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Pennycress is a potentially lucrative biofuel crop due to its high content of long-chain 
unsaturated fatty acids, and because it uses non-conventional pathways to achieve 
efficient oil production. However, metabolic engineering is required to improve pennycress 
oilseed content and make it an economically viable source of aviation fuel. Research is 
warranted to determine if further upregulation of these non-conventional pathways could 
improve oil production within the species even more, which would indicate these processes 
serve as promising metabolic engineering targets and could provide the improvement 
necessary for economic feasibility of this crop. To test this hypothesis, we performed a 
comparative biomass, metabolomic, and transcriptomic analyses between a high oil 
accession (HO) and low oil accession (LO) of pennycress to assess potential factors 
required to optimize oil content. An evident reduction in glycolysis intermediates, improved 
oxidative pentose phosphate pathway activity, malate accumulation in the tricarboxylic 
acid cycle, and an anaplerotic pathway upregulation were noted in the HO genotype. 
Additionally, higher levels of threonine aldolase transcripts imply a pyruvate bypass 
mechanism for acetyl-CoA production. Nucleotide sugar and ascorbate accumulation 
also were evident in HO, suggesting differential fate of associated carbon between the 
two genotypes. An altered transcriptome related to lipid droplet (LD) biosynthesis and 
stability suggests a contribution to a more tightly-packed LD arrangement in HO cotyledons. 
In addition to the importance of central carbon metabolism augmentation, alternative 
routes of carbon entry into fatty acid synthesis and modification, as well as transcriptionally 
modified changes in LD regulation, are key aspects of metabolism and storage associated 
with economically favorable phenotypes of the species.
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INTRODUCTION

The need for renewable fuel sources has been greatly highlighted 
in recent years by the growing world population and increasing 
concern over environmental impacts of conventional fossil fuel 
consumption (Thelen and Ohlrogge, 2002; Banković-Ilić et  al., 
2012). Oilseed crops have gained prominence in the search 
for biofuel sources due to recent improvements in the processing 
of their constituent oils (Kumar et  al., 2016). The global 
oleochemical industry was valued at USD 25.8 billion in 2020, 
and is expected to display an annual growth rate of 6.5% 
from 2021 to 2027 (Astute Analytica, 2021). By 2025, the 
United States’ demand for renewable oils is expected to increase 
to a value of over USD 3 billion (Grand View Research, 2017). 
Additionally, energy security has been cited by both transportation 
and military sectors as a major incentive for producing renewable 
fuel sources that reduce the unpredictability associated with 
relying on imported fossil fuels (Drenth et  al., 2014).

Native to Eurasia, pennycress (Thlaspi arvense L.) is a cool-
season annual plant species well-adapted to North American 
lands, even those of marginal quality (Sedbrook et  al., 2014; 
Zanetti et  al., 2019). Natural pennycress accessions accumulate 
up to 36% of seed oil on a per weight basis, with production 
predominantly taking place in developing embryos (Moser et  al., 
2009b). Of particular interest is the fatty acid (FA) composition 
of the oil, approximately 33% of which is erucic acid, a 22-carbon 
monounsaturated FA (Moser et al., 2009b; Sedbrook et al., 2014). 
The high content of erucic acid in pennycress seed oil, along 
with other minor unsaturated FAs, contributes to its favorable 
profile for aviation fuel, including optimal combustion speed and 
desirable low temperature flow properties (Moser et  al., 2009a). 
In addition to the chemical properties of its seed oil, the agronomic 
practices associated with successful pennycress cultivation make 
it interesting to growers and the agricultural sector. Government 
agencies have stressed that renewable fuels must be sourced from 
a non-food crop to minimize the impact on domestic food 
supplies (Blakeley, 2012). Pennycress has been identified as a 
lucrative candidate for introduction into crop rotations with major 
commercial crops like corn and soybean, because aerial broadcast 
of seed in the fall as a winter cover crop allows for combine 
harvesting the following spring (Dose et  al., 2017; Markel et  al., 
2018; Mousavi-Avval and Shah, 2020). Not only does this benefit 
growers as an additional source of income, but also provides 
canopy cover that suppresses weed pressure, provides ecosystem 
services for pollinators, and maintains the soil coverage that 
provides erosion control and minimizes nutrient runoff (Dorn 
et  al., 2015; Eberle et  al., 2015; Johnson et  al., 2015).

Despite the plethora of potential uses of pennycress seed oil, 
the existing germplasm must be improved via metabolic engineering 
and breeding to ensure profitability. A wide variety of oil content 
has been observed across natural accessions of pennycress, and 
relatively few, if any, of these accessions provide optimal seed 
oil yields as is (Cocuron et  al., 2018; Cubins et  al., 2019). While 
knowledge on FA and lipid metabolism in plants as a whole is 

strong, specific metabolic characteristics of pennycress require 
further elucidation for the improvement of its oil-related traits.

Seeds of the Brassicaceae family are known to generate 
carbon precursors for plastidic de novo FA biosynthesis via 
glycolytic flow and reductant via the oxidative pentose phosphate 
pathway (OPPP) activity (Dennis and Miernyk, 1982; Schwender 
et  al., 2003; Baud and Lepiniec, 2009). Metabolic models, 
including those in pennycress, show strong evidence that much 
of this occurs via the conversion of phosphoenolpyruvate (PEP) 
and/or malate into pyruvate, which is then further broken 
down into acetyl-CoA, the main carbon building block for de 
novo FA synthesis (Kubis et  al., 2004; Cocuron et  al., 2014; 
Tsogtbaatar et  al., 2020). The de novo synthesis of FAs in the 
plastid also requires ATP and reductant (NADPH/NADH), 
which along with carbon precursors can be  generated via 
photosynthesis in green heterotrophic seeds (Hills, 2004; Baud 
and Lepiniec, 2010; Tsogtbaatar et al., 2015). The first desaturation 
of fatty acids takes place in the plastid, namely via stearoyl-ACP 
Δ9 desaturase, which is required for monounsaturated fatty 
acid production, including erucic acid (Subedi et  al., 2020).

FAs produced in the plastid are released into the cytoplasm 
to produce an acyl-CoA pool, which contains FAs available 
for further modification and oil synthesis (Cagliari et al., 2011). 
In addition to the OPPP, the activity of the tricarboxylic acid 
(TCA) cycle is heavily involved in the production of carbon 
and/or reductant for extra-plastidic FA elongation in pennycress, 
which is required for the high production of erucic acid along 
with other long-chain and unsaturated FAs (Moser et al., 2009a; 
Claver et  al., 2017; Tsogtbaatar et  al., 2020). Elongation of 
FAs in the acyl-CoA pool takes place through a multi-enzyme 
complex, including an ER-localized condensing enzyme, 
3-ketoacyl-CoA synthase (KCS; Millar and Kunst, 1997; Joubès 
et  al., 2008). Incorporation of FAs into storage lipids then 
occurs via the Kennedy pathway, which involves incorporation 
into glycerol backbones to form triacylglycerols (TAGs; Kennedy, 
1961; Romsdahl et al., 2021). Additional acyl-CoA-independent 
pathways can incorporate acyl chains directly to form TAGs 
as well (Dahlqvist et  al., 2000; Lu et  al., 2009; Cagliari et  al., 
2011; Hu et al., 2012; Wang et al., 2012; Kim and Chen, 2015).

The power of comparative “omics” approaches to study the 
intraspecific variation in oilseeds has been displayed in high 
and low oil maize accessions, where both increased incorporation 
of carbon (as glucose 6-phosphate) into the plastid and action 
of the plastidic malic enzyme were noted to result in higher 
oil accumulation and thus serve as potential targets for 
engineering (Cocuron et  al., 2019). Furthermore, detailed 
metabolomic and 13C-labeling analyses have identified several 
non-conventional mechanisms (i.e., unusual and contrary to 
classical reports in the literature) involved in efficient oil 
production in pennycress (Tsogtbaatar et al., 2015, 2020). These 
include reversable isocitrate dehydrogenase activity, thus fixing 
CO2 to sustain FA elongation via citrate, and the incorporation 
of plastidic CO2 via Rubisco that was released by other metabolic 
reactions (Tsogtbaatar et  al., 2020).

While these non-conventional mechanisms are associated 
with higher efficiency of oil production in pennycress compared 
to other species, it is to be  determined if their upregulation Abbreviations: HO, High oil; LD, Lipid droplet; LO, Low oil.
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can further improve oil production in pennycress itself. The 
comparative approach has promise in pennycress, as representative 
high and low oil accessions are available with differing biomass 
compositions. The purpose of this research was to perform a 
comprehensive comparative analysis of high and low-oil 
pennycress accessions via metabolomics and transcriptomics 
in order to identify which components of metabolism are likely 
key to boosting the production of the desirable oil, from de 
novo FA synthesis all the way to oil storage. The results indicated 
that mechanisms powering de novo FA synthesis associated 
with higher oil production cover early central carbon metabolism 
all the way to organization and stability of end-product lipid 
droplets. These mechanisms serve as valuable targets for 
improving oil production in pennycress.

MATERIALS AND METHODS

Plant Materials
A representative accession producing a high percent weight 
per weight (% w/w) oil content (HO) at maturity (USDA-
GRIN Acc. ‘Ames 32872’) and another accession containing 
low % w/w oil content (LO; USDA-GRIN Acc. ‘Ames 31500’) 
were chosen from existing seed stocks of USDA-GRIN pennycress 
accessions (Supplementary Figure S1). Seed stocks were stored 
at 4°C. Plant growth was carried out in accordance with 
Tsogtbaatar et al. (2015). Seeds of HO were immediately planted 
in soil and required no pretreatment for adequate germination. 
Pedicels of newly-opened flowers were hand-pollinated and 
tagged daily with acrylic paint to keep record of the age of 
developing siliques for embryo collection.

Embryo Collection
For biomass and metabolomics analysis, siliques were selected 
according to how many days after pollination (DAP) had elapsed 
in accordance with Tsogtbaatar et  al. (2015) and Cocuron and 
Alonso (2014). For embryos used in transcriptomics analysis, 
excised embryos were placed into an autoclaved microcentrifuge 
tube containing liquid nitrogen. Following collection of these 
embryos, microcentrifuge tubes were immediately transferred 
to a −80°C freezer prior to being capped following evaporation 
of all remaining liquid nitrogen in the tube. Embryos used for 
transcriptomics analysis were collected using autoclaved forceps 
and a microscope treated with RNase Zap (MilliporeSigma, 
Burlington, MA). For all analyses, the earliest stage selected 
for LO was 11 DAP and the earliest stage selected for HO 
was 10 DAP; these stages were in consistency with the stage 
in which the radicle was at a 45° angle from the central axis 
of the cotyledons. The subsequent developmental stages were 
14, 17, and 20 DAP for both accessions. For biomass analysis, 
siliques at 30 DAP were senesced and therefore considered  
mature.

Fatty Acid Extraction and Derivatization
Fatty acids were extracted and methylated in accordance with 
Cocuron et  al. (2014). Combined extracts were dried under 

nitrogen gas at 60°C prior to methylation with 2.5% (v/v) 
sulfuric acid in methanol at 80–85°C for 90 min. After methylation, 
the reaction was quenched with 250 μl of a 5% (w/v) sodium 
hydrogen sulfate solution. The organic phase containing the 
fatty acid methyl esters (FAMEs) was diluted 5-fold with hexane 
in a 2 ml autosampler vial prior to GC–MS analysis.

GC–MS Quantification of Fatty Acids
FAMEs were quantified in accordance with Tsogtbaatar et  al. 
(2015) using an Agilent 6890N gas chromatograph (Agilent 
Technologies, Santa Clara, CA) coupled to a Agilent 5975B 
mass selective detector. An Omegawax 250 capillary column 
(30 m × 0.25 mm × 0.25 μm; MilliporeSigma, Burlington, MA) was 
used to separate FAMEs at a constant flow rate of 1.4 ml min−1 
using helium as the carrier gas. The initial temperature was 
120°C and held for 30 s, followed by an increase to 245°C 
for the remaining 9.5 min at a rate of 100°C min−1. The injection 
temperature was set at 225°C, with the injection mode set to 
a split ratio of 10:1. Mass spectra were acquired using electron 
impact ionization in positive ion mode, with ion source and 
interface set to 240 and 150°C, respectively. Acquisition and 
integration of GC–MS data was carried out via MSD ChemStation 
E.02.02.1431 (Agilent Technologies, Santa Clara, CA).

Protein Extraction and Quantification
Total proteins were extracted from the pellet remaining from 
the FA extraction with a 20 mM Tris, 150 mM NaCl, and 1% 
SDS buffer in accordance with Cocuron et  al. (2014) to obtain 
a final 1.5 ml volume of extract. Protein content was then quantified 
colorimetrically via the DC Protein Assay (Bio-Rad, Hercules, 
CA) in a Bio-Rad SmartSpec Plus spectrophotometer at 750 nm.

Metabolite Extraction
Extraction of soluble metabolites was carried out according 
to previous research (Alonso et al., 2010; Cocuron et al., 2014) 
using boiling deionized water. Samples were then incubated 
in boiling water for a total of 10 min and ultimately passed 
through a 0.22 μm filter into a 15 ml conical tube on ice. The 
remaining pellet was rinsed with ice cold water, vortexed, and 
centrifuged again prior to passing through the same filter as 
the first supernatant. Ice-cold water was then used to remove 
any remaining metabolites in the syringe and filter. Lyophilized 
filtrate was resuspended in ice-cold water and passed through 
a 0.22 μm Nanosep filter (Pall Corp., Port Washington, NY) 
to use for sugar and sugar alcohol quantification, while the 
remaining volume was loaded onto a 3 kDa Ultracel filter 
(MilliporeSigma, Burlington, MA). All extraction steps were 
also performed with 13C-glycine, 13C-glucose, and 13C-fumarate 
internal standards without sample in order to calculate correction 
factors to control for errors during extraction or sample  
preparation.

LC–MS/MS Quantification of Metabolites
Sugars and sugar alcohols, amino acids, organic acids, and 
phosphorylated compounds were quantified as previously 
described using programs described (Alonso et al., 2010; Koubaa 
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et  al., 2013; Cocuron and Alonso, 2014; Cocuron et  al., 2014). 
For sugar and sugar alcohols, extracts were diluted in a 60:40 
acetonitrile:water solution prior to injection onto a Shodex 
Asahipak NH2P-50 2D column and a NH2P-50G 2A guard 
column (Showa Denko K. K., Tokyo, Japan) followed by 
separation via an acetonitrile and water gradient (Cocuron 
et  al., 2014). Mass spectra were obtained via turbo-spray 
ionization at 4,500 V in negative ionization mode, multi-reaction 
monitoring (MRM) mode with a dwell time of 100 msec for 
each transition. For amino acids, extracts were diluted with 
an HCl solution and water such that the final concentration 
in the autosampler vial was 1 mM HCl. Samples were incubated 
at 15°C prior to injection onto a Hypercarb column (Thermo 
Fisher Scientific, Waltham, MA) and were separated via a 
gradient of acetonitrile with 0.1% formic acid and water with 
0.1% formic acid. Mass spectra were obtained at 2,500 V in 
positive ionization mode, MRM mode with a dwell time of 
35 msec for each transition. For organic acids and phosphorylated 
compounds, extracts were diluted with HPLC-grade water and 
kept at 4°C prior to injection onto an IonPac AS11 column 
(Dionex, Sunnyvale, CA) with an IonPac AG11 guard column. 
A gradient of 0.5 mM KOH to 75 mM KOH was used to 
separate metabolites, with mass spectra in negative ionization 
mode, MRM mode. All metabolite data was acquired and 
integrated via Analyst (SCIEX, Framingham, MA). All samples 
were run using a 1,290 Infinity II ultra-high-performance liquid 
chromatograph (Agilent Technologies, Santa Clara, CA) coupled 
with a QTRAP 6500+ mass spectrometer (SCIEX, Framingham, 
MA). Data acquisition and quantification was carried out using 
Analyst v1.7 with HotFix 3 (SCIEX, Framingham, MA).

RNA Extraction
RNA was extracted in accordance with Horn et  al. (2016), 
with modifications. Approximately 1,000 μg of fresh embryo 
tissue was manually homogenized in a 2 ml microcentrifuge 
tube with plastic pestles directly in liquid nitrogen. A 600 μl 
volume per sample of extraction buffer of 2% CTAB, 2 M 
NaCl, 100 mM Tris (pH = 8), 25 mM EDTA (pH = 8), 3% PVP, 
0.5 g L−1 spermidine, and 3% 2-sulfanylethan-1-ol that was 
preheated to 65°C was used for extraction. A 40 μl volume of 
3.2 M sodium ethanoate (pH = 5.5), 100 μl of RNA-grade glycogen, 
and 800 μl of ethanol were added to each aliquot prior to a 
12 h precipitation at −20°C. Each aliquot was then centrifuged 
at 21,000 × g for 1 h at 4°C, immediately placed on ice, and 
supernatant was discarded. A total of three 70% ethanol washes 
were carried out on the resulting pellet prior to being dried 
and dissolved in RNase-free water. A lithium chloride 
precipitation was then performed at −20°C for 12 h. Three 
more ice-cold ethanol washes were then carried out as previously 
stated, pellets were dried, and each sample’s pellet was dissolved 
in RNase-free water. Samples were stored at −80°C until 
further analysis.

RNA Quality Confirmation and RNAseq
Analysis of the quality and quantity of RNA extracts was 
performed at the University of North Texas Genomics Center 

using an Agilent 2100 bioanalyzer (Agilent Technologies, Santa 
Clara, CA) and QUBIT 3.0 fluorometer (Invitrogen, Carlsbad, 
CA), respectively. All samples were confirmed to have RNA 
integrity numbers of ≥9. Samples were shipped overnight on 
dry ice to the location where RNAseq was performed using 
DNBseq Technology: NGS 2.0 (BGI, Cambridge, MA).

Quality Control and Mapping of RNAseq 
Data
A total of 2,259 million sequences of raw data were generated 
with an average of 37.65 million reads per sample. A raw data 
quality check was carried out using FastQC (Andrews, 2010) 
and data was deposited online (NCBI Accession: PRJNA808106). 
Clean reads were then mapped to the pennycress reference 
genome (Dorn et  al., 2015) using HISAT v2.1.0 (Kim et  al., 
2015) with default parameters. The mapped reads were then 
sorted and converted to .bam files using Samtools v1.9 (Li et al., 
2009). Each aligned sample had an average mapping of 97%. 
The R package FeatureCounts v1.5 (Liao et  al., 2014) was used 
to generate raw count data, and StringTie v2.1.1 (Pertea et  al., 
2016) was used to calculate transcripts per million (TPM). All 
genes were paired with respective Arabidopsis thaliana homologs 
for annotation and analysis using Araport (Krishnakumar et  al., 
2015; Pasha et  al., 2020; Navarrete et  al., submitted).

Transcriptomics Data Processing
The resulting raw count data from RNAseq were transformed 
using DeSeq2 v1.30.1 (Love et  al., 2014) to perform PCA as 
previously described (Gerst and Hölzer, 2018). A pool of 
differentially expressed genes (DEGs) was created using a DESeq 
analysis, which was carried out within each developmental 
stage. Pre-filtering was carried out by removing genes with 
an average of less than 5 TPM across all samples. All fold-
changes were calculated by using HO in relation to LO. Genes 
which returned with padj ≤0.05 and a log2-fold change 
(log2FC) ≥ |1| were considered significant, with upregulated 
genes returning a logFC ≥1 and downregulated genes returning 
a log2FC ≤ −1. Adjusted values of p were corrected using the 
false discovery rate (FDR). Shrinkage of log2FC estimates (Zhu 
et  al., 2019) was carried out to improve interpretability of MA 
plots (Supplementary Figure S2). The “rlog” function in DESeq2 
was performed with a transformation not blinded by the 
experimental design for all downstream analyses, in accordance 
with the suggested workflow of the package (Love et al., 2014). 
Genes that maintained a statistical significance at all 
developmental stages were functionally profiled according to 
KEGG pathway membership via g:Profiler (Raudvere et  al., 
2019). Unless otherwise stated, all genes are referred to by 
their A. thaliana homolog, but also identified with their T. arvense 
number when applicable to show unique reads from our RNAseq 
dataset. Functional classification of DEGs based on gene ontology 
(GO) terms were carried out via PANTHER GO-Slim using 
the GO biological process (GO:BP) database (Mi and Thomas, 
2009; Mi et  al., 2021). Visualization of the DEG GO:BP profile 
was performed using BiNGO (Supplementary Figure S4; Maere 
et  al., 2005).
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The protein sequences of the 950 DeSeq-derived DEGs were 
incorporated into DeepLoc v.1.0 (Almagro Armenteros et  al., 
2017). This software uses recurrent neural networks (RNNs) 
to classify proteins in one of ten potential subcellular localizations 
(nucleus, cytoplasm, extracellular, mitochondrion, cell membrane, 
endoplasmic reticulum (ER), chloroplast, Golgi apparatus, 
lysosome/vacuole, and peroxisome; Supplementary Data  
Sheet S1). The cutoff value for considering a prediction was 
a likelihood higher than 0.7.

Integration of Metabolomics and 
Transcriptomics Data
A joint pathway analysis was performed using MetaboAnalyst 
5.0 to combine transcriptomics and metabolomics data in 
order to detect pathway enrichment and analyze pathway 
topology at 20 DAP (the maximum point of divergence in 
FA content for both accessions prior to the cessation of 
metabolic activity; Chong et  al., 2018). A hypergeometric test 
was used for the enrichment analysis, relative betweenness 
centrality was used for the pathway topology, and “omics” 
integration was carried out by combining values of p via 
equally-weighted Z-tests (Chong et  al., 2019). Pathways that 
returned with a padj ≤ 0.05 and pathway impact value ≥0.2 
were considered significant. All returned pathways were from 
the KEGG database (Kanehisa and Goto, 2000; Kanehisa, 2019; 
Kanehisa et  al., 2021).

Coexpression Analysis
The “psych” package in R was used to calculate Pearson 
correlations of all rlog-transformed DEGs (Revelle, 2018). The 
correlation matrix was then filtered to include DEGs with >0.9 
correlation and padj < 0.01. Further network statistics including 
degree and betweenness centrality were calculated using the 
“igraph” package in R to assist with visualizations (Csardi, 
2014). The coexpression network was imported into Cytoscape 
v3.8.0 for all network visualization. Over-representation analysis 
(ORA) was run using the GO:MF, GO:BP, GO:CC, and KEGG 
database. ORA was carried out using g:Profiler using a threshold 
of 0.10. General parent GO terms (response to stimulus, 
metabolic process, binding, etc.) and redundant terms are 
omitted for conciseness; full results are in Suppl. Info. CytoHubba 
was used on the full DEG coexpression network to identify 
the top  10 most important hub genes based on the maximal 
clique centrality algorithm (Chin et  al., 2014). Separate 
subnetworks were made for the top upregulated and 
downregulated hub genes, with first neighbors of each hub 
gene organized by membership in over-represented GO/KEGG 
terms. Genes not present in any overrepresented terms were 
organized according to the following functional categories: 1) 
lipid droplet (GO:0005811), lipid metabolic process 
(GO:0006629), or fatty acid metabolic process (GO:0006631); 
2) central carbon metabolism (KEGG:00010,00020,00030,00500); 
3) Biosynthesis of amino acids (KEGG:01230) or amino acid 
metabolism (KEGG:00250–00400); 4) electron transport chain 
(GO:0022900); and 5) peroxisome (GO:0005777). Genes with 
unknown function were also grouped. All other known genes 

were placed in the most common GO or KEGG term for 
visualization if not placed in any previously mentioned terms.

MS Imaging and Confocal Microscopy
Pennycress seeds were prepared and processed for MS imaging 
as described by Sturtevant et al. (2021). Dry seeds were embedded 
into 10% gelatin, frozen at −80°C for 24 h, and then transferred 
to −20°C for 2–3 days prior to cryo-sectioning. Seeds were 
oriented within the gelatin so that medial-cross sections could 
be  taken, giving both embryonic axis and cotyledonary tissues. 
Sections of 30 μm thickness were taken using a cryo-microtome 
(CM1950, Leica Biosystems, Germany) set at −16°C, followed 
by lyophilization for 3 h to remove moisture due to condensation. 
Sections that were intact and showed no cosmetic defects under 
light microscopy were chosen for MALDI-MS imaging analysis. 
Tissue sections chosen for MALDI-MS imaging were coated 
with 2,5-dihydroxybenzoic acid (DHB) by sublimation using 
a protocol adapted from Hankin et al. (2007). Matrix coated 
sections were then analyzed by MALDI-MS imaging with a 
MALDI-LTQ-Orbitrap-XL mass spectrometer (ThermoScientific). 
The MALDI source parameters were set to: 12 μJ/pulse, 10 
laser shots per step, and raster step size of 40 μm. The orbitrap 
mass analyzer parameters were set to detect ions from 500 to 
1,200 m/z at a set resolution of 60,000. Imaging data was 
processed using the open source software Metabolite Imager 
(Horn and Chapman, 2014).

The embryos were processed for Airyscan imaging, after 
staining of LDs with BODIPY 493/503 (Invitrogen) as previously 
described (Cai et  al., 2015; Gidda et  al., 2016). Micrographs 
of dry seeds were acquired with a Zeiss LSM710 microscope 
fitted with Airyscan confocal superresolution and the MBS 
488 beam splitter using an Apochromat 63×/1.4 oil DIC objective 
lens (Carl Zeiss Inc., Germany). Excitation and emission signals 
of the BODIPY stained LDs were collected as single optical 
section images (z-sections) of cotyledons and embryonic axis 
cells. Airyscan images were processed using Zeiss Zen 
blue software.

RESULTS AND DISCUSSION

Developing HO Embryos Produce Oil More 
Efficiently on a Dry Weight Basis and 
Accumulate More Erucic Acid in 
Cotyledons
At maturity, the total FA percentage on a per weight basis 
was 41% in HO embryos, whereas in LO it was 32% (p = 0.0132; 
Table  1). On a per embryo basis the total quantity of FA was 
not statistically significant between the two accessions; the 
higher dry weight in LO per embryo (p = 0.0051) was matched 
by a significantly greater total protein content (p = 0.037; 
Supplementary Figure S1). Increased dry weight in LO is 
thus at least conceivably explained by a higher production of 
total protein, as HO is able to produce a similar FA content 
while producing less biomass per embryo. A clear divergence 
in the biomass profile started around 17 DAP, indicating a 
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potentially critical point in assessing differences between the 
two accessions. All FA species except for palmitic acid (C16:0) 
exhibited a significant difference between the two accessions, 
however the magnitude of these differences did not exceed 
4% of the total composition in any case. Notably, long chain 
fatty acid content was higher in HO embryos (54% vs. 51% 
in LO). Erucic acid comprised 40% of the fatty acid composition 
in HO embryos compared to 36% in LO embryos. This is a 
modest difference compared to the range reported in previous 
research across wild populations, displaying a range of 30 to 
39% erucic acid (Phippen and Phippen, 2013). Soluble sugars 
and sugar alcohols made up a significantly larger portion of 
LO embryos (14%) in comparison with HO embryos (11%; 
p = 0.0127). Starch content was negligible in both accessions 
(<0.1%).

The distributions and relative amounts of phosphatidylcholine 
(PC) and TAG in embryos of both genotypes were visualized 
by MALDI-MS imaging, and representative images of selected 
molecular species are shown in Figure 1. PC is an intermediate 
in the desaturation and modification of acyl chains for TAG 
assembly, so these lipid classes often display precursor-product 

relationships. HO and LO genotypes displayed similar 
distributions and relative proportions of most PC molecular 
species, although heterogeneous distributions were evident within 
the embryos (between the cotyledons and the embryonic axis) 
for some PC species, such as PC 36:2 and PC 36:4 (Figure 1A).

The spatial distribution of TAG molecular species in embryos 
were similar between the two genotypes (Figure  1B). There 
were species that were notably concentrated in the embryonic 
axis (e.g., TAG- 58:4 and TAG 58:5). In contrast, erucic-acid-
containing TAG molecular species appeared to be  mostly 
restricted to cotyledons in both genotypes (TAG 62:4 and TAG 
62:5), indicating a spatial distinction for FA elongation in the 
embryos. The HO genotype appeared to have relatively higher 
amounts of TAG 62:4 compared to the LO genotype (Figure 1B), 
consistent with the higher amounts of erucic acid in these 
seeds (Table 1). Taken together it appears that the HO genotype 
more readily produces very long chain (>18°C) monounsaturated 
FAs and incorporates them into the storage form of TAGs, 
and that this elongation occurs most predominantly in the 
cotyledons of the embryo. This is strongly supported by previous 
research in Brassicaceae, where in addition to pennycress, both 

TABLE 1 |  Total biomass composition (% composition and % w/w) per embryo in mature pennycress embryos of HO and LO accessions.

Component
HO LO

Value of p
Mean SD Mean SD

Fatty acid composition % C16:0 3.184 0.076 3.272 0.117 0.250
% C18:0 0.598 0.033 0.831 0.114 0.00775
% C18:1 13.691 0.376 18.470 0.316 1.19E-06
% C18:2 19.480 0.150 17.145 0.239 3.11E-06
% C18:3 8.938 0.171 9.590 0.171 0.00673
% C20:1 9.522 0.227 11.067 0.329 0.00025
% C20:2 1.332 0.084 1.003 0.080 0.00126
% C22:1 40.189 0.309 36.184 0.450 6.26E-06
% C24:1 3.067 0.267 2.438 0.098 0.00441

  Fatty acid % w/w 41.084 1.726 31.789 2.683 0.0132
  Protein % w/w 31.196 1.556 32.185 4.746 0.706
  Starch % w/w 0.024 0.009 0.030 0.008 0.339
Hemicellulose 
composition

% Arabinose 30.285 1.432 37.148 1.908 0.00120
% Galactose 13.304 1.505 13.897 1.132 0.552
% Glucose 12.996 1.103 11.934 1.492 0.296
% Mannose 22.791 1.413 17.619 3.255 0.0268
% Xylose 20.625 0.818 19.402 1.692 0.240

  Hemicellulose % w/w 1.693 0.362 1.267 0.281 0.112
  Cellulose % w/w 0.526 0.126 0.343 0.169 0.134
Soluble sugar and sugar 
alcohol composition

% Arabitol 0.010 0.002 0.023 0.005 0.00180
% Fructose 0.033 0.007 0.018 0.004 0.00546
% Galactinol 0.241 0.046 0.203 0.043 0.271
% Hexitols 0.016 0.001 0.022 0.005 0.0528
% Glucose 4.433 0.240 4.283 0.219 0.389
% Inositol 0.056 0.006 0.041 0.004 0.00577
% Raffinose 1.160 0.204 0.625 0.020 0.00196
% Stachyose 3.762 0.434 1.789 0.115 0.000120
% Sucrose 90.251 0.767 92.976 0.343 0.00064
% Tetrols 0.037 0.006 0.021 0.002 0.00269

  Soluble sugars and 
sugar alcohols

% w/w 10.651 1.457 14.455 1.607 0.0127

Total recovery 86.928 77.354

SD, standard deviation of the mean. Value of p corresponds to t-test results assuming equal variance with 4 biological replicates. Fatty acid (FA), hemicellulose, and soluble sugar 
and sugar alcohol composition indicate the percentage of total content for each individual class of compound. FA data was quantified using C17:0 internal standard. Biomass 
components in mature embryos were subjected to t-tests assuming equal variance to compare each accession. Bold text indicates significance at p < 0.05.
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Brassica napus and Camelina sativa are shown to be  enriched 
for longer-chain (≥20°C) fatty acid species in the cotyledonary 
tissue compared to that of the embryonic axis (Horn et  al., 
2013; Lu et  al., 2020; Romsdahl et  al., 2021).

Metabolomic and Transcriptomic Profiles 
Show Divergence Between Lines
Principal component analyses (PCAs) showed clear separation 
by accession and developmental stage using metabolomic and 
transcriptomic datasets (Figure  2). In metabolomics and 
transcriptomics datasets, principal component 1 (PC1) generally 
separated developmental stages, accounting for 55.47 and 66.42% 
variance, respectively. PC2, explaining 17.72 and 23.37% of the 
variance in metabolomics and transcriptomics datasets, 
respectively, was the primary separator of accessions. Time-series 
metabolite quantities between HO and LO genotypes were placed 

into four clusters (Supplementary Figure S3). Clusters 1 and 
2 notably consisted of the majority of sugar phosphates, all 
basic and most polar amino acids, 3-carbon glycolysis intermediates 
(phosphoglycerates, phosphoenolpyruvate), and TCA intermediates 
upstream of isocitrate dehydrogenase (Figure 3). These metabolites 
were consistently higher in LO embryos throughout development. 
Cluster 3, encompassing metabolites that were constantly higher 
in HO, consisted of the main carbon sources glucose and sucrose, 
as well as key cell wall precursors. Specialization of metabolite 
investment thus appears to be  a phenomenon associated with 
the differences between accessions.

Alteration of Metabolic Pathways Spans 
Central Metabolism
Quantitative joint pathway analysis identified all key parts of 
central carbon metabolism as being significantly enriched 

A B

FIGURE 1 | Relative abundance of (A) phosphatidylcholine (PC) and (B) triacylglycerol (TAG) species in high oil (HO) and low oil (LO) accessions of pennycress. 
Scale bar is 1,000 μm. Heat scale is normalized to the same intensity across species and accessions within each lipid class to allow for direct comparison. Imaging 
data was processed using Metabolite Imager (Horn and Chapman, 2014) and plotted as mol% using a colorimetric scale from green (low) to red (high). Images for 
PC are of the [M + H]+ adducts, while TAG are of the sum of [M + Na]+ and [M + K]+ adducts.
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(padj ≤ 0.05) and impacted (impact factor ≥ 0.2), consisting of 
glycolysis, carbon fixation, the TCA cycle, and the OPPP 
(Figure  4). Of all significant pathways involved in central 
carbon metabolism, glycolysis was the most heavily impacted 
(Impact = 2.0067, padj = 0.0312). Key mapped metabolites and 
genes were downregulated in HO around the divergence point 
in the rate of oil accumulation. Specifically, pyruvate displayed 
a 1.6-fold increase in abundance in HO at 14 DAP, matched 
by a 1.7-fold increase in glucose at 17 DAP (Figure  3). The 
gene phosphofructokinase 5 (PFK5), predicted by our modeling 
to be  localized to the plastid, was upregulated 2.7-fold in HO 
at 17 DAP and may serve as a chief target in central carbon 
metabolism. The PFK step is known to be  the rate-limiting 
step in glycolytic flux in previous research on B. napus, and 
its upregulation has been shown to explain the higher content 
of oil in oil palm vs. the sugar-accumulating date palm, 
presumably via increased pyruvate production (Junker et  al., 
2007; Bourgis et  al., 2011).

Similar to glycolysis, there were only a few key metabolites 
in both the PPP and TCA cycle that were upregulated in HO 
at any developmental stage (Figure  3). Of note was the 2.8- to 
3.7-fold increase in pentose phosphates from 10 to 17 DAP; 
coupled with a ≤2.4-fold decrease in 6-phosphogluconate content 
at 17 and 20 DAP, this strongly suggests a higher flow of 
carbon through the OPPP in HO embryos. As the OPPP is 
a major source of reductant (i.e., NADPH) and was shown 
to be  mainly active in the cytosol in pennycress, increased 
total activity may contribute to FA elongation, and therefore 
to differential oil accumulation (Tsogtbaatar et  al., 2020). 
Furthermore, malate, a carbon source for de novo FA biosynthesis, 
was 1.8- to 3.5-fold higher in HO embryos at 14 and 17 DAP, 
respectively. This directly correlates with the same increase in 
another 4-carbon TCA intermediate, fumarate. A significant 
3.2-fold decrease in transcript levels of isocitrate dehydrogenase 
catalytic subunit 6 (IDH-VI) expression at 17 DAP was observed 
in HO in the TCA cycle, which according to previous research 

A

B

FIGURE 2 | Principle component analysis using metabolomic dataset (A) and transcriptomic dataset (B), DAP, days after pollination; HO, High oil accession; LO, 
Low oil accession. Principal component analysis was carried out on log-transformed and auto-scaled metabolite concentrations expressed in pmol mg dry weight 
(DW)−1 using PCAGO (Gerst and Hölzer, 2018).
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on pennycress suggests a reduction of reverse flow through 
isocitrate dehydrogenase (Tsogtbaatar et  al., 2020). This, along 
with a 1.9- to 2.8-fold reduction in citrate and a 2.3- to 4.9-fold 
reduction in isocitrate content, may suggest a reduced flow 
of carbon from fumarate/malate towards the 6-carbon metabolites 
of the TCA cycle. As such, this would preserve malate for 
potential carbon incorporation into de novo FA metabolism 
in the plastid. Interestingly, at 17 DAP there was a 2.8-fold 
increase in phosphoenolpyruvate carboxylase 2 (PPC2) expression 
in HO embryos, which was simultaneous with a 4.1-fold increase 
in phosphoenolpyruvate carboxylase kinase (PPCK1) expression. 

This provides good evidence of both transcriptional (via PPC2 
expression) and post-translational (via increased abundance of 
PPCK1) upregulation of the flow of carbon through the 
anaplerotic pathway from phosphoenolpyruvate (PEP) to 
oxaloacetate (OAA), as PPCKs phosphorylate PPC which is 
generally associated with increased anaplerotic pathway flow 
(Nimmo, 2003).

The gene RBCS1B, encoding a Rubisco subunit, displayed 
3-fold upregulation at 17 DAP, increasing all the way to an 
1,176-fold increase at 20 DAP in HO. This in addition to up 
to a 5-fold decrease in ribulose 1,5-bisphosphate (RuBP) 

FIGURE 3 | Fold-change of differentially expressed genes and significant metabolites involved in central carbon metabolism in high oil (HO) and low oil (LO) 
accessions of pennycress. Data are in log2FC in HO with respect to LO. Solid lines indicate single reactions between nodes, whereas dotted lines indicate the 
presence of more than one reaction. Yellow circles indicate corresponding fatty acid or lipid pools. –bP, bisphosphate; -P, −phosphate; acetyl-CoA(m), mitochondria-
localized acetyl-CoA; Ala, alanine; Arg, arginine; Asn, asparagine; Asp, aspartate; CO2, carbon dioxide; FBA, fructose bisphosphate aldolase; Fru, fructose; Glc, 
glucose; Gln, glutamine; Glu, glutamate; Gly, glycine; Hex, hexose; His, histidine; IDH = isocitrate dehydrogenase; Ile, isoleucine; Man, mannose; Met, methionine; 
OAA, oxaloacetate; PEP, phosphoenolpyruvate; PFK, phosphofructokinase; PGAs, phosphoglycerates (both 2- and 3-); Phe, phenylalanine; PPC, 
phosphoenolpyruvate carboxylase; PPCK, phosphoenolpyruvate carboxylase kinase; RBCS1B, Rubisco small subunit; RuBP, ribulose 1,5-bisphosphate; Sedo, 
sedoheptulose; Ser, serine; THA, threonine aldolase; Thr, threonine; Val, valine.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Johnston et al. High Versus Low Oil Pennycress

Frontiers in Plant Science | www.frontiersin.org 10 July 2022 | Volume 13 | Article 943585

abundance at 17 DAP suggests a potentially higher degree of 
carbon fixation. An additional function of Rubisco of re-fixing 
plastidic CO2 lost via other metabolic processes has been 
demonstrated in pennycress embryos and other Brassicaceae, 
which provides additional C source for de novo FA synthesis 
(Schwender et al., 2004; Tsogtbaatar et al., 2020). The upregulation 
of Rubisco activity suggested by the increase of RBCS1B may 
allow HO to more efficiently reincorporate lost CO2.

In light of the current knowledge of pennycress, results 
were interpreted in order to determine if the unusual pathways 
previously found in pennycress were more active in HO vs. 
LO embryos. These pathways included: (1) high activity of 
the OPPP in the cytosol, (2) the reversibility of the isocitrate 
dehydrogenase that produces isocitrate from α-ketoglutarate; 

and (3) re-fixation of plastidic CO2 released by the NADP-
dependent malic enzyme and pyruvate dehydrogenase via 
Rubisco (Tsogtbaatar et  al., 2020). Our results demonstrate 
conflicted findings concerning which of these pathways are 
positively associated with oil production in HO. Specifically, 
isocitrate and citrate content as well as TaIDH-VI expression 
were lower in HO, suggesting that reversibility of isocitrate 
dehydrogenase is actually downregulated in HO (Tsogtbaatar 
et  al., 2015, 2020). However, despite increased malate content 
in HO, no upregulation of genes encoding an NADP-dependent 
malic enzyme or pyruvate dehydrogenase were noted, which 
suggests that achieving improved oil content in pennycress is 
not necessarily limited by carbon incorporation into plastidic 
de novo FA via these canonical pathways.

FIGURE 4 | A joint pathway analysis was performed in order to detect pathway enrichment and analyze pathway topology at 20 DAP (the maximum point of 
divergence in FA content for both accessions prior to the cessation of metabolic activity). Node size indicates magnitude of pathway impact, whereas node color 
indicates enrichment analysis significance (with red indicating higher significance). Pathways that returned with a padj ≤ 0.05 and pathway impact value ≥0.2 were 
considered significant. All returned pathways were from the KEGG database (Kanehisa and Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2021).
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In these results, only a suggested upregulation of the Calvin 
cycle and higher OPPP activity are consistent with previously 
published reasons that pennycress has improved carbon 
conversion efficiency compared to other Brassicaceae (Tsogtbaatar 
et  al., 2015, 2020). Furthermore, improved glycolytic flux via 
increased PFK5 expression, and enhanced anaplerotic pathway 
flux via increased PPC2 and PPCK1 expression may play a 
key role in HO to achieve higher % w/w oil (or less protein) 
content. The lack of evidence for increased malate flow into 
the plastid via NADP-dependent malic enzyme, and evidence 
that higher oil content is not due to reversible ICDH activity 
in HO therefore suggests that additional pathways or reactions 
are key to HO producing more oil than its LO counterpart.

Threonine Aldolase Upregulation May 
Provide Carbon Sources for Oil Production
The reduced protein accumulation in HO prompted investigation 
into amino acid metabolism. One of the most upregulated 
genes involved in central carbon metabolism was THA2, encoding 
a threonine aldolase with no specific predicted localization. 
Expression was significantly higher in HO at all developmental 
stages, and by 20 DAP a 17-fold increase in expression was 
observed (Figure 5A). In Arabidopsis and pennycress, significant 
research has established that THA2 is generally unidirectional, 
resulting in the catabolism of threonine to glycine and 
acetaldehyde, under non-photorespiratory conditions (Jander 
et  al., 2004; Joshi et  al., 2006; Tsogtbaatar et  al., 2020). As 
expected, a transient ~1.5-fold decrease in threonine content 
was observed in HO at 14 and 17 DAP. However, the same 
trend was observed with glycine (2.5-fold decrease). This 
provided evidence that accumulation of glycine was not the 
final result of upregulated TaTHA2, and that further flow of 
carbon through glycine and acetaldehyde was likely.

While multiple roles of threonine aldolases have been 
suggested in plants, a particular role of interest with regard 
to FA production is the conversion of its breakdown product 
acetaldehyde to acetyl-CoA via aldehyde dehydrogenases (ALDH) 
followed by acetyl-CoA synthase (Jander et  al., 2004). This 
strategy serves as a pyruvate dehydrogenase bypass, allowing 
for carbon from aldehydes to be  directly converted to acetate 
for acetyl-CoA production (Wei et  al., 2009). One specific 
ALDH transcript, ALDH2C4, was upregulated 3-fold at 20 DAP, 
which is notable considering FA production continues in HO 
embryos after LO has generally ceased accumulation 
(Supplementary Figure S1A). In A. thaliana, ALDH2C4 is 
cytosolic and generally associated with phenylpropanoid 
metabolism (Wei et al., 2009). However, research has suggested 
it may also play at least a partial role in the pyruvate 
dehydrogenase bypass to funnel carbon towards acetyl-CoA, 
in addition to the activity of mitochondrial ALDH enzymes 
(Nair et  al., 2004; Wei et  al., 2009). Another route of aldehyde 
formation is via ethanolic fermentation by alcohol dehydrogenase 
(Wei et al., 2009). A cytosolic ADH-like 1 gene was upregulated 
4.5 to 12.4-fold in HO embryos from 10 to 17 DAP, suggesting 
a further source of acetaldehyde for acetyl-CoA production 
is occurring.

The glycine decarboxylase complex is another potential 
downstream use of threonine aldolase products, which upon 
metabolizing glycine releases CO2 (Igamberdiev et  al., 2004). 
As previously mentioned, this CO2 can theoretically then 
be  reincorporated via the reversible ICDH activity, or into 
OAA via phosphoenolpyruvate carboxykinase (Tsogtbaatar et al., 
2020). Further research should be  done to determine the flux 
of threonine-derived glycine and acetaldehyde through these 
pathways to incorporate carbon towards FA synthesis and  
elongation.

Ascorbate and Nucleotide Sugar 
Metabolism Suggest Cell Wall 
Contributions
Among the most upregulated metabolites in HO from 17 to 
20 DAP were the key cell-wall precursors UDP-arabinose (9.4- 
and 2.3-fold), GDP-glucose (5.2- and 278.2-fold, respectively), 
and GDP-fucose (3.8-fold at 17 DAP). Consistent with this 
upregulation was a slightly altered hemicellulose composition 
between each accession. Indeed, the accumulation of 
UDP-arabinose in HO was associated with a 19% reduction 
in arabinose content in the hemicellulose fraction of the cell 
wall (Figure 5B). Furthermore, a nearly 30% increase in mannose 
content in the hemicellulose fraction of HO was observed. 
The only developmental stages in which GDP-mannose, the 
precursor for hemicellulosic mannose, was significantly different 
between accessions was 10 and 14 DAP, where a 1.5 to 2-fold 
reduction was observed in HO (Brar and Elbein, 1972).

GDP-D-mannose 3,5 epimerase is an enzyme responsible 
for diverting GDP-mannose away from cell wall production 
and toward the production of ascorbate (Wolucka and Van 
Montagu, 2003; Gilbert et  al., 2009). Interestingly, ascorbate 
was confirmed in HO at 8,135 and 11,656 pmol mg dry weight 
(DW)−1 from 17 to 20 DAP, respectively. However, ascorbate 
was below the limit of quantification in LO and in general 
has not been previously mentioned as present in pennycress. 
Ascorbate reduces membrane lipid peroxidation during stress 
which may preserve total lipid content in HO (Ebrahimian 
and Bybordi, 2012). Furthermore, ascorbate can act as an 
alternate electron donor in various areas of plant metabolism 
including that of embryos, and as such may contribute extra 
reductant for FA synthesis and/or modification (Mano et  al., 
2004; Tóth et  al., 2009; Hoang et  al., 2021). Ascorbate has 
also been shown to regulate amino acid synthesis, which may 
relate to the different findings on amino acid and protein 
content in HO (Gulyás et  al., 2017). The novel finding of 
ascorbate accumulation, along with the altered hemicellulose 
composition, suggests a difference in cell wall metabolism or 
redox regulation exists between accessions.

A slight upregulation of BGLC1 (3.3- and 2.9-fold at 17 and 
20 DAP, respectively) was observed in HO. This gene encodes 
a glycosyl hydrolase that is thought to be  able to cleave glucose 
from xyloglucan, which may have implications on cellular 
morphology and development (Saffer, 2018; Rubianes et al., 2019). 
Consistently, a difference in the cellular morphology in the 
embryonic axis of HO can be  seen when compared to LO, 
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consequently affecting lipid arrangement in this organ (Figure 6A). 
A potential reduction in xyloglucan content at any point of 
embryo development may allow cleaved glucose to be  redirected 
elsewhere. More research is necessary to determine if the glucose 
removed from xyloglucan has any fate in oil metabolism or energy 
production. The increased glycolytic flow suggested in HO could 
theoretically funnel this glucose to produce more pyruvate. 
Ultimately, total free sugar content (Table  1) was 33% lower in 
HO on a % w/w basis compared to LO, highlighting that sugar 
allocation in high oil pennycress is likely altered. The substantial 
difference in cell wall features between accessions, as well as 

their association with ascorbate production, suggests a potential 
avenue for future research on contributions to lipid metabolism.

Downregulation of the Ubiquitin 
Proteasome System and Increased Lipid 
Droplet Stability Are Associated With 
Higher Oil Production
Interconnected transcriptional control of protein dynamics, 
amino acid metabolism, RNA/DNA modification, redox 
regulation, and lipid and FA metabolism are illustrated by 

A

B

FIGURE 5 | Fold-change of DEGs and significant metabolites involved in threonine metabolism (A) and cell wall metabolism (B) in high oil (HO) and low oil (LO) 
accessions of pennycress. Data are in log2FC in HO with respect to LO. Solid lines indicate single reactions between nodes, whereas dotted lines indicate the 
presence of more than one reaction. ACS, acetyl-CoA synthase; ALDH, aldehyde dehydrogenase; CO2, carbon dioxide; DXPS, deoxyxylulose phosphate synthase; 
GDCC, glycine decarboxylase complex; Gly, glycine; GME, GDP-D-mannose 3,5 epimerase; n, number of carbons in cellulose units; PDH, pyruvate dehydrogenase; 
TDP, thiamine diphosphate; THA, threonine aldolase; Thr, threonine.
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coexpression analysis (Figure  7). Specifically, these results 
indicated a perturbation in genes associated with the stability 
of proteins, lipids, and lipid droplets (LD). Protein ubiquitination 
(padj = 0.055) and protein processing in the endoplasmic reticulum 
(padj = 0.011) were significantly over-represented connections 
to downregulated hub genes. In plants, the ubiquitin-proteasome 
system is associated with a diverse array of functions, particularly 
proteolytic action related to plant development, immunity, 
stress, and hormone response (Liu et  al., 2020). Transcription 
of UBC11, associated in previous research with protein 
degradation in aging seeds (Figure  8A), was downregulated 
150.1–739.3 fold throughout development in HO (Wang et al., 
2018). This same trend was exhibited by both UBC12 (17.4–
278.2 fold decrease) and UBC29 (16.4–634.7 fold decrease). 
Recent research has also suggested a link between cullin-RING 
ligases, enzymes critical to targeting proteins for ubiquitination, 
and lipid production in photosynthetic organisms. 
Chlamydomonas reinhardtii was shown to display a lower 
biomass per cell but higher total lipid content per cell when 
one of these ligases, CULLIN4 (CUL4), was silenced using 
RNAi (Luo et  al., 2021). This is highly consistent with our 
biomass results in pennycress, as CUL4 was constitutively 
downregulated 4.3–5.7-fold throughout development. Taken 
together, the overall knockdown of a specialized component 

of the protein ubiquitination system appears to be  related to 
oil production in pennycress.

HO embryos displayed a 5.4-fold increase in expression 
(17 DAP) of FIS1B, homologous with an A. thaliana gene 
which is noted to be directly responsible for peroxisome fission 
following elongation (Lingard et  al., 2008; Zhang and Hu, 
2008). Peroxisomes encapsulate a large portion of the system 
required for FA catabolism in plants (Wright and Bartel, 2020). 
Knockout of FIS1B activity has been shown to result in elongated, 
enlarged peroxisomes, while the inverse is true following 
insertion of FIS1A (Zhang and Hu, 2009; Kao et  al., 2018). 
An overabundance of this protein in pennycress may therefore 
result in differential effects on FA catabolism (Figure  8B). 
Although no DEGs were detected that were directly involved 
TAG hydrolysis or β-oxidation (Supplementary Data Sheet S1), 
a reduction in the cell volume available for FA catabolism 
could theoretically shift the balance between oil synthesis and 
catabolism toward synthesis.

We examined the organization of lipid storage in cells of 
both genotypes by enhanced-resolution, confocal fluorescence 
microscopy. BODIPY 495/503 selectively stains neutral lipids 
in cells and here the arrangement of LDs, packed with neutral 
lipids, is visualized in cotyledons of both HO and LO embryos 
(Figure 6B). The cellular distribution of LDs in both genotypes 
was similar although the LDs may be  more tightly packed 
together in HO. Transcriptomic contributions to the cellular 
organization of lipid storage are suggested by DEG results. 
The gene encoding the Coat Protein I  (COPI) epsilon subunit, 
ε2-COP, was upregulated 3.3–6.2 fold throughout development 
(Figure  8C). The COPI complex is has been demonstrated to 
associate the LD with the ER, allowing for targeting of proteins 
to the LD membrane (Wilfling et al., 2014; Huang et al., 2019). 
Furthermore, a ≥ 81-fold increase throughout development in 
HO of EXO70H6, part of the largely uncharacterized exocyst 
complex, was found to affect the phospholipid composition 
in membranes, cell wall thickening, and overall recognition 
of lipids at the membrane surface (He et al., 2007). In A. thaliana, 
the loss of serine-carboxypeptidase-like 41 (SCPL41), involved 
in protein turnover, has resulted in increased levels of membrane 
lipids (Chen et  al., 2020). The observed 74–286 fold increase 
in SCPL14 in HO may suggest that this isoform could interact 
with LDs or membrane lipids to facilitate the efficient subcellular 
organization of LDs (Figure  8C).

A polyketide cyclase/dehydrase and lipid transport superfamily 
protein, Ta1.0_26805, displayed high expression in LO throughout 
development, but was undetectable in HO. Previous research 
in A. thaliana showed it to be  involved in a network that 
contains a mutual regulator/interactor (LEC1) of OBAP1a, a 
gene involved in LD stability (López-Ribera et al., 2014; Depuydt 
and Vandepoele, 2021). While there was no differential expression 
of the pennycress LEC1 homolog, the lack of apparent 
Ta1.0_26805 transcription in HO warrants investigation to 
determine if any interactions are present between it and another 
transcriptional regulator in pennycress. The discovery of a 
regulator similar in function to LEC1 in pennycress might 
provide potential as a regulatory target for improving LD 
assembly or stability, however the possibility that there are 

FIGURE 6 | Airyscan imaging of lipid droplets in embryonic axis (A) and 
cotyledonary (B) tissue in mature HO and LO pennycress embryos. Scale is 
5 μm. Mature seeds were imaged after staining of lipid droplets with BODIPY 
493/503 (Invitrogen, Carlsbad, CA). Micrographs of dry seeds were acquired 
with a Zeiss LSM710 microscope fitted with Airyscan confocal superresolution 
and the MBS 488 beam splitter using an Apochromat 63×/1.4 oil DIC 
objective lens (Carl Zeiss Inc., Thornwood, NY). Excitation and emission 
signals of the BODIPY-stained lipid droplets were collected as single optical 
section images (z-sections) of cotyledons and embryonic axis cells. Airyscan 
images were processed using Zeiss Zen Blue software.
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sequence dissimilarities in Ta1.0_26805 between accessions 
must also be  considered. LEC1 is part of a regulatory network 
of transcription factors known as LAFL responsible for controlling 
seed maturation and accumulation of storage components 
(Santos-Mendoza et  al., 2008; Verdier and Thompson, 2008). 
Interestingly none of the other genes of LAFL nor several 

known targets of these genes were differentially expressed in 
our data (Fatihi et  al., 2016; Supplementary Data Sheet S1). 
Together these results suggest an enhanced system in HO for 
maintaining the access of biosynthetic enzymes to membranes 
and LDs, together with a reduction in a component of the 
ubiquitin-proteasome system.

A

B

FIGURE 7 | Central coexpression network of DEGs containing top 10 major hub genes and their respective first neighbors. (A) Three main hub genes that were 
upregulated in high oil accession, (B) seven main hub genes that were downregulated in high oil accession. Hub genes are in the center of each network, in color, 
and first neighbor genes are categorized by gene ontology terms. Circles with yellow shading indicate over-represented gene ontology terms, with p-values based 
on the false discovery rate, and their associated genes. DUF = gene with a domain of unknown function. Darkness of lines indicates correlation, with darker 
indicating higher correlation. ORA was carried out using a threshold of 0.10.
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Comparative “Omics” Analysis Suggests 
Future Targets for Genetic Engineering
Oil production, from de novo FA synthesis to lipid packaging, 
is an integrated process and requires multiple approaches to assess 
its associated metabolism. This research illustrates evidence of 
several specific regions of plant metabolism that are perturbed 
during high oil production. Additionally, it displays evidence that 
previously-identified mechanisms that allow pennycress to produce 
oil more efficiently than fellow Brassicaceae are not necessarily 
targets for improving oil production within pennycress itself.

This research highlights four metabolic processes that appear 
to be  positively associated with pennycress oil content:  

(1) carbon partitioning in central carbon metabolism that 
accumulates malate, pentose phosphates, increased flow through 
the glycolysis and anaplerotic pathway; (2) production of carbon 
precursors via threonine aldolase activity, either by pyruvate 
bypass and/or the glycine decarboxylase complex; (3) alteration 
of sugar incorporation into cell wall components, potentially 
via ascorbate metabolism; and (4) expression-level alteration 
of ubiquitination and LD organization. Augmentation of these 
cellular processes may provide lucrative genetic engineering 
targets for pennycress and other oilseeds as well as critical 
insights into the cross-talk between lipid metabolism and other 
pathways in plants in general.

A B

C

FIGURE 8 | General pathways and components of plant metabolism containing potential targets for genetic engineering. (A) Ubiquitination, (B) peroxisome, 
(C) membranes and lipid droplets. Genes colored in green indicate those that are suggested to be negatively correlated with oil content, whereas genes in red 
indicate those that are positively correlated with oil content. Dotted lines indicate unconfirmed interactions between components/genes. Arrowheads indicate a gene 
or component has a net positive effect on the accumulation of their target. Genes with question marks are suggested targets that require specific identification within 
the respective gene family in Thlaspi arvense. Yellow nodes indicate lipid-related components. Italics indicate gene transcripts or corresponding protein could 
be interactor indicated by node. CUL, CULLIN; ε2-COP, epsilon2 coat protein; EXO70, exocyst subunit exo70; FIS, FISSION; Hsp, heat shock protein; LEC, leafy 
cotyledon; OBAP, oil body associated protein; SCPL, serine carboxypeptidase-like; UBC, ubiquitin-conjugating enzyme.
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