To identify which feature categories are significantly 
linked to each other, we determined which categories have 
more edges between them than expected by chance. This was 
achieved by performing a permutation test on the number of 
edges linking categories from the FIN together and comparing 
the permuted number with the original number of edges 
(Figure 6).

Most pairs of feature categories have a significantly smaller 
number of connections between them than expected by chance 
(Figure 6, blue squares), indicating that they are less likely to 
be  functionally related. The exceptions are five DGE groups 
(purple circle), GO molecular function, PPI clusters, GO 
biological process and transmembrane helices (green circle), 
conservation features (conservation of gene sequences), 
homologs, single copy, tandemly duplicated, orthogroups, and 
phylostrata (orange circle), that represents clusters of 
significantly connected feature categories (Figure  6). 
Conservation and TPM features (yellow square, top left in 
Figure  6) and coexpression clusters and SPM features (pink 
square, bottom left in Figure 6) are pairs of features which are 
also seen to be linked.

The number of biological relationships within feature 
categories also tends to be higher than expected, as depicted by 
the many red squares along the clustermap diagonal. Some black 
squares are also observed along the diagonal, which indicates that 
the number of relationships within their corresponding feature 
categories is not statistically significant. Taken together, features 
tend to share functional links within the same category, compared 
to across categories.

Construction of finder.plant.tools—
online database to browse FIN

To provide a user-friendly interface for scientists to explore 
the FIN and identify biologically associated features, we created 
an online database,6 finder.plant.tools that can be  queried by 

6 http://finder.plant.tools/

feature names. The database can display the local FIN 
neighbourhoods of features. To represent positively or negatively 
correlated features, and the strength of the correlations, we use red 
edges to indicate positive association, and blue edges indicate 
negative association. Grey edges indicate associations between 
neighbours which do not involve the target feature. The edge 
width indicates the strength of association (based on mutual 
rank), where a thicker width indicates a stronger association.

To demonstrate the ability of the FIN database to capture 
biologically relevant information, we set out to investigate several 
features with expected associations. First, we observed that mean 
gene expression (tpm_mean, brown rounded rectangle) is 
positively associated with maximum (tpm_max, brown rounded 
rectangle) and median (tpm_median, brown rounded rectangle) 
gene expression (Figure 7A). This indicates that genes with higher 
mean expression tend to have higher median and maximum 
expression. Conversely, we  observed a negative association 
between mean gene expression, and protein molecular weight 
(pep_mw, green rounded rectangle) and length (pep_aal, green 
rounded rectangle). This indicates genes with lower mean 
expression, tend to code for proteins with a lower molecular 
weight and have a shorter length. Furthermore, we observed that 
genes belonging to co-expression clusters 24 and 254 (cid_cluster_
id_24 and 254, blue rounded rectangles), genes belonging to the 
ribonuceloprotein complex (GO_CC_ribonucleoprotein complex, 
beige rounded rectangle), and genes involved in glutathione 
binding (GO_MF_glutathione binding, yellow rounded 
rectangle), tend to have lower mean expression.

In the second example, we observed that protein length is 
positively associated with the number of protein domains (num_
counts, greenish beige rounded rectangle), number of unique 
protein domains (num_u_counts, greenish beige rounded 
rectangle), number of disordered domains (mob_counts, beige 
rounded rectangle), and protein molecular weight (Figure 7B). 
Not surprisingly, proteins with a longer length tend to have a 
higher number of protein domains, more disordered domains, 
and a higher molecular weight. However, we also observed a link 
between methylation of the gene body and protein length, 
suggesting that longer proteins tend to be more regulated on the 
epigenetic level.

Finally, in the third example, we  saw that sequence 
conservation in plants [con_sequence conservation in plants (% 
ID), light purple rounded rectangle] is positively associated with 
sequence conservation in paralogs (con_dS with putative paralog 
and con_percent identity with putative paralog, light purple 
rounded rectangle), fungi (con_sequence conservation in fungi 
(% ID), light purple rounded rectangle) and metazoans (con_
sequence conservation in metazoans (% ID), light purple rounded 
rectangle), and homology with multiple plant species (green 
rounded rectangles on the right; Figure 7C). Conversely, sequence 
conservation in plants is negatively associated with the 
evolutionary age of genes captured by phylostrata (phy_
phylostrata, dark purple rounded rectangles; Figure  7C). 
Phylostrata feature ranges from 1 (gene families found in 
Archaeplastida) to 21 (gene families only found in A. thaliana), 
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and the negative association between sequence conservation and 
phylostrata can be explained by the fact that genes with higher 
conservation are older, and thus have a lower phylostrata number. 
Interestingly, sequence conservation in plants is negatively 
associated with protein post-translational modifications (PTM, 
ptm_ph_S: serine phosphorylation, ptm_so_C: cysteine 

S-sulfenylation, ptm_ub_K: lysine ubiquitination, and ptm_ac_K: 
lysine acetylation, purple rounded rectangles), indicating that 
younger proteins tend to be most post-translationally modified. 
Taken together, these examples reveal a mixture of expected and 
novel insights, indicating that the FIN can be used to gain new 
knowledge about the molecular wiring of Arabidopsis.

FIGURE 4

Feature importance network. Nodes represent features while edges connect features that have putative biological links. The features are divided 
into eight major groups (Table 2). Red edges show relationships within groups belonging to the same box. These groups are divided into eight 
boxes, and the first seven boxes represent clusters of feature categories. The boxes are 1 (Aranet features: cluster IDs and size), 2 (gene 
coexpression features: cluster IDs and size), 3 (DGE features: subdivided into five categories), 4 (GO terms: subdivided into three categories), 5 (PPI 
features: cluster IDs and size), 6 (cis-regulatory elements), 7 (gene regulatory features: cluster IDs and size), and 8 (a miscellaneous group which 
contains all other feature categories). Yellow circle highlights DGE features, showing how many of them are linked to each other, while also having 
links to other features.
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We set out to investigate more complex examples. First, 
we  observed that post-translational modification of lysine 
acetylation is positively associated with multiple GO cellular 
locations (e.g., GO_CC_thylakoid, GO_CC_chloroplast stroma, 
and GO_CC_chloroplast, beige rounded rectangles), especially 
those related to the chloroplast (Figure 8A), implying that lysine 
acetylation takes place in chloroplast, or is important for 
importing proteins into the chloroplast. Furthermore, we observed 
associations to Aranet cluster 70 (agi_cluster_id_70, green 
rounded rectangle) and PPI cluster 1 (pid_cluster_id_1, blue 

rounded rectangle), suggesting that proteins with this post-
translational modification tend to physically interact.

In the second example, we  observed that the number of 
transmembrane helices in a protein sequence (tmh_counts, brown 
rounded rectangle) is positively associated with multiple GO 
terms associated with channels (e.g., GO_BP_transmembrane 
transport, GO_MF_cation channel activity, and GO_MF_
potassium channel activity, beige/yellow rounded rectangles), not 
surprisingly indicating that channels tend to have more 
transmembrane helices (Figure 8A). In addition, we also observed 
association to three Pfam domains (pfa_PF01061: ABC-2 type 
transporter, pfa_PF00005: ABC transporter, and pfa_PF00664: 
ABC transporter transmembrane region, purple rounded 
rectangles), which is in line with proteins with transporter 
domains having more transmembrane helices. Furthermore, there 
is a strong correlation between the number of transmembrane 
helices, molecular weight, and protein length, which can 
be explained by proteins having more domains (transmembrane 
helices, disordered domains, and others), being longer. 
Interestingly, we also observed an association to the sphingolipid 
metabolic process (GO_BP_sphingolipid metabolic process, beige 
rounded rectangles), suggesting that this metabolic process 
involves proteins with transmembrane helices (Figure 8B).

In the third example, we  observed that the number of 
disordered domains in a protein sequence is positively 
associated with sequence conservation in paralogs, plants, 
fungi, and metazoans, suggesting that proteins with many 
disordered domains are of an ancient origin (Figure 8C). In line 
with the above examples in Figure 8B, the number of disordered 
domains is correlated with protein size (pep_aal: protein length, 
pep_mw: protein molecular weight, num_u_counts: number of 
unique protein domains). Interestingly, the number of 
disordered domains is positively correlated to several 
posttranslational modifications (ptm_ph_T: threonine 
phosphorylation, ptm_ph_S: serine phosphorylation, and ptm_
ub_K: lysine ubiquitination, purple rounded rectangles), and 
the number of unique protein domains a protein has (num_u_
counts). The latter suggests that multi-domain proteins tend to 
contain disorganised domains. Finally, we observed that of all 
biological processes captured by GO, microtubules tend to 
be  the only one positively associated with the number of 
disordered domains.

Discussion

Understanding biological relationships between molecular 
characteristics is critical to understanding how life works, and 
machine learning has great potential to contribute to achieving 
such an objective. Here, we analysed 31,522 A. thaliana genes 
using 11,801 features. These features are drawn from a wide 
variety of categories such as genomic, transcriptomic, 
evolutionary, biochemical, and protein and gene interactions. 
We applied a machine learning workflow using random forests 

FIGURE 5

Degree distribution of feature categories. Top blue circle shows 
GO terms while the bottom blue circle shows DGE features. Top 
yellow circle shows orthogroups and phylostrata, middle yellow 
circle shows transmembrane helices, biochemical features 
(length and molecular weight of peptide) and number protein 
domains, and bottom yellow circle shows network features 
(cluster size) from the PPI, coexpression, regulatory and Aranet 
networks.
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and constructed a FIN that shows features with putative 
biological relationships.

We observed that it is important to optimise 
hyperparameters for increased machine learning performance 
as the models gained on average a 4.6-fold increase in 
performance after optimisation. Interestingly, rather than 
optimising parameters for each of the 9,535 models individually, 
which is computationally costly, hyperparameters optimised for 
a subset of 71 models resulted in similar performance. Since 
individual optimization takes a significantly longer time for 
training compared to using fixed hyperparameters, we chose the 
most frequently occurring, individually selected hyperparameter 
values for model training.

While the performance of most GO term and DGE feature 
models were not high, a minority had high scores (Figure 2A). 

We  observed a significant positive correlation between the 
number of genes in each GO term and OOB F1 score (Figure 2C). 
This implies that poor machine learning performance could 
be due to the small number of genes in many of the GO features. 
A study by Rifaioglu et  al. also observed a strong correlation 
between GO term size and performance. While studies predicting 
GO terms have reported higher scores (Kulmanov et al., 2018; 
Sureyya Rifaioglu et al., 2019; Littmann et al., 2021), these studies 
focused on GO terms with a larger number of genes through 
inclusion of computationally annotated GO terms as prediction 
targets (Littmann et al., 2021).

There is a lack of experimental GO terms for many 
Arabidopsis genes due to the labour intensive nature of 
experimental work. Conversely, each DGE experiment can 
identify hundreds or thousands of differentially expressed genes. 

FIGURE 6

Identification of significantly associated feature types. The clustermap shows whether there are significantly (BH-adjusted values of p < 0.05) more 
(red squares) or significantly less (blue square) between feature categories that are expected by chance. Not statistically significant associations are 
indicated by black boxes. Circles indicate clusters of feature categories which are associated with each other. Yellow (top left) and pink (bottom 
left) squares are red squares which have been coloured differently to enable easy identification when our study refers to them.
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Since machine learning tends to perform better with larger 
amounts of training data, this could explain why our DGE terms 
perform slightly better than GO terms in terms of machine 
learning prediction.

We observed that the FIN shows a power-law distribution 
(Figure  3), indicating that it is a scale-free network, which is 
typical for many biological networks, such as protein, metabolic, 
and coexpression networks (Clote, 2020). We observed that many 
features are connected to each other, highlighting the complex 
web of biological interactions involved in the molecular wiring of 
Arabidopsis (Figure 4). DGE features have a comparatively higher 
number of functional links to other features than GO terms 
(Figure 5), and many of them tend to be  fellow DGE features 
(yellow circle, Figure 4). This suggests that different stimuli can 

activate similar differential gene expression programs, which is the 
basis for online tools such as AtCAST (http://atpbsmd.
yokohama-cu.ac.jp/cgi/atcast/home.cgi; Sasaki et al., 2011). For 
example, the diverse stress factors that plants face often activate 
similar cell signalling pathways and cellular responses, such as the 
production of stress proteins and upregulation of the antioxidant 
machinery (Pérez-Clemente et  al., 2013). Genes belonging to 
different orthogroups and phylostrata have been shown to 
be associated with organ-specific gene expression, gene functions 
such as cell cycle organisation and phytohormone action, and 
diverse abiotic stress responses (Mustafin et  al., 2019; Julca 
et al., 2021).

While DGE features have a higher number of functional links to 
GO terms (Figure 5), most of the DGE features tend to be poorly 

A B

C

FIGURE 7

Examples capturing protein sizes and conservation. Selected nodes and edges from the local neighbourhood of specific features in the database 
are shown. (A) Mean gene expression (tpm_mean) is positively associated with maximum (tpm_max) and median (tpm_median) gene expression. 
(B) Protein length (pep_aal) is positively associated with the number of protein domains (num_counts), number of unique protein domains 
(num_u_counts), number of disordered protein domains (mob_counts) and protein molecular weight (pep_mw). (C) Sequence conservation in 
plants [con_Sequence_conservation_in_plants_(%_ID)] is positively associated with sequence conservation in paralogs, fungi and metazoans 
(nodes starting with “con_”), fundamental GO terms (nodes starting with “GO_”), and homology with multiple plant species (nodes starting with 
“hom”). Sequence conservation in plants is negatively associated with the evolutionary age of target genes of transcription factors (ttf_
Evolutionary_age), phylostrata (phy_phylostrata), and protein PTMs (nodes starting with “ptm_”).
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FIGURE 8

Examples capturing posttranslational modifications and the number of transmembrane and disordered domains. Selected nodes and edges from 
the local neighbourhood of specific features in the database are shown. (A) Protein PTM—lysine acetylation (ptm_ac_K) is positively associated 
with GO cellular components terms (nodes starting with “GO_CC_”), especially those related to the chloroplast. (B) Number of transmembrane 
helices in a protein sequence (tmh_counts) is positively associated with GO transmembrane transporter and channel terms (nodes starting with 
“GO_”), and sphingolipid metabolic process (GO_BP_sphingolipid metabolic process). (C) Number of disordered domains in a protein sequence 
(mob_counts) is positively associated with sequence conservation in paralogs, plants, fungi and metazoans (nodes starting with “con_”), GO 
microtubule terms (nodes starting with “GO_”), gene length (nodes starting with “ttf_”), protein PTMs (nodes starting with “ptm_”), protein length 
(pep_aal), number of unique protein domains (num_u_counts), and protein molecular weight (pep_mw).

https://doi.org/10.3389/fpls.2022.944992
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ng et al. 10.3389/fpls.2022.944992

Frontiers in Plant Science 17 frontiersin.org

predicted. This indicates that the high quantity of features that can 
explain DGE features does not result in a high quality of 
the predictions.

To provide access to the FIN, we constructed an online 
database, FINder, available at http://finder.plant.tools/. The 
examples generated by FINder showed expected biological 
relationships between features. For example, mean gene 
expression is positively associated with maximum and median 
gene expression (Figure 7A), which is expected as mean and 
median are measures of central tendency, hence both are 
expected to be  positively associated. Furthermore, protein 
length is positively associated with the number of protein 
molecular weight, protein domains, and disordered regions 
(Figure 7B), which is expected as longer proteins can contain 
a greater number of domains and disordered regions. 
Furthermore, sequence conservation in plants is positively 
associated with sequence conservation in paralogs, fungi and 
metazoans, fundamental GO terms, and homology with 
multiple plant species (Figure 7C). This is an expected finding 
as the greater the degree of sequence conservation in plants, 
the more likely that the gene sequence is conserved 
throughout evolution. Furthermore, highly conserved genes 
are more likely to play key essential and fundamental 
functions, such as in developmental processes (Chen et al., 
2012; Mustafin et al., 2019).

Interestingly, sequence conservation in plants is negatively 
associated with serine phosphorylation, cysteine 
S-sulfenylation, lysine ubiquitination, and lysine acetylation 
(Figure  7C). This indicates that younger proteins tend to 
be  more posttranslationally modified than older proteins, 
which is supported by studies suggesting that the range of 
PTMs has increased throughout evolution (Beltrao et  al., 
2013; Narasumani and Harrison, 2018).

Further analysis of posttranslational modifications 
showed that lysine acetylation is positively associated with 
multiple GO cellular locations, especially those related to the 
chloroplast (Figure 8A). Lysines are found in the subcellular 
localization signal domains of proteins, and their acetylation 
can regulate protein subcellular localization (Kim et al., 2006; 
Choudhary et  al., 2014). Lysine acetylation may be  an 
important posttranslational modification in the chloroplast, 
as four Calvin cycle enzymes are acetylated (Finkemeier et al., 
2011). Studies in strawberry (Fang et al., 2015), soybean (Li 
et al., 2021), rice (Xiong et al., 2016), tea leaves (Jiang et al., 
2018), and wheat (Zhang et al., 2016), indicate that a large 
proportion of lysine-acetylated proteins are predicted to 
be localised to the chloroplast. Therefore, lysine acetylation 
associations identified by finder.plant.tools support these 
studies, and suggest that it plays a key role in 
chloroplast function.

We also observed associations between PTMs (threonine 
and serine phosphorylation, lysine ubiquitination) with the 
number of disordered domains (Figure 8C), which is in line 
with disordered regions in proteins being posttranslationally 

modified (Gao and Xu, 2011; Kurotani et  al., 2014). The 
proportion of PTM sites was recently shown to be higher in 
the intrinsically disordered protein domains than the 
structured domains (Gao et al., 2021), where phosphorylation 
of serine and threonine, acetylation, and methylation were 
over-represented in disordered regions of seven species 
(animals, plants, and fungi). Interestingly, lysine 
ubiquitination is another PTM which we  observed 
(Figure 8C), that to the best of our knowledge has not been 
documented in the literature as being tied to 
disordered regions.

Future work would involve extending this database to include 
FINs from other species. This would require the creation of 
multiple types of experimental data for them and would allow for 
cross-species comparison of FINs. Such a comparison would allow 
for a greater understanding of the similarities and differences in 
the molecular mechanisms underlying gene function across 
different plant species.

Due to the increasing amounts of biological data which is 
generated, future work could also involve expanding our machine 
learning dataset with new feature types. Given that machine 
learning techniques typically improve in accuracy when they are 
trained on more data, including a wider array of features from 
experimental sources, could identify further novel relationships 
between features.

Our findings can be used as a base for future studies that aim 
to predict relationships between specific sets of features. Our 
dataset comprises (to our knowledge) the most comprehensive 
collection of Arabidopsis gene features, which we envision will 
be invaluable in predicting the various aspects of gene function, 
and the relationships between genetic features.

Conclusion

To conclude, we  created a dataset of 11,801 features with 
31,552 A. thaliana genes and used machine learning to propose 
functional links between the features. Feature importance values 
from our approach were used to create a Feature Importance 
Network (FIN), which revealed a variety of potentially significant 
biological relationships between different types of features. An 
online database, finder.plant.tools,7 was created to provide a user-
friendly way of accessing the FIN.
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