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Identification of marker trait association is a prerequisite for marker-assisted

breeding. To find markers linked with traits under heat and drought stress in

bread wheat (Triticum aestivum L.), we performed a genome-wide association

study (GWAS). GWAS mapping panel used in this study consists of advanced

breeding lines from the IARI stress breeding programme produced by pairwise

and complex crosses. Phenotyping was done at multi locations namely New

Delhi, Karnal, Indore, Jharkhand and Pune with augmented-RCBD design

under di�erent moisture and heat stress regimes, namely timely sown irrigated

(IR), timely sown restricted irrigated (RI) and late sown (LS) conditions. Yield

and its component traits, viz., Days to Heading (DH), Days to Maturity (DM),

Normalized Di�erence Vegetation Index (NDVI), Chlorophyll Content (SPAD),

Canopy temperature (CT), Plant Height (PH), Thousand grain weight (TGW),

Grain weight per spike (GWPS), Plot Yield (PLTY) and Biomass (BMS) were

phenotyped. Analysis of variance and descriptive statistics revealed significant

di�erences among the studied traits. Genotyping was done using the 35k SNP

Wheat Breeder’s Genotyping Array. Population structure and diversity analysis

using filtered 10,546 markers revealed two subpopulations with su�cient

diversity. A large whole genome LD block size of 7.15MB was obtained at

half LD decay value. Genome-wide association search identified 57 unique

markers associated with various traits across the locations. Twenty-three

markers were identified to be stable, among them nine pleiotropic markers

were also identified. In silico search of the identifiedmarkers against the IWGSC

ref genome revealed the presence of a majority of the SNPs at or near the

gene coding region. These SNPs can be used for marker-assisted transfer of

genes/QTLs after validation to develop climate-resilient cultivars.
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genome-wide association study (GWAS), wheat, drought, heat, single nucleotide

polymorphism (SNPs)
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Introduction

Wheat (Triticum aestivum L.) is the staple food crop of

one-third of the world population (Guo et al., 2018). To meet

the food requirements, it has become mandatory to increase its

production with limited resources. The development of high-

yielding varieties became utmost important to meet the demand.

Decades of breeding in wheat through conventional and

molecular approaches enhanced the wheat productivity to ever-

reached heights. Enormous improvement in the productivity of

wheat has been attained by understanding the genetic principles

and phenotypic evaluation and selection through conventional

breeding methods (Pingali, 2012).

However, enhancing productivity under global climatic

change is a challenging task. Abiotic stresses impact wheat

production and tend to the shortage of food supply due to

unpredictable crop loss. Among all the abiotic stresses curtailing

wheat productivity, drought and heat are the most important

and have detrimental effects (Zhang et al., 2018; Gajghate

et al., 2020). The impact of drought and heat increased due

to increment in global temperature and dry spells in arable

land. The terminal drought that occurs at the time of grain

filling will decrease the spike weight and the yield (Amiri

et al., 2013; Saeidi and Abdoli, 2015). Hence, climate-resilient

wheat cultivars are the ultimate means of safeguarding the crop

against adverse effects of heat and drought and to fulfill future

food needs.

An essential component of the Indian wheat improvement

effort is breeding for resilience to abiotic stresses like drought

and terminal heat. The interrelationship among breeding,

molecular biology and physiology is the foundation of the

breeding approach for drought and heat tolerance (Sukumaran

et al., 2021), with an emphasis on precise dissection of morpho-

physiological traits by precision phenotyping (Lopes et al., 2012).

Physiological traits like Canopy Temperature (CT) and grain

yield under drought stress environments have a well-established

relationship (Gautam et al., 2015; Rehman et al., 2021; Munawar

et al., 2022; Singh et al., 2022), and drought and heat tolerance

are correlated with lower canopy temperature (CT) (Pinto et al.,

2010). Maintenance of lower canopy temperature indirectly

attributes to higher transpiration and deep root system in

the variety to absorb water from the deeper soil horizon.

CT influences the stay-green of leaves, a drought-adaptive

trait characterized by a distinct green leaf phenotype during

grain filling during terminal drought (Borrell et al., 2014).

Drought and heat stress have a significant impact on leaf

chlorophyll content (Barboričová et al., 2022). The level of

chlorophyll in flag leaves is measured by a portable equipment

(SPAD meter), which is thought to be a sign of ‘stay-green’

or delayed senescence (Lopes et al., 2012). In the post-anthesis

phase, “Stay-green” is reported to be associated with drought

tolerance in wheat (Kumar et al., 2021) and is utilized for

breeding drought tolerant varieties in wheat along with NDVI

(normalized difference vegetative index) (Christopher et al.,

2015; Rutkoski et al., 2016; Singh et al., 2016). In crop canopies,

NDVI is sensitive to biomass and nitrogen (N) variability,

both of which are regulated by stress experienced by the crop.

Tools for proximal canopy sensing, like Green Seeker (Trimble

Navigation Limited, Sunnyvale, California, USA), can detect

reflected light from the crop canopy to capture vegetation

indices, such as the simple ratio or the NDVI (Naser et al., 2020).

For high throughput screening of drought and heat tolerance

in wheat, CT, chlorophyll content (SPAD) and NDVI have been

successfully integrated into breeding programmes (Singh et al.,

2016; Phuke et al., 2020).

Drought and heat tolerance are complex traits that are

influenced by a number of genes and have a complex genetic

inheritance (Phuke et al., 2020; Saini et al., 2022). Due to its

polygenic inheritance and genotype by environment interaction,

drought and heat tolerance typically has low heritability (Blum,

2010; Khakwani et al., 2012). Genetic improvement under

abiotic stress can be achieved by identifying sources of stress-

tolerant traits, as well as introgress, and mobilize the genes

underlying the desired traits into locally adapted cultivars (Edae

et al., 2014). The challenges in implementing this method

in breeding programmes determine the most appropriate

target traits for various stress scenarios in a timely and cost-

effective manner (Passioura, 2012). Recent advances in high-

throughput genotyping and phenotyping have increased our

understanding of the physiological and genetic basis of complex

characteristics like drought (Mir et al., 2012; Sinclair, 2012)

and heat tolerance (Paliwal et al., 2012). One of the most

important tools for understanding the genetic architecture of

complex characteristics in plants is QTL mapping (Holland,

2007; Xu et al., 2017). However, QTL mapping utilizing

biparental populations can only explain a limited percentage of a

trait’s genetic architecture. Low-mapping resolution, population

specificity of discovered QTL and the requirement of a long

time to establish mapping populations are further constraints of

biparental populations (Edae et al., 2014).

Precise improvement of the complex quantitative trait for

adaption to the particular environmental condition like drought

and heat needs identification of related genomic regions like

QTLs. For the identification of genes/QTLs based on the linkage

disequilibrium (LD), GWAS is one of the effective methods. For

the prediction of candidate genes, GWAS has been widely used

in several crops using genome-wide dense markers (Liu et al.,

2018; Srivastava et al., 2020; Alseekh et al., 2021; Tiwari et al.,

2022), including wheat (Negisho et al., 2022; Zhang et al., 2022).

Advantages of GWAS is, QTLs for several traits can be found

with high resolution in one go. Since association mapping uses

diverse germplasm,making the proceduremore efficient and less

expensive than bi-parental QTL mapping (Ersoz et al., 2009; Jin

et al., 2016). The resolution and power of association studies,

however, depend on the extent of linkage disequilibrium (LD)

across the genome. LD needs to be determined in each study
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as it is affected by several factors, such as population history,

recombination frequency and mating system (Edae et al., 2014).

Association mapping has been used successfully to detect

marker trait associations and QTLs in wheat for various traits.

There are few studies targeting traits under abiotic stress

(Sukumaran et al., 2018; Li H. et al., 2019; Shokat et al., 2020;

Abou-Elwafa and Shehzad, 2021; Ahmed A. A. et al., 2021;

Ahmed et al., 2022a). High-density SNPs markers used for

genome-wide association study (GWAS) can inspect large gene

pools representative of diverse breeding reservoirs. GWAS is the

most suitable approach to locate robust QTLs that show effect in

both normal and stressed conditions (Jamil et al., 2019; Ahmed

H. G. M. D. et al., 2021; Saini et al., 2022). Hence, genome-wide

association studies (GWAS) have developed into a powerful and

ubiquitous tool for the investigation of complex traits (Tibbs

Cortes et al., 2021).

In the Indian context, improving wheat cultivars for

drought and heat stress resistance is critical for the country’s

food security. In this study, SNPs markers associated with

component traits of drought and heat tolerance were mapped

in the advanced breeding lines of Indian hexaploid wheat

with the genome-wide markers using the Axiom Wheat

Breeder’s Genotyping Array (Affymetrix, Santa Clara, CA,

United States) having 35,143 SNPs and well suited for high-

throughput genotyping in hexaploid wheat (Allen et al.,

2017). The aim here is to identify the genomic regions

related to yield- and stress-related traits under multi-location

stress conditions.

Materials and methods

Plant material

The association panel under study was constituted by

pairwise and multi-parent crosses of the selected Indian

varieties, cultivars, superior breeding lines and exotic

introductions. The crosses were advanced with the modified

bulk pedigree method and each line was maintained with

the respective pedigree record (Supplementary Table 1),

and finally, 295 diverse advanced lines were used in the

current investigation. However, 282 lines were retained

after matching with the obtained genotyping data for

further analysis.

Phenotyping

The phenotypic evaluation was conducted at multiple

locations, namely, IARI, New Delhi—DL (28.6550◦ N, 77.1888◦

E, MSL 228.61m), ARI, Pune—PUNE (18.5204◦ N, 73.8567◦ E,

MSL 560m), IIWBR, Karnal—IIWBR (29.6857◦ N, 76.9905◦E,

MSL 243m), IARI, Jharkhand—JR (24.1929◦ N, 85.3756◦ E,

MSL 580m) and IARI RS, Indore—IND (22.7196◦ N, 75.8577◦

E, MSL 553m). Irrigated trials (IR) were conducted in rabi

season in 2019 in Delhi and in 2020 in Delhi, Karnal and Pune.

Whereas Restricted irrigation (RI) trials were conducted in 2019

in Delhi and in 2020 in Delhi, Indore, Pune and Jharkhand.

LS trial was conducted only in IARI New Delhi in the years

2019 and 2020 (Table 1). A total of six irrigations were given for

irrigated trials, whereas only 1 irrigation was given (21 days after

sowing besides pre-sowing irrigation) in restricted irrigation

trials to induce the terminal drought stress. Heat stress was

induced by sowing the crop (Late sown—LS) in the second

fortnight of December. The experiment was planned with an

augmented RCBD design (Federer, 1956, 1961; Searle, 1965)

with 295 genotypes and 4 checks replicated twice in 6 blocks.

Lines and checks were randomized and sown in plots in three

lines of 1m with a 30 cm inter-line distance. All agronomic

practices were carried out according to the recommended

package of practices at each location.

The standard procedure for data collection was followed as

given in the manual ‘Wheat Physiological Breeding II: A Field

Guide to Wheat Phenotyping’ (Pask et al., 2012). Data were

collected for traits like Days to heading (DH), Days to maturity

(DM), Normalized Difference Vegetation Index (NDVI) at

anthesis and grain filling stage, chlorophyll content (SPAD) of

flag leaf at the post-anthesis stage, Plant height (PH), Canopy

temperature (CT), Grain weight per spike (GWPS), Thousand

Grain weight (TGW), Plot Yield (PLTY) and Biomass.

Genotyping

DNA isolation was carried out using the leaves of 7-days-

old seedlings grown under controlled conditions. DNA was

extracted using the CTAB method (Murray and Thompson,

1980) with minor modifications. DNA quality was checked with

the 0.8% agarose gel electrophoresis and 20 ng/µl DNA was

used for further SNP genotyping. Out of 295 DNA samples,

282 passed the quality check step and were used for further

genotyping. The remaining 13 genotypes were excluded from

genotyping due to poor DNA quality. Hybridisation-based SNP

chip genotyping of 282 genotypes was performed using the 35K

Axiom R© Wheat Breeder’s Array of Affymetrix GeneTitan R©

system according to the procedure described by Affymetrix.

Allele calling was carried out using the Affymetrix proprietary

software package Axiom Analysis Suite, following the Axiom R©

Best Practices Genotyping Workflow (https://media.affymetrix.

com/support/downloads/manuals/axiom_analysis_suite_user_

guide.pdf). SNP marker data were obtained in the Hap Map

format. The chip had 35,143 SNPs; however, after filtration

for monomorphic alleles, minor allele frequency (MAF) was

>0.05, missing data frequency was >0.2 and heterozygote

frequency >0.25; a total of 10,546 SNPs were retained for

GWAS analysis.
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TABLE 1 Details of sowing conditions, locations and year of experiment along with abbreviations.

Treatment Location GPS location Year Abbreviation

Irrigated–(IR) ICAR-Indian Agricultural Research Institute (IARI)-New Delhi 28.6550◦ N, 77.1888◦ E, MSL 228.61m 2019 DL_IR_2019

2020 DL_IR_2020

Agharkar Research Institute-ARI, Pune 18.5204◦ N, 73.8567◦ E with MSL 560m 2020 PUNE_IR_2020

Indian Institute of Wheat and Barley Research-IIWBR, Karnal 29.6857◦ N, 76.9905◦E, MSL 243m 2020 IIWBR_IR_2020

Restricted irrigated–(RI) ICAR-Indian Agricultural Research Institute (IARI)-New Delhi 28.6550◦ N, 77.1888◦ E, MSL 228.61m 2019 DL_RI_2019

2020 DL_RI_2020

Agharkar Research Institute-ARI, Pune 18.5204◦ N, 73.8567◦ E with MSL 560m 2020 PUNE_RI_2020

ICAR-Indian Agricultural Research Institute, Regional

station-IARI RS, Indore

22.7196◦ N, 75.8577◦ E, MSL 553m 2020 IND_RI_2020

ICAR-Indian Agricultural Research Institute-IARI, Jharkhand 24.1929◦ N, 85.3756◦ E, MSL 580m 2020 JR_RI_2020

Late Sown–(LS) ICAR-Indian Agricultural Research Institute (IARI)-New Delhi 28.6550◦ N, 77.1888◦ E, MSL 228.61m 2019 DL_LS_2019

2020 DL_LS_2020

Analysis of data

Phenotypic data at each location and condition (IR, RI

and LS) were analyzed using the r package ‘augmentedRCBD’

(Aravind et al., 2021) for ANOVA, and adjusted means for each

genotype under study were estimated based on Federer (1956,

1961). Calculated adjusted mean eliminating block effect at each

environment is used further in all the analyses, including GWAS.

The adjustedmean of each block was calculated with the formula

(Federer, 1961):

Vi = ui− bj

where

Vi is the adjusted mean of ith variety

ui is the unadjusted mean of ith variety

bj is jth block effect.

Principal component analysis was carried out using the R

package “FactoMineR version 2.4” (Multivariate Exploratory

Data Analysis and Data Mining) by Husson et al. (2016).

Graphical representation of PCA results was done with the R

package “factoextra version 1.0.7” (Kassambara, 2020). Pearson’s

correlation was calculated among the studied traits and figures

were drawn.

A total of 5,480 SNPs equally spaced around 1MB

distance throughout the genome were filtered and used for the

estimation of population structure using the STURUCTURE

software (Pritchard et al., 2010). The parameters, viz., burn-

in cycles and MCMC (Monte Carlo Markov Chains) were

set to 100,000. Three iterations for each k value ranging

from 1 to 7 were conducted to determine the population

structure. The ideal number of delta K (subpopulations)

was found out by the Evanno method (Evanno et al.,

2005) using Structure Harvester (http://taylor0.biology.ucla.

edu/structureHarvester/). Furthermore, the filtered 10,546

SNPs were analyzed using TASSEL 5.0 (Trait Analysis by

Association, Evolution and Linkage) (Bradbury et al., 2007)

to construct the neighbor-joining dendrogram. SNP marker-

based PCA and Kinship analysis were conducted with GAPIT

(Lipka et al., 2012).

Association analysis

The filtered SNP markers were utilized for determining

marker-trait associations using TASSEL v 5.0. The r2 values

between marker pairs were obtained and filtered for pairs within

each chromosome. LD decay curve was drawn for each A, B

and D genomes along with whole the genome. LD block size

was estimated by plotting the r2 value against the distance in

base pairs (bp) and the distance at the half LD Decay point

was noted.

The filtered 10,546 SNPs and the location-wise “adjusted

mean” for each trait were used for the genome-wide association

analysis using GAPIT v3 in Rwith PCA 3 and default parameters

(https://zzlab.net/GAPIT/gapit_help_document.pdf) using the

“BLINK” (Bayesian-information and Linkage-disequilibrium

Iteratively Nested Keyway) model. The BLINK model is

presumed to be superior in identifying QTNs and avoiding

false positives to decipher true associations (Huang et al.,

2019). Quality of association model fitting was found out

using a Q-Q plot drawn with expected vs. observed −log10(p)

value. Stringent selection of MTAs was done using the

Bonferroni correction (p-value cut-off at 0.05/total number

of markers) to avoid false positives and a Manhattan plot

was drawn to represent MTAs. Stable MTAs across the

location were found out with a significant p-value cut-off at

0.001. Pleiotropic SNPs having association with more than

one trait were also found out. Stable and pleiotropic SNPs
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were compared with the IWGSC Reference genome using

BLAST search in the ensemble plants platform (http://plants.

ensembl.org/Triticum_aestivum/Tools/Blast). To identify the

candidate genes associated with significant SNPs, gene coding

regions located within the 10KB flanking region of the MTAs

were considered.

Results

Phenotypic evaluation

There was high variability in means and range for each trait

at the respective location. Mean DH and PLTY were highest in

Delhi as compared to other locations, and Pune had the least.

Late sown trials planted for heat stress had lower DH, DM,

PH, GWPS, TGW, BIOMASS and PLTY as compared to IR

and RI trials (Table 2). NDVI had a similar pattern across the

environments except in the late sown where it had lower NDVI

values. CT at anthesis was highest in RI trials followed by LS and

IR. Jharkhand and Indore locations displayed higher TGW as

compared to Delhi. IR trials at Delhi had higher TGW compared

to RI and LS due to shrinkage of grains under drought and heat

stress (Table 2). Descriptive statistics like minimum, maximum,

average, standard deviation, coefficient of variation and critical

difference of all the studied traits in each environment were

calculated (Supplementary Table 2).

Analysis of variance indicated a significant difference

between the studied traits at 5% and 1% as noted in

Supplementary Table 2. The frequency distribution curve

indicated the near normal distribution for the majority of

the traits in Delhi under all three conditions and a similar

pattern was observed at other locations too (Figure 1;

Supplementary Figure 1). There was the least variation for days

to heading in Delhi under irrigated condition (0.78%) followed

by NDVI_1 (0.89%) at the late sown condition in Delhi. Being

high environmental responsive traits, plot yield, biomass,

NDVI_3 and GWPS were the highly variable traits having

higher CV values compared to other traits in all the locations.

Correlation- and phenotype-based PCA

There was a positive correlation among the traits like NDVI,

SPAD, DH, DM and PH in all the three conditions at the Delhi

location and a similar trend was observed in all other locations.

Similarly, yield-related traits like GWPS, TGW and PLTY also

showed a positive correlation across the studied locations and

treatment conditions. CT was negatively correlated with all the

studied traits (Figure 2; Supplementary Figure 2).

PCA based on phenotypic data indicated that in Delhi

irrigated condition, the first principal component was

contributing 32.7% variation; the major contributors were

DM, DH and NDVI (Figure 3), whereas the second dimension

represents 17.2% variation receiving contribution from yield-

related traits, viz., PLTY, TGW, CT, GWPS and BIOMASS

(Figure 3). The traits DH, DM and NDVI are clustered together

with an acute angle indicating a positive correlation among

them. Similarly, TGW, PLTY, GWPS and BIOMASS were

clustered together. Whereas CT indicated a negative correlation

to all the studied traits. Similarly, PCA analysis under RI

and LS conditions at Delhi indicated that dimension 1 was

explaining 28.6 and 25.3%; dimension 2 was explaining 21 and

15.6% variation, respectively. Variation explained by both the

dimension (i.e. Dim-1 and Dim-2) of PCA from other locations

were also found out using PCA analysis viz., IIWBR (Dim1-

31.8%, Dim2-25%), PUNE_IR (Dim1-25.3%, Dim2-19.5%),

PUNE_RI (Dim1-20.9%, Dim2-18.6%) and JR (Dim1-37.2%,

Dim2-21.9%) locations (Supplementary Figure 3).

Genotyping

Out of 35,143 SNPs screened over 282 genotypes, 10,546

SNPs were retained after filtering. Genome-wide SNP

distribution analysis showed 3,350, 4,083 and 3,113 SNPs

in A, B and D genomes, respectively. Having 777 SNPs, 2B was

the chromosome containing the highest number of polymorphic

SNPs followed by 2D having 767. Chromosome 4D had the

lowest number of polymorphic SNPs (184) (Table 3).

Population structure and diversity

Population structure was determined with burn-in and

MCMC of 100,000 with three iterations using STRUCTURE

HARVESTER. The best K-value obtained was 2 indicating

2 subpopulations in the GWAS panel (Figure 4A). The

subpopulations 1 and 2 had 133 and 135 genotypes, respectively,

whereas 14 genotypes were considered as the admixtures

population (Supplementary Table 3). The result was verified

with the PCA analysis based on SNP marker data; two clusters

were also obtained in a marker-based PCA plot (Figure 4B),

indicating two subpopulations in the panel. Kinship and

neighbor-joining cluster analysis verified the presence of two

clusters as shown in Figures 4C,D.

Linkage disequilibrium (LD) block

To estimate LD, the r2 (squared allele frequency correlation)

value was calculated among all the possible pairs of SNPs

in each chromosome using TASSEL 5.0 (Bradbury et al.,

2007). LD decay map was constructed by plating r2 values

against genetic distance in bp for each genome and whole

genome. LD block size at half LD decay was 5.24, 5.26, and
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TABLE 2 A summary of yield and stress related traits in GWAS panel evaluated across the di�erent environment.

Condition Environment DH PH DM NDVI_1 NDVI_2 NDVI_3 SPAD CT GWPS BIOMASS PLTY TGW

IR DL-2019 94.1± 6.32

(79.24–112.76)

107.48± 7.21

(75.06–128.06)

– 0.8± 0.01

(0.71–0.82)

0.7± 0.35

(0.54–6.66)

0.71± 0.04

(0.56–0.81)

– – 2.29± 0.74

(0.49–4.48)

– 350.96± 75.79

(75.12–477.56)

–

PUNE-2020 63.12± 3.78

(51.02–72.02)

– – 0.86± 0.04

(0.71–0.96)

0.83± 0.04

(0.69–0.94)

– – 26.91± 1.17

(24.07–29.98)

1.47± 0.13

(1.05–1.82)

– 186.5± 45.68

(41.45–321.8)

42.99± 3.52

(31.83–50.36)

DL-2020 94.99± 6.45

(75.21–113.96)

108.12± 6.25

(87.91–125.12)

133.23± 3.84

(123.81–144.81)

0.68± 0.05

(0.54–0.8)

0.59± 0.06

(0.43–0.74)

0.21± 0.09

(0.06–0.5)

46.66± 4.02

(33.76–56.84)

27.46± 1.48

(23.19–30.68)

1.98± 0.44

(0.71–4.06)

1661.34± 332.87

(337.62–2775.25)

484.53± 103.21

(101.77–708.65)

38.82± 4.43

(24.16–57.28)

IIWBR-2020 88.08± 2.51

(81.9–100.02)

– 123.56± 1.66

(118.98–127.98)

0.6± 0.09

(0.26–0.82)

– – – – 2.07± 0.32

(1.32–3.09)

– 261.68± 83.68

(46.55–485.27)

36.83± 5.03

(23.63–53.33)

LS DL-2019 93.3± 2.99

(85.5–100.5)

– – 0.81± 0.02

(0.71–0.85)

0.96± 4.14

(0.55–72.01)

0.4± 0.12

(0.07–0.72)

– 21.97± 0.87

(19.91–24.51)

1.39± 0.31

(1.1–2.75)

– 291.41± 64.32

(80.69–441.52)

–

DL-2020 82.99± 2.7

(77.69–93.44)

87.23± 6.31

(69.4–103.98)

109.41± 3.05

(101.44–120.06)

0.57± 0.05

(0.38–0.72)

0.42± 0.07

(0.22–0.6)

0.2± 0.07

(0.09–0.56)

49.75± 4.32

(36.55–60.79)

29.01± 1.39

(26.27–39.02)

1.68± 0.3

(0.95–2.9)

995.87± 344.44

(55.9–2267.6)

340.12± 110.94

(53.88–597.63)

36.28± 4.06

(23.15–48.15)

RI DL-2019 94.38± 6.49

(75.5–107.5)

– – 0.8± 0.01

(0.71–0.83)

0.65± 0.04

(0.53–0.76)

– – – 2.49± 0.56

(1.14–4.54)

– – –

PUNE-2020 58.36± 2.95

(50.48–68.48)

– – 0.85± 0.05

(0.68–0.97)

0.81± 0.04

(0.68–0.97)

– – 27.93± 1.06

(25.43–30.24)

1.66± 0.15

(1.23–2.01)

– 92.31± 33.67

(19.04–215.16)

40.85± 3.45

(31.13–49.01)

JR-2020 78.06± 3.52

(61.53–87.53)

90.61± 7.08

(64.74–112.74)

112.18± 3.99

(101.67–124.94)

– – – – – 2.2± 0.34

(0.9–3.21)

320.49± 98.54

(42.75–627.75)

163.85± 48.18

(13.48–286)

43.38± 3.87

(29.47–58.86)

DL-2020 97.84± 6.37

(77.71–115.46)

101.41± 6.62

(77.47–119.97)

130.43± 3.46

(120.52–140.4)

0.64± 0.05

(0.51–0.82)

0.53± 0.05

(0.38–0.67)

0.21± 0.08

(0.07–0.52)

52.31± 4.71

(35.34–62.24)

32.54± 1.17

(29.51–36.21)

1.74± 0.36

(0.85–3.2)

1199.13± 321.87

(30.2–1937.15)

300.78± 86.3

(34.58–560.21)

32.99± 4.91

(20.98–50.1)

IND-2020 – – – – – – – – – – 301.16± 64.6

(82.73–466.83)

44.38± 3.15

(36–53.62)

*DL-Delhi, PUNE-Pune, IIWBR-Karnal, JR-Jharkhand, IND-Indore. IR, Irrigated; RI, Restricted irrigated; LS, Late sown.

**(Mean± SD) with (Min–Max) values are given in brackets for each trait.

***DH, Days to Heading; PH, Plant Height; DM, Days to maturity; NDVI – Normalized difference vegetation index, SPAD, Chlorophyll content; CT, Canopy Temperature; GWPS, Grain Weight per Spike; BIOMASS – Biomass; PLTY, Plot yield; TGW,

Thousand grain weight.
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FIGURE 1

Frequency distribution of studied traits in GWAS panel evaluated at IARI Delhi under three conditions viz., IR, RI and LS during 2020–2021.

FIGURE 2

Correlation among the studied traits in the GWAS panel evaluated at IARI Delhi under three conditions, viz., IR, RI and LS during 2020–2021.
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FIGURE 3

PCA biplot and contribution of studied traits to dimension 1 and dimension 2 in GWAS panel evaluated at IARI Delhi under IR condition during

2020–2021.

TABLE 3 Chromosome wise distribution of SNP markers on the three

sub genomes of wheat.

Sub genome

Chromosome A B D

1 489 705 616

2 628 777 767

3 432 499 348

4 397 299 184

5 477 652 433

6 404 570 323

7 523 581 442

Total 3,350 4,083 3,113

9.22MB for A, B and D genomes, respectively (Figure 5).

Whole genome LD decay was observed to be 7.15MB,

indicating any SNPs within this distance are said to behave as

inheritance block.

Marker trait associations (MTAs)

For all the studied traits together across the location with

different treatment conditions, viz., IR, RI and LS, a total

of 761 MTAs were identified with a significance −log10(p)

value of >3. The highest number of SNPs were obtained

for the trait NDVI (242 MTAs) and the lowest for the

SPAD (19 MTAs). Associated SNPs identified for each trait

under different conditions are listed with their respective

p-values (Supplementary Table 4). MTAs were filtered with

Bonferroni correction value (−log10(p) >5.32) to increase

the stringency of selection, and 57 SNPs were obtained that

were located on 18 different chromosomes (Figure 6). Out

of 57 SNPs, 28 were identified under IR condition, which

were linked with BIOMASS, DH, DM, GWPS NDVI, PH

and TGW. Under RI condition, 16 SNPs linked with DH,

GWPS, NDVI and PH were obtained. Thirteen significant

associations were obtained under LS conditions for traits,

viz., CT, DH, DM, GWPS, NDVI and PLTY (Table 3).

Pictorial representation of some significant SNPs identified

at Delhi and other locations for the studied traits were

depicted with Manhattan plots along with QQ plots (Figure 7;

Supplementary Figure 4). The details of MTAs above Bonferroni

correction with their position in the genome are noted down

(Table 4). Among them, 22 SNPs were stable and pleiotropic

and were associated with six different traits, namely, DH,

DM, NDVI, TGW, PH and BIOMASS. NDVI and DH were

showing the highest number of stable MTAs, i.e., 7, followed

by DM and TGW having 3 and 2 MTAs, respectively. Whereas

BIOMASS and PH were having one stable association each

(Table 5). Percent phenotypic variation explained (r2) by the

stable MTAs ranged from 3.87% in PH to 19.22% in DM

(Table 4).
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FIGURE 4

Population groupings in the GWAS panel from di�erent models. (A) Population structure-based grouping of genotype from STUCTURE analysis.

(B) The 2D plot of the principal component-based grouping. (C) Neighbor-joining tree-based diversity. (D) Heat map of pair-wise kinship matrix.

We identified nine pleiotropic MTAs having associations

with different traits (Table 5). The SNP marker AX-94490240

and AX-94463626 were associated with DM, NDVI and DH,

whereas AX-94598030 andAX-94759710 were linked with TGW

and NDVI. Similarly, GWPS and DH were associated with

AX-94988124 and AX-94466450 with BIOMASS and PLTY.

However, their strength of association differs depending on traits

and location (Table 5).

In silico analysis

BLAST analysis of stable SNPs against the IWGSC reference

genome of Triticum aestivum revealed the location of SNPs

in the gene-rich region of the genome. Almost all SNPs were

near to one or the other transcript coding for some proteins

or transcription factors except SNP AX-94466450. SNPs were

located near the genes coding for proteins like peroxisomal

membrane protein, ran binding protein, augmin family, etc.

(Table 6). SNPs AX-94762983 and AX-95133267 were located

in a protein-coding region whose protein is still unknown.

The SNPs markers like AX-94578563, AX-94941121 and AX-

94631711 were linked to the genes governing the traits like

endosperm, ascorbate content and root growth, and are helpful

in the heading of the wheat. Similarly, SNPs like AX-94759710

and AX-94598030 linked are to TGW and are present near the

gene coding region for endosperm development and resistance

to oxidative stress (Table 6).

Discussion

Drought and heat have the greatest influence on wheat

varieties, therefore identifying the genomic region using

genome-wide SNP markers is a smart way to gain knowledge,

which can then be used to create climate-resilient varieties. The

goal of this study is to identify a new region of the wheat genome

that is responsible for drought and heat stress resistance. The

use of elite breeding material for GWAS invariably reduces

the number of significant SNPs compared with other studies,

where diverse plant materials with high diversity and larger

phenotypic differences were used (Bordes et al., 2014; Zanke

et al., 2015). In such material QTL with large effects on the

traits may be fixed in the breeding lines, and will therefore not

be detectable (Kristensen et al., 2018). However, the utilization

of an advanced breeding line will help to explore untouched

parts of the genome having minor effects on the target traits by

avoiding the influence of major QTL regions during the study

that are already fixed. Furthermore, advanced breeding lines are

ready to use the material in the breeding programme as a parent
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FIGURE 5

Subgenome and whole genome-wide linkage disequilibrium (LD) decay in GWAS panel of 282 diverse bread wheat genotypes.

(Kristensen et al., 2018) with preferred qualities and having a

meager problem of linkage drag.

In this study, the near normal distribution among all the

studied traits (Figure 1) indicated the polygenic nature of the

studied traits. Significant variation was observed from the

analysis of variance indicating the data can be used for further

analysis. The coefficient of variation was low for the traits, such

as DH, DM and NDVI, whereas high CV was observed for

biomass and plot yield which was due to the high influence of

environmental factors. To nullify the effect of environmental

influence, multi-location and multi-year data were used to find

out stable associations.

In GWAS analysis, population structure might be a

confounding factor that must be addressed to avoid false

associations. STRUCTURE and PCA are two popular

approaches for inferring the population structure of the

genome-wide association panel using high-density SNPs

(Abraham and Inouye, 2014). The use of genotypes from

Indian and exotic introduction in the study might be the

reason for clear-cut two subpopulations (Figure 4A) in the

mapping panel. As many as 14 admixture genotypes carrying

genomic regions from both the subpopulations were observed,

which is due to the advanced breeding line developed from

common founding parents used in their crossing plan. AM
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FIGURE 6

Distribution and position of identified MTAs (-log(p) above 5.32) at their respective chromosome.

panels with subpopulations were used efficiently by using either

PCA-based grouping (Odilbekov et al., 2019; Rathan et al.,

2022) or with the uses of the Q matrix from the STRUCTURE

analysis as covariates (Beyer et al., 2019; Luján Basile et al.,

2019; Danakumara et al., 2021; Alotaibi et al., 2022). Apart from

that, suitable diversity for GWAS study among the genotypes in

AM panel was confirmed by neighbor-joining clustering from

the distance matrix. The use of a diverse panel of genotypes

can provide more valuable inference compared to bi-parental

populations (Vos-Fels et al., 2017) by taking advantage of

maximum allelic diversity (Ayalew et al., 2018; Onyemaobi

et al., 2018). The present study material being developed

from multiple crossing ensures the required diversity for the

association study, and estimation is based on neighbor-joining

clusters and kinship-based heat map (Figure 4D).

In outcrossing crop species like maize, LD block was

observed at a short distance and thus decays were faster, and

in the case of self-pollinated crops longer distance is attributed

to a lower decay rate as in wheat (Yu et al., 2014; Roncallo

et al., 2021). For example, the genome-wide LD decay distance

is ∼100 kb in rice and ∼2 kb in maize (Huang and Han, 2014);

however, in wheat, up to 30.4mb LD decay was observed in

Argentinian germplasm collection (Roncallo et al., 2021). LD

is important in population genetics and crop improvement

using molecular techniques (Gupta et al., 2005). The number

of markers required for association mapping is determined by

the extent of LD decay, based on the genetic distance between

markers (Mather et al., 2007). LD decay varies widely among

wheat populations. In this study, LD at half LD decay (Figure 5)

varies for each genome with larger whole genome LD of 7.15Mb,

inferring the lower decay for the advanced breeding materials.

Similarly, a large LD block size of 4.4MB was observed by Pang

et al. (2020). As much as 9.22Mb distance was observed for

the D genome inferring lower decay, which is in accordance

with the previous study (Ogbonnaya et al., 2017; Jamil et al.,

2019; Li G. et al., 2019; Pang et al., 2020). In contrast, faster

LD decay in the D genome was observed; comparable to the

A and B genomes in a study using breeding lines developed

from synthetics, driving more recombination in the D genome

(Ledesma-Ramírez et al., 2019). The significant variations in

LD decay rates among the A, B and D genomes imply that the

three genomes and their donors, T. turgidum (A and B) and

Ae. tauschii (D), might have evolved independently and under

different selection pressures throughout the domestication and

modern breeding objectives (Mirzaghaderi and Mason, 2017).

LD decay depends on cultivation patterns, breeding methods,

breeding history and evolutionary history. Wheat is grown

once a year, hence has a much slower rate of evolution, and
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FIGURE 7

Manhattan and respective-QQ plots of significant associations at IR_Delhi_2019 for GWPS, LS_DL_2019 for PLTY, IR_DL_2020 for BIOMASS and

RI_JR_2020 for TGW, IR_DL_2019 for NDVI, IR_DL_2020 for DH, IR_DL_2020 for DM and IR_DL_2020 for PH.

likely accumulated far fewer historical recombination events

and mutations, resulting in a slower LD decay than in other

self-pollinated crops like rice (Pang et al., 2020).

At a significant p < 0.001, a total of 761 SNPs were

identified to be associated with traits under investigation. Such

a huge number of MTAs can be justifiable for high-throughput

genotyping data and with the cut-off p-value of 0.001, similar to

earlier reports for various agronomic traits (Ma et al., 2018; Pang

et al., 2020). A huge number of SNPs obtained for yield-related

traits under stress conditions may include many of the false

positives due to lower threshold values. To avoid such biasness,

a stringent selection procedure of Bonferroni correction was

applied like Kumar et al. (2018), and in total 57 MTAs

were retained. If geographical and environmental variation

among different locations was significantly high, a location-

wise association study was carried out to avoid flattening of

the genetic variation as mentioned in previous references (Pujar

et al., 2020; Rathan et al., 2022). MTAs observed in more than

one location with Bonferroni corrected p-value in at least one

location (Stable MTAs) are presumed to be the true association,

which is supported by the presence of the candidate gene

(Table 6).

NDVI is an indicator of vegetation response to drought

based on the relationships between NDVI and drought index

(Rutkoski et al., 2016; Singh et al., 2016). In our study, as many

as 242 SNPs were linked with NDVI at an LOD score of 3. When

we observe the stable expressing SNPs across the environment,

10 SNPs belonging to NDVI indicated a true association with

it. The reason might be drought and heat conditions applied

by restricted irrigation and late sown conditions have induced

the drought and heat tolerant genotypes to exhibit related traits

and associated SNPs were identified. Susceptibility indices of

drought and heat could be a potential targeting trait to encounter

consistent yield in the stress breeding programme (Devi et al.,

2022; Mutari et al., 2022). An extensive analysis of susceptibility

indices could be our further target to dissect the genomic regions

concerned with drought and heat tolerant traits.

A total of 22 stable SNPs were found for different traits

havingmajor number ofMTAs for NDVI (10) andDH (11). Easy

phenotyping and having high accuracy might lead to a greater

number of associations between DH and NDVI. DH-linked

SNPs were detected on chromosomes 3A, 2D, 1D, 5D, 3A, 5B,

and 6D are on par with earlier reports like the presence of VRN

genes responsible for flowering on chromosomes 5A, 5B and 5D

(Ogbonnaya et al., 2017). Markers linked with the DH were also

found on chromosomes 1D, 2A, 4A, 5B, 5D, 6A, 6B, and 7A

(Jamil et al., 2019). It is notable that we got clusters of markers

on chromosome 5B for DM, GWPS, NDVI and PH that might

be influenced by the presence of the vrn B-1 gene on 5B. Earlier

reports denote 29.1% of phenotypic variations for heading date
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TABLE 4 Significant marker trait associations at Bonferroni corrected p value for traits under study at each environment.

Trait Condition/location SNP Chromosome Position inMB P-value R square -log10(P)

BIOMASS IR_DL_2020 AX-94466450 6B 29.84924 4.67E-06 0.071452 5.33089

CT LS_DL_2019 AX-94573298 7D 629.4069 3.01E-06 0.20653 5.521182

DH LS_DL_2020 AX-94416489 3A 46.7133 1.51E-06 0.081693 5.820014

IR_PUNE_2020 AX-94435238 5D 474.2051 3.92E-09 0.098932 8.407157

RI_PUNE_2020 AX-94435238 5D 474.2051 7.68E-10 0.097184 9.114737

IR_IIWBR_2020 AX-94546495 2B 671.7411 1.26E-08 0.069093 7.900783

IR_PUNE_2020 AX-94578563 3A 55.74342 1.40E-08 0.087051 7.852822

RI_PUNE_2020 AX-94578563 3A 55.74342 1.78E-07 0.080392 6.749976

IR_PUNE_2020 AX-94631711 3A 26.46988 3.07E-06 0.08455 5.513009

IR_DL_2020 AX-94689491 3A 618.1646 9.18E-10 0.137955 9.037012

IR_IIWBR_2020 AX-94789937 7B 33.53386 4.13E-07 0.076708 6.384131

LS_DL_2020 AX-94940654 5D 367.436 4.17E-06 0.104355 5.379682

IR_PUNE_2020 AX-94941121 3A 611.7026 3.28E-11 0.110475 10.48453

RI_DL_2019 AX-94941121 3A 611.7026 2.34E-09 0.13456 8.630091

RI_PUNE_2020 AX-94941121 3A 611.7026 2.77E-10 0.095057 9.557035

RI_DL_2019 AX-95119024 1D 9.592365 1.21E-06 0.135519 5.917904

RI_DL_2019 AX-95133267 2D 300.437 1.71E-06 0.138337 5.766205

IR_DL_2020 AX-95170512 2D 634.3167 4.74E-07 0.129128 6.323975

IR_DL_2020 AX-95195332 6D 304.1167 1.59E-09 0.119489 8.798271

RI_JR_2020 AX-95235622 1D 314.5742 3.25E-10 0.111089 9.488192

DM IR_DL_2020 AX-94463626 5B 580.8401 1.66E-10 0.189125 9.780337

IR_DL_2020 AX-94490240 6D 462.537 9.50E-08 0.192265 7.022311

IR_DL_2020 AX-94513007 6D 147.2393 3.43E-07 0.183054 6.465213

IR_IIWBR_2020 AX-94725580 5B 594.8691 3.20E-08 0.085151 7.494575

LS_DL_2020 AX-94725580 5B 594.8691 2.69E-08 0.09407 7.570521

IR_DL_2020 AX-95186230 2D 354.7437 2.43E-06 0.15434 5.615057

GWPS LS_DL_2019 AX-94505180 2A 733.0912 1.64E-07 0.108636 6.785046

RI_DL_2019 AX-94590453 3A 8.325489 2.69E-08 0.141871 7.569559

IR_DL_2019 AX-94664052 2B 748.1526 2.30E-06 0.081038 5.637959

IR_DL_2019 AX-94988124 5B 489.2835 4.97E-06 0.077532 5.303543

RI_DL_2019 AX-95150902 7B 200.9228 2.36E-07 0.133409 6.62789

NDVI.1 IR_DL_2019 AX-94425305 2A 62.27144 4.79E-08 0.089911 7.319923

IR_DL_2019 AX-94659413 2B 14.04945 4.53E-06 0.10992 5.343983

IR_DL_2019 AX-94720192 3B 417.493 1.69E-09 0.110884 8.771124

IR_DL_2020 AX-94735072 2D 338.6773 3.35E-07 0.078254 6.474963

LS_DL_2019 AX-94762983 1D 170.2247 1.57E-11 0.098748 10.80411

LS_DL_2019 AX-95110974 1A 463.2904 2.06E-08 0.107363 7.685398

LS_DL_2019 AX-95155574 5B 692.565 1.31E-06 0.116167 5.883924

NDVI.2 RI_DL_2019 AX-94436269 2B 95.79736 6.06E-10 0.115805 9.21725

LS_DL_2020 AX-94552601 4B 666.5719 3.51E-08 0.093756 7.454121

RI_DL_2020 AX-94560091 2B 661.4501 1.64E-08 0.078829 7.784441

RI_DL_2020 AX-94658750 4A 27.67354 3.91E-07 0.059888 6.407471

NDVI.3 LS_DL_2019 AX-94433353 5A 460.5185 5.61E-10 0.110697 9.251103

IR_DL_2020 AX-94463626 5B 580.8401 1.9E-08 0.121709 7.720863

LS_DL_2019 AX-94935560 7A 63.38946 9.13E-09 0.132109 8.039646

PH IR_JR_2020 AX-94415907 5B 421.6436 2.25E-07 0.038779 6.648635

RI_DL_2020 AX-94599469 6B 644.4316 3.15E-07 0.116949 6.501722

(Continued)
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TABLE 4 Continued

Trait Condition/location SNP Chromosome Position inMB P-value R square -log10(P)

PLTY LS_DL_2019 AX-94390275 1D 246.6495 1.32E-08 0.187926 7.878685

LS_DL_2019 AX-94833043 7B 682.8865 6.12E-07 0.200662 6.212957

LS_DL_2019 AX-94916490 2B 214.2827 4.97E-08 0.20182 7.303398

LS_DL_2019 AX-94997258 1D 385.8051 5.22E-10 0.21241 9.282206

LS_DL_2019 AX-95257885 2A 16.25963 1.86E-07 0.203534 6.731365

TGW RI_JR_2020 AX-94505686 1D 80.44586 5.32E-09 0.124761 8.273984

RI_JR_2020 AX-94598030 1A 1.159536 1.51E-06 0.117123 5.822309

IR_PUNE_2020 AX-94634468 2B 767.3743 1.52E-07 0.073127 6.817671

IR_IIWBR_2020 AX-94700391 3A 700.422 6.70E-08 0.084706 7.173684

RI_JR_2020 AX-95107567 7D 406.8963 4.32E-07 0.12292 6.364986

TABLE 5 List of stable SNPs expressed at more than one environment and Pleiotropic* SNPs (Bold ones) linked to more than one traits.

SNP Chromosome Position Trait Location -log10(p) Value

AX-94466450 6B 3E+07 BIOMASS, PLTY DL.IR / DL.IR 5.33 / 4.46

AX-94631711 3A 2.6E+07 DH PUNE IR / PUNE RI 5.51 / 3.86

AX-94578563 3A 5.6E+07 DH PUNE IR / PUNE RI 7.85 / 6.75

AX-94637995 2D 6.2E+07 DH DL.IR / DL.2019.LS 5.16 / 3.21

AX-95133267 2D 3E+08 DH DL.2019.RI / DL.2019.RI / DL.2019.LS 5.77 / 5.23 / 3.42

AX-95235622 1D 3.1E+08 DH JR.RI / DL.RI / DL.2019LS / DL.LS 9.49 / 3.99 / 3.4 / 3.24

AX-94435238 5D 4.7E+08 DH PUNE RI / PUNE IR 9.11 / 8.41

AX-94941121 3A 6.1E+08 DH PUNE IR / PUNE RI / DL.2019.RI 10.48 / 9.56 / 8.63

AX-94725580 5B 5.9E+08 DM, DM, DH DL.LS / IIWBR / DL.LS 7.57 / 7.49 / 4.72

AX-94490240 6D 4.6E+08 DM, NDVI, DH DL.IR / DL.IR / DL.IR 7.02 / 3.3 / 3.04

AX-94463626 5B 5.8E+08 DM, NDVI, DH, NDVI, NDVI DL.IR / DL.IR / DL.IR / DL.IR / DL. LS 9.78 / 7.72 / 4.66 / 3.11 / 3

AX-94513007 6D 1.5E+08 DM, TGW DL.IR / IIWBR 6.47 / 3.21

AX-94988124 5B 4.9E+08 GWPS, DH DL.2019.IR / DL.2019.LS 5.3 / 4.07

AX-94552601 4B 6.7E+08 NDVI DL.LS / DL.RI 7.45 / 3.03

AX-94436269 2B 9.6E+07 NDVI DL.2019.RI / DL.IR 9.22 / 3.04

AX-94560091 2B 6.6E+08 NDVI, DH DL.RI / DL.2019.LS 7.78 / 3.64

AX-95155574 5B 6.9E+08 NDVI DL.2019.LS 5.88 / 3.14

AX-94433353 5A 4.6E+08 NDVI DL.2019.LS / DL.2020.LS / DL.2019.LS.NDVI.3 9.25 / 4.2 / 3.73

AX-94762983 1D 1.7E+08 NDVI DL.2019.LS / DL.2019.LS 10.8 / 3.01

AX-94415907 5B 4.2E+08 PH JR.RI / IIWBR 6.65 / 3.41

AX-94598030 1A 1159536 TGW, NDVI JR.RI / DL.IR 5.82 / 3.36

AX-94759710 3D 2.3E+07 TGW, NDVI PUNE RI 5.3 / 3.16

*Bold one are pleiotropic MTAs.

from this region (Rivera-Burgos et al., 2022). Previous studies

confirmed the influence of the chromosome 5B on flowering

and the presence of VRN genes at 5B, influencing the vegetative

and reproductive traits (Kiseleva et al., 2016; Huang et al., 2018).

For NDVI, MTAs were obtained on chromosomes 1A and 5A

on the A genome, 2B, 4B, and 5B on the B genome and 1D,

3D, and 6D on the D genome. The MLM-Q+K-based analysis

detected unique NDVI QTLs on chromosomes 1A, 1B, 2B, 4A,

4B, 5A, 6A, 6B, and 7A in a study conducted by Condorelli

et al. (2018). Similarly, NDVI-related MTAs on 1A and 7A were

found out by Ward et al. (2019). As argued by Paliwal et al.

(2012), a chromosomal region on 2B is of prime importance for

heat stress. We obtained a stable SNP on the 2B chromosome

for NDVI with an 11.5% variation explained. Apart from these,

MTAs, viz., AX-94466450 (6B), AX-94988124 (5B) and AX-

94415907 (5B) were linked stably to the traits, plot yield, GWPS

and PH, respectively. Three SNPs, AX-94513007, AX-94598030

and AX-94759710, were identified for TGW on chromosomes

1A, 3D and 6D. In previous studies, markers linked with TGW

were observed in 6D (Wang et al., 2012; Chen et al., 2016),
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TABLE 6 Putative candidate genes identified at the 10kb region of Linked SNPs along with their molecular functions.

Trait SNP Gene Position Protein Role Reference

DH AX-94637995 TraesCS2D02G112700.1 2D: 62,401,570-62,405,841 AIG1-type guanine

nucleotide-binding (G)

domain

AX-94631711 TraesCS3A02G050211.2 3A: 26,472,148-26,482,725 Wall-associated receptor

kinase, galacturonan-binding

domain

Regulation of root growth Kaur et al., 2013

AX-95133267 TraesCS2D02G328100LC.1 2D: 300,439,172-300,440,223 Protein coding

AX-94578563 TraesCS3A02G086500.1 3A: 55,743,110-55,743,857 Invertase/pectin

methylesterase inhibitor

domain superfamily

Early development of wheat

grain endosperm and outer

layers

Mehdi et al., 2020

AX-94941121 TraesCS3A02G363000.1 3A: 611,700,692-611,703,172 SUGAR-1-PHOSPHATE

GUANYL TRANSFERASE

L-galactose guanyltransferase,

increases leaf ascorbate

content

Laing et al., 2007

AX-94435238 TraesCS5D02G410900.1 5D: 474,200,732-474,205,422 AUGMIN FAMILY Centrosome cycle spindle

assembly

Hotta et al., 2012

AX-95235622 TraesCS1D02G226200.1 1D: 314,573,418-314,574,779 RAN BINDING PROTEIN

DM AX-94513007 TraesCS6D02G166200.1 6D: 147,236,496-147,241,863 RNA recognition motif

domain

AX-94490240 TraesCS6D02G383800.1 6D: 462,536,412-462,540,932 ZINC FINGER,

RING/FYVE/PHD-TYPE

AX-94725580 TraesCS5B02G418600.1 5B: 594,867,010-594,872,193 Inosine-5’-monophosphate

dehydrogenase

Regulation of cell growth. Uniprot

NDVI AX-95155574 TraesCS5B02G536500.1 5B: 692,559,588-692,565,223 Serine/threonine-protein

kinase, active site

Flag leaf width, plant height

and water-soluble

carbohydrates under drought

conditions

Zhang et al., 2013

AX-94552601 TraesCS4B02G390400.1 4B: 666,571,620-666,572,590 Ubiquitin-like domain

AX-94463626 TraesCS5B02G405200.1 5B: 580,830,088-580,840,255 ALPHA-N-

ACETYLGLUCOSAMINIDASE

Fertilization and seed

development in Arabidopsis

Ronceret et al., 2008

AX-94560091 TraesCS2A02G444900.1 2A: 694,905,983-694,909,467 Peptidase S8 and S53 Integrin-mediated signaling

pathway, calcium ion binding

Uniport

AX-94436269 TraesCS2B02G127800.1. 2B: 95,794,615-95,797,096 AP2/ERF

DOMAIN-CONTAINING

PROTEIN

Ethylene-responsive

transcription factor

Djemal and Khoudi,

2015

AX-94433353 TraesCS5A02G246700.1 5A: 460,516,405-460,520,083 Protein kinase, ATP binding

site

AX-94762983 TraesCS1D02G197500LC.1 1D: 170,223,005-170,223,304 Protein coding

PH AX-94415907 TraesCS5B02G241800.1 5B: 421,643,604-421,643,664 ACTIN T1-LIKE PROTEIN

TGW AX-94759710 TraesCS3D02G055400.1 3D: 23,057,692-23,061,395 Glycosyl transferase, family 1 Development of Rice

Endosperm

Yang et al., 2021

AX-94598030 TraesCS1A02G001900.6 1A: 1,162,817-1,166,405 PEROXISOMAL

MEMBRANE PROTEIN

Plant proteases, protein

degradation, and oxidative

stress

Palma et al., 2002

1A (Ogbonnaya et al., 2017) and pleiotropic regions affecting

kernel weight-related traits on chromosomes 1B, 2A and 3A

(Chen et al., 2016). Contrary to this, stable SNPs for TGW were

observed on chromosomes 5A (Wang et al., 2017), 1D and 7A

(Edae et al., 2014). SNPs location on 1A, 3D and 6D were novel

in our study.

Stable expression along the different locations and

conditions is presumed to be the real association of these
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markers with the studied traits. Significant SNPs detected in

this study for grain yield parameter can be indirectly selected

under drought and heat condition having an influence on the

stress tolerance mechanism and pathway involved in abiotic

stress tolerance, which is also observed by Schmidt et al. (2020).

Hence, it is common to find markers to be associated with more

than one trait, i.e. pleiotropic influence. Significant pleiotropic

loci were detected for yield and stress tolerance-related traits

showing yield and stress tolerant traits have an influence on

one another as reported by Mathew et al. (2018). Similarly, we

found nine different stable MTAs showing pleiotropic effects

between different yield related and stress-tolerant traits as

depicted in Table 5. Important yield trait like TGW linked

SNPs, viz., AX-94598030 and AX-94759710 were pleiotropic

with NDVI, an important drought tolerant trait. Pleiotropy

between yield related and NDVI was found in a QTL mapping

study by Shi et al. (2017). SNP, AX-94513007, was having

pleiotropy between TGW and DM, a stay-green trait was helpful

in heat and drought tolerance. It is clear that markers, viz.,

AX-94725580, AX-94490240, AX-94560091 and AX-94463626

exhibit pleiotropy among traits DH, DM and NDVI. Due to

the interdependence on one another they are bound to share

genes in common and the results can also be supported by the

presence of positive correlation among these traits (Figure 2).

Pleiotropy between NDVI and TGW observed by the markers

AX-94598030 and AX-94759710 indicates the collinearity

between stress tolerant and yield-related traits under stress

condition. Markers such as AX-94560091 located near to the

transcript TraesCS1A02G001900 related to Integrin-mediated

signaling pathway and calcium ion-binding protein obviously

having multiple roles in drought tolerance in plant system

(Lü et al., 2007; Takahashi et al., 2020). Pleiotropic maker

AX-94598030 was mapped near the proteins involved in stress

tolerance, such as peroxisomal membrane protein (Table 6),

which are involved in the mitigation of protein degradation

and oxidative stress tolerance (Palma et al., 2002), in turn may

have influence on yield parameters in stress. The pleiotropic

effect between stress tolerance and grain traits are previously

reported in many studies (Ahmed et al., 2022b). Markers

such as AX-94578563 and AX-94941121 associated with

DH were present near the gene coding for Invertase/pectin

methylesterase inhibitor domain superfamily and sugar-1-

phosphate guanyl transferase, respectively. The first has a

role in early development of wheat grain endosperm and

outer layers (Mehdi et al., 2020), which is related to flowering

fertilization in flowering plants. Whereas the second one has

a role in L-galactose guanyl-transferase, which increases leaf

ascorbate content that induces early flowering (Laing et al.,

2007). These findings found out that novel MTAs that are

detected here can be evaluated further for the validation of

the markers.

Furthermore, such markers can be utilized for marker

assisted breeding for genes related to drought and heat

tolerance along with high yield. MTAs that are stable across

the environment have great potential to be deployed

in developing new wheat varieties through molecular

breeding. Marker validation and pathway followed by

the genes associated with markers can be analyzed for

further evidence to support the reliability of associations,

thereby have utilization in breeding programmes. As

the plant materials used in the study are advanced

breeding lines that are used for further evaluation to

release variety or can be directly used as parents in

breeding programmes.

Conclusion

Genetic dissection of the genomic region responsible for

drought and heat tolerance is having immense importance

in the development of climate-resilient varieties. A total

of 295 advanced breeding lines used in GWAS panel

showed continuous variation for most of the studied traits.

Sufficient genetic diversity was observed in AM panel with

structured two subpopulations. A large LD block size of

7.15MB was found out showing reliable linkage of markers

with the trait of interest for more generations. Fifty-seven

high-confident markers associated with drought and heat

tolerance and yield related traits, viz., DH, DM, NDVI,

PH and TGW were discovered in this study. Many of the

identified MTAs were located near the putative candidate

gene and protein coding transcript influencing the traits of

interest. A total of 22 stable MTAs identified across the

locations were having practical utilization in future wheat

breeding programmes.
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