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The accurate and robust detection of fruits in the greenhouse is a critical

step of automatic robot harvesting. However, the complicated environmental

conditions such as uneven illumination, leaves or branches occlusion, and

overlap between fruits make it di�cult to develop a robust fruit detection

system and hinders the step of commercial application of harvesting robots. In

this study, we propose an improved anchor-free detector called TomatoDet to

deal with the above challenges. First, an attention mechanism is incorporated

into the CenterNet backbone to improve the feature expression ability. Then,

a circle representation is introduced to optimize the detector to make it

more suitable for our specific detection task. This new representation can

not only reduce the degree of freedom for shape fitting, but also simplifies

the regression process from detected keypoints. The experimental results

showed that the proposed TomatoDet outperformed other state-of-the-art

detectors in respect of tomato detection. The F1 score and average precision

of TomatoDet reaches 95.03 and 98.16%. In addition, the proposed detector

performs robustly under the condition of illumination variation and occlusion,

which shows great promise in tomato detection in the greenhouse.

KEYWORDS

tomato detection, anchor-free, CenterNet, deep learning, harvesting robots

1. Introduction

Tomato harvesting is a labor-intensive work, which needs a lot of human resources.

It is also very time consuming and includes much tedious work. However, with the

development of urbanization and aging of society, the people in the countryside have

decreased a lot, and the labor cost continues to increase, resulting in a big labor shortage

in farming work (Yue et al., 2015). On the other side, intelligent agriculture is developing

fast in the past decades, which is an ideal substitute of human resources for farming work.

Among the various technologies applied in the agriculture, the fruit harvesting robot is

one of the prominent artificial intelligent techniques. It has huge potential efficiency in

fruit harvesting, which can bring high profit as well as liberating the labor force. Thus, it

is of great value and significance to develop harvesting robots.

A harvesting robot usually consists of two components—a vision system and an

eye-hand coordination system (Zhao et al., 2016a). The vision system plays a key role in
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FIGURE 1

A tomato is modeled as a center point of its bounding circle. The radius of the bounding circle can be inferred from the keypoint at the center.

the whole system, since the first critical step for the harvesting

robot is to detect fruits autonomously. This step determines

the detection and subsequent picking accuracy of harvesting

robots. Thus, it is very crucial to develop a robust fruit

detection algorithm of the vision system. However, at present,

no harvesting robot has been commercialized successfully due

to either low detection accuracy or low detection speed. Many

factors have hindered the pace of harvesting robot development

such as uneven illumination, occlusion, overlap, and some other

unpredictable factors (Gongal et al., 2015).

To deal with the above challenges, many researchers have

studied fruit detection over the past years. In the early years,

some researchers used threshold discriminant methods for fruit

detection based on color, shape, texture, or fusion of them

(Linker et al., 2012; Kelman and Linker, 2014; Wei et al.,

2014), and achieved reasonable detection results. Bulanon et al.

(2002) used an optimal threshold extracted from the intensity

histogram of a red-color-difference enhanced image for apple

recognition. The results showed that the success rate exceeds

88%. This method is restricted to ripe apples which present

different color to the background. Okamoto and Lee (2009)

employed hyperspectral imaging for detection of green citrus.

The method is separated into pixel-wise segmentation process

using pixel discrimination functions and fruit recognition

process with thresholds selected by trial and error. This method

greatly relies on the selection of several optimal thresholds, and

thus is lack of robustness when the fruit environment changes.

Inspired by the eigenface concept, Kurtulmus et al. (2011)

proposed a novel eigenfruit feature for green citrus detection,

combined with color and circular gabor texture. Although

intrinsic texture features are used other than only color features,

the method still confuses some fruits with background and

does nothing with severe occluded fruits. Zhao C. et al. (2016)

developed a cascaded pixel segmentation method for immature

citrus detection in natural environment. Three color feature

maps and a block matching method are adopted to identify

potential fruit pixels. Finally, an SVM classifier is used to

remove false detections. Nevertheless, with only color feature for

segmentation in the early stage, many fruits are missed by the

method due to similarity between green fruits and background.

Zhao et al. (2016b) proposed amulti color feature fusionmethod

based on wavelet transformation for mature tomato recognition.

The detection accuracy reaches 93%. However, since only color

features are employed, the method is inferred to be sensitive

to illumination variation. These methods greatly rely on the

selection of suitable thresholds, making them sensitive to the

changes in the form of fruit presentation, such as illumination

variation and occlusion.

With the development of machine learning, many

researchers tried to apply them to fruit detection, such

as adaboost, support vector machine (SVM) or other

statistical classifiers (Kurtulmus et al., 2014; Lv et al., 2014;

Yamamoto et al., 2014), and get better results than the threshold

discriminant methods. Zhao et al. (2016c) used an adaboost

classifier associated with haar features for tomato detection.

An average pixel value feature is adopted for the removal of

false detections. More than 96% of tomatoes are detected in

their study. Li et al. (2017) proposed to use an SVM trained on

histogram-based features for green and ripe tomato recognition.

Prior to detection, the fast normalized cross correlation method

is used to extract the potential tomato regions. Finally, the

circular hough transform and color analysis are combined

to obtain tomato positions. Behroozi-Khazaei and Maleki

(2017) proposed to use an artificial neural network optimized

by genetic algorithm for grape cluster detection. Also, the

genetic algorithm is adopted for color feature selection, which

subsequently serves as input to the network. A Bi-Layer schema

was proposed for automatic detection of ripening tomatoes

by Wu et al. (2019). In their method, a weighted relevance

vector machine is used for tomato recognition based on six

color-related features and five textural features. A detection

rate of 94.90% is reported in the results. Liu et al. (2019)

developed a coarse-to-fine method for ripe tomato detection in

the greenhouse. First, a naïve bayes classifier is used to identify

potential tomato area, on which an SVM classifier combined

with histogram of oriented gradients is applied to recognize

tomatoes. At last, a color analysis method is proposed to remove

false detection. The machine learning methods usually achieve

better performance than threshold discriminant methods.

However, the low-level abstraction capabilities of hand-crafted

features make it difficult to adapt these methods to complicated

environmental change.
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The emergence of deep learning methods especially

convolutional neural networks provides a new paradigm for

computer vision tasks, including fruit detection tasks (Sa et al.,

2016; Tian et al., 2019; Zheng et al., 2021). These methods can

learn feature representations directly from the data and can be

trained end-to-end. Nevertheless, the detection accuracy and

robustness still need to be improved to enable real commercial

applications under complicated conditions as discussed above.

To address the above problems, this study proposes an

effective anchor-free detector called TomatoDet for tomato

detection. The proposedmodel represents a tomato by the center

point of its bounding circle, as shown in Figure 1. First, to

improve the expression ability of the backbone network, an

attention mechanism is introduced to guide the network to

pay more attention to the region of interest (ROI), especially

small tomatoes. Second, a bounding circle is adopted for tomato

localization instead of the traditional bounding box, which is

commonly used for general object localization.

Our main contribution is three-fold as follows:

1. The Convolutional Block Attention Module is introduced

into the backbone network of CenterNet (Zhou et al., 2019)

called Attentive-DLA34 to boost the representation power.

2. A circle representation for tomato detection is adopted

to adapt the traditional detection methods to our specific

detection task. The new circle representation not only

reduces the degree of freedom for shape fitting, but also

simplifies the regression process from detected keypoints.

3. Extensive experiments are conducted on tomato datasets.

We show that the proposed TomatoDet achieves better

performance in terms of both accuracy and robustness,

compared to the original CenterNet and other state-of-the-

art object detectors.

2. Related work

In recent years, deep learning methods have shown

continuous performance improvements on fruit detection.

A “MangoYOLO” detector was proposed for fruit detection

and fruit load estimation by Koirala et al. (2019). This

model combines the advantages of YOLOv2 (Redmon and

Farhadi, 2017) and YOLOv3 (Redmon and Farhadi, 2018),

which has both high detection speed and detection accuracy.

It outperforms other methods such as Faster R-CNN (Ren

et al., 2015), YOLOv2 (Redmon and Farhadi, 2017), YOLOv3

(Redmon and Farhadi, 2018), and SSD (Liu et al., 2016), on

their Mango dataset. Bresilla et al. (2019) improved YOLO

(Redmon et al., 2016) model for apples and pears detection.

First, the grid-scale is scaled up twice to fit the size of the

fruits. Second, the model is pruned to improve the detection

speed while not degrading the accuracy. Afonso et al. (2020)

appliedMask R-CNN to the tomato dataset for detection. Several

neural networks are used as backbone for feature extraction.

The best F1 score reaches over 94% in their report. Liu G. et al.

(2020) proposed a YOLO-Tomato for tomato detection based

on YOLOv3 (Redmon and Farhadi, 2018). A dense architecture

is incorporated to the backbone to facilitate feature reuse,

and a circular bounding box is adopted to optimize the non-

maximum suppression process. Themodel achieves a competing

performance compared to state-of-the-art detection methods.

Zheng et al. (2021) improved YOLOv4 (Bochkovskiy et al.,

2020) for green citrus detection. First, the backbone network

is trimmed to reduce detection time. Then, a novel Bi-PANet

is proposed to fuse features from different layers. With the

modifications, the detection accuracy is reported to be 86%

on their dataset. Zhang et al. (2021) developed an edge-device

oriented lightweight model for fruit detection. The structure of

the original CSPNet is lightened to boost detection speed, and

a deep-shallow feature fusion model is proposed to enhance the

expression ability of the network. Tested on three types of edge

devices, the average detection precision reaches 93, 84.7, and

85% for oranges, tomatoes, and apples, respectively. Wei et al.

(2022) proposed a green fruit detection model based on D2Det.

By incorporating MobileNetV2, feature pyramid networks and

region proposal network structure into the original model, the

detection accuracy of green fruits in orchard environments was

greatly improved. Chen et al. (2022) improved YOLOv4 for the

detection of citrus by incorporating an attention mechanism

and a depthwise separable convolution module. In addition,

a pruning algorithm was applied to remove the influence of

irrelevant latent factors of the data.

Although exciting results are achieved by the abovemethods,

there is still much room for optimization of the networks to

improve detection performance. Moreover, the above methods

are all anchor-based methods, which commonly perform

nearly exhaustive anchor classification over the image and

have many hyperparameters for anchor design, reducing the

detection efficiency.

3. Materials and methods

3.1. Image acquisition

The images used in this study are captured using a digital

camera (Sony DSC-W170, Tokyo, Japan) with a resolution of

3,648 × 2,056 pixels in a Tomato Production Base, which is

located in Shouguang City, Shandong Province, China. The

datasets are collected under various environment conditions

including sunlight, shading, occlusion, and overlap, etc. Some

examples captured under different conditions are shown

in Figure 2.

To verify the proposedmethod, the datasets are split into two

subsets—a training set and a test set. The training set contains

725 images, and 241 images are included in the test set. Totally,

966 images are used in this study. For data labeling, a tool
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FIGURE 2

Some tomato samples with di�erent growing circumstances: (A) a single tomato, (B) a cluster of tomatoes, (C) occlusion case, (D) overlap case,

(E) shading case, and (F) sunlight case.

FIGURE 3

Data augmentation of tomato images: (A) original image, (B) horizontal flip, (C) scaling and cropping, (D) high brightness, (E) low brightness, (F)

color balancing, and (G) blur processing.

called Label-Tomato has been developed to annotate images

with proposed bounding circles based on Python. The output

format of Label-Tomato is txt files, which include the numbers

and locations of tomatoes for each image.

3.2. Data augmentation

To avoid over-fitting of the model in the training process,

the data augmentation is used in this study to simulate real-

life interference and enhance the richness of the collected

datasets. Several image processing technologies are adopted for

augmentation - horizontal flip, scaling and cropping, brightness

transformation, color balancing and image blurring, as shown

in Figure 3. For the brightness transformation, we use a factor

falling in the range [0.6, 1.4] to change the intensity of the

pixels in the image randomly. This process can simulate different

weather factors on the image intensity. For the scaling and

cropping operation, we follow the same process as in Liu G. et al.

(2020). To eliminate the effect of lighting on color rendering, we

adopt the gray world algorithm (Lam, 2005) for color balancing.

Finally, we randomly blur the augmented images by flip, scaling

and cropping, brightness transformation, and color balancing to

simulate indistinct images caused by camera movement. After

data augmentation, the whole number of resultant images is

shown in Table 1.
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TABLE 1 The number of training images after data augmentation.

Original Flip
Scaling

and cropping
Brightness Color Blur Total

No. of tomato images 725 725 725 1,450 725 725 5,075

FIGURE 4

An overview of the proposed model.

3.3. Overview of tomatoDet

Our tomato detection model, called TomatoDet, pools

several concepts from the past work with our novel idea

to improve the detection performance. An overview of the

proposed model is shown in Figure 4. The proposed TomatoDet

is based on CenterNet and consists of two modules. The first

module is used for feature extraction. It adopts Deep Layer

Aggregation-34 (DLA34) (Yu et al., 2018) as the backbone and

incorporates Convolutional Block Attention Module (CBAM)

(Woo et al., 2018) to improve the feature expression ability and

guide the network to focus on small-scale tomato targets. The

second module is the detection head. The architecture of the

detection head is like that of CenterNet, except that we use a

radius head instead of the height and width head for bounding

circle prediction. More details are presented in Sections 3.4

and 3.5.

3.4. The proposed attentive-DLA34
backbone

In this study, an attentive Deep Layer Aggregation network

(Attentive-DLA34) is proposed as the base backbone for feature

extraction. The DLA is inspired by dense connection and

feature pyramid and has two main structures: the iterative

deep aggregation (IDA) and the hierarchical deep aggregation

(HDA). The IDA is mainly used for feature fusion across

resolutions and scales while the HDA focuses on semantic

fusion, i.e., aggregating features from different channels and

depths in a tree-based structure. Based on these two structures,

the DLA could make better use of spatial and semantic

information for recognition and localization. However, the

complicated conditions make it challenging to detect tomatoes

in a natural environment, not to mention the existence of a

large number of small tomatoes. To mitigate this problem,

we introduce an attention mechanism—Convolutional Block

Attention Module (CBAM)—into the backbone network to

guide it to paymore attention to the region of interest (ROI). The

architecture of the proposed Attentive-DLA34 model is shown

in Figure 5.

As shown in Figure 5, we replace the original layers in

each stage with CBAM to focus its attention on tomato areas.

For CBAM, it is divided into a channel attention module and

a spatial attention module in a sequential manner. First, the

channel attention module takes the input and infers a 1D

channel attention map. Then, the multiplication output of the

input and the attention map is inputted to the spatial attention

module to get the final output feature map in the same way. The

detailed operation can be depicted in Equations (1) and (2):

F′ = Mc(F)⊗ F (1)
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FIGURE 5

The proposed attentive-DLA34 model.

F′′ = Ms
(

F′
)

⊗ F′ (2)

where ⊗ indicates element-wise multiplication, F ∈ RC×H×W

is the input feature map, MC ∈ RC×1×1 denotes the generated

channel attention map, and Ms ∈ R1×H×W denotes the

generated spatial attention map. F′′ is the final output by CBAM.

3.5. Circle representation

For general object detection, a bounding box is usually

adopted for object localization. However, this type of detection

representation is not optimal for specific objects which have

a particular shape. In this study, since our detection target is

tomato, which is roughly circular, it is better to use bounding

circles instead of bounding boxes for localization. It has three

folds of advantages. Firstly, compared with bounding boxes,

bounding circles could better match the shape of tomatoes.

Secondly, the representation of a circle is simpler than that of

a box, which makes it easier for the network to learn. Lastly, the

circle is invariant to rotation.

3.5.1. From point to bounding circle

For an input image I ∈ RW×H×3 with width W and

height H, the target is to produce a keypoint heatmap Ŷ ∈

[0, 1]
W
K ×H

K ×C , where K is the downsampling ratio of output

and C is the number of classes. A prediction from the heatmap

Ŷx,y,c = 1 denotes a detected keypoint, and Ŷx,y,c = 0 denotes

background. Following Law and Deng (2018), the ground truth

of the keypoints is mapped onto a heatmap Y using a 2D

Gaussian kernel as in Equation (3):

Yx,y,c = exp

(

−

(

x− p̃x
)2

+
(

y− p̃y
)2

2σ 2
p

)

(3)

where p̃x and p̃y are the equivalent groundtruth keypoints of

prediction, and they are downsampled by the factor K from

the original keypoint p and are then discretized. σp is a kernel

standard deviation.

After getting the peaks of the heatmap for tomatoes, the top

N peaks are selected among all the detected responses whose

value is greater or equal to its eight-connected neighbors. We

define P̂ =
{(

x̂i, ŷi
)}N

i=1 as the set of N detected center points.

The confidence of the detected bounding circle is represented by

the keypoint values Ŷxi,yi,c, and the center point p̂ and radius r̂

of the bounding circle is denoted as follows:

p̂ =
(

x̂i + 1x̂i, ŷi + 1ŷi
)

(4)

r̂ = R̂x̂i,ŷi (5)

where
(

1x̂i,1ŷi
)

= Ôx̂i,ŷi ∈ R
W
K ×H

K ×2 is the offset prediction

and R̂x̂i,ŷi ∈ R
W
K ×H

K ×C is the radius prediction.

3.5.2. Bounding circle IOU

The intersection-over-union (IOU) is commonly used to

evaluate the similarity of two bounding boxes. In this study,
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FIGURE 6

The schematic diagram of cIOU.

we introduce a circle IOU (cIOU) for evaluation of two

bounding circles.

As shown in Figure 6, denoting the center coordinates of

two intersected circles O1 and O2 be
(

x1, y1
)

and
(

x2, y2
)

,

respectively, the distance between two centers d can be

represented in Equation (6) and satisfies the condition |R− r| ≤

d ≤ |R+ r|.

d =

√

(x1 − x2)
2 +

(

y1 − y2
)2

(6)

The angles α and β can be calculated as:

α = cos−1 r21 + d2 − r22
2r1d

(7)

β = cos−1 r22 + d2 − r21
2r2d

(8)

Then, the intersection area AO1∩O2 and union area AO1∪O2

of circles O1 and O2 can be derived as in Equations (9) and (10).

AO1∩O2 = αr21 + βr22 −
1

2
r21 sin 2α −

1

2
r22 sin 2β (9)

AO1∪O2 = πr21 + πr22 − AO1∩O2 (10)

Consequently, the cIOU can be represented as follows:

cIOU =
(2α − sin 2α)r21 + (2β − sin 2β)r22

(2π − 2α + sin 2α)r21 + (2π − 2β + sin 2β)r22
(11)

3.6. Loss function

The loss function of TomatoDet in the training stage consists

of three parts, i.e., the keypoint heatmap loss, bounding circle

radius loss and center offset loss. The keypoint heatmap loss Lhm
is based on focal loss (Lin et al., 2017) as in Equation (12).

Lhm =

−
1

N

∑

x,y,c







(

1− Ŷx,y,c

)α

log Ŷx,y,c if Yx,y,c = 1
(

1− Yx,y,c

)β
(

Ŷx,y,c

)α

log
(

1− Ŷx,y,c

)

otherwise

(12)

whereN is the number of keypoints in an image, and α and β are

hyper-parameters for the focal loss. In this study, α and β are set

to be 2 and 4 following Zhou et al. (2019).

To rectify the keypoint location error resulting from the

discretization of downsampling, an offset loss Loff is designed

to measure the difference between the predicted offset Ô and the

groundtruth O based on L1 loss.

Loff =
1

N

∑

p

∣

∣

∣
Ôp̃ − Op̃

∣

∣

∣
(13)

The tomato radius is regressed from the center points

optimized by the radius loss Lr in Equation (14).

Lr =
1

N

N
∑

k=1

∣

∣

∣
R̂pk − rk

∣

∣

∣
(14)

where R̂pk and rk denotes the predicted and groundtruth radius

of the kth tomato, and N represents the number of results.

Above of all, the total loss of TomatoDet is denoted as in

Equation (15).

Ldet = Lhm + λoff Loff + λrLr (15)

where λoff = 1 and λr = 0.1 are used in our experiment to balance

different losses, referring to Zhou et al. (2019).

3.7. Experimental setup

The experiments are performed on a Ubuntu 16.04 with an

Intel(R) Core(TM) i7-9700 K CPU@3.60 GHz. It is accelerated

by an NVIDIA GeForce GTX 1080Ti GPU. The proposed

TomatoDet model is implemented on Pytorch.

The model is trained on an input resolution of 512 × 512

pixels. It is trained with a batch size of 8 and an initial learning

rate of 1.25e-4 for 140 epochs. The learning rate is then dropped

10 at 90 and 120 epochs, respectively.

To evaluate the performance of the proposed method, recall

(R), precision (P), and F1 score are used as the criterion indexes.

They are defined in Equations (16)–(18):

P =
TP

TP + FP
(16)
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R =
TP

TP + FN
(17)

F1 =
2× P × R

P + R
(18)

where TP, FP, and FN represent true positives (correct

detections), false positives (false detections), and false negatives

(missing detections), respectively.

Besides, the average precision (AP) is adopted in this study

to evaluate the overall detection performance. AP is defined

as follows:

TABLE 2 Ablation study on the major components of TomatoDet.

Attention Circle Recall Precision F1 AP

module representation (%) (%) (%) (%)

91.56 92.98 92.26 95.75

X 92.87 94.32 93.59 97.11

X 92.98 94.43 93.70 96.98

X X 94.30 95.77 95.03 98.16

FIGURE 7

PR curves of the major components of TomatoDet for ablation

study. The markers indicate the points where recall and

precision are obtained when the prediction confidence

threshold equals 0.6.

TABLE 3 Tomato detection results of di�erent algorithms.

Methods Recall Precision F1 AP (ms)

(%) (%) (%) (%) (ms)

YOLOv2 86.18 87.24 86.71 88.46 30

YOLOv3 90.89 91.60 91.24 94.06 45

YOLO-Tomato 93.09 94.75 93.91 96.40 54

YOLOv4 92.76 94.11 93.43 96.59 25

Faster R-CNN 91.78 92.89 92.33 94.37 231

CenterNet 91.56 92.98 92.26 95.75 32

TomatoDet 94.30 95.77 95.03 98.16 35

AP =
∑

n

(

rn+1 − rn
)

pinterp
(

rn+1
)

(19)

pinterp
(

rn+1
)

= max
r̃ : r̃≥rn+1

p(r̃) (20)

where p(r̃) is the measured precision at recall r̃.

4. Results and discussion

4.1. Ablation study

In this study, an attention mechanism and a circle

representation are incorporated to the proposed detector. In

order to evaluate the effectiveness of each component, an

ablation study is performed on the tomato dataset. The results

of the ablation experiments are shown in Table 2 and Figure 7.

From Table 2, we can see that the incorporation of the

attention mechanism brought a significant improvement of

all the indexes including the recall, precision, F1 score and

average precision (AP). The F1 score and AP increases by 1.33

and 1.36%, respectively. This verifies the advantages of the

proposed attentive-dla34 backbone, which optimizes the focus

of the network and boosts the representation power. We also

performed a contrast experiment to verify the effectiveness of

the circle representation.With circle representation, the F1 score

and AP increases by 1.44 and 1.23%, respectively, as shown in

Table 2. This benefits from the intrinsic shape fitting of the new

circle representation to tomatoes, which can reduce the degree

of freedom of the rectangle representation and simplify the

regression process from detected keypoints. We also show the

precision-recall (PR) curves of different components in Figure 7.

The markers indicate the points where recall and precision are

obtained when the confidence threshold equals 0.6. It can be

FIGURE 8

PR curves of di�erent detection algorithms.

Frontiers in Plant Science 08 frontiersin.org

https://doi.org/10.3389/fpls.2022.942875
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.942875

seen that the detection performance improves significantly with

the incorporation of different components.

4.2. Comparison of di�erent methods

To verify the performance of the proposed TomatoDet

model, we designed a comparative experiment of the state-of-

the-art detection algorithms, including YOLOv2 (Redmon and

Farhadi, 2017), YOLOv3 (Redmon and Farhadi, 2018), YOLO-

Tomato (Liu G. et al., 2020), YOLOv4 (Bochkovskiy et al.,

2020), Faster R-CNN (Ren et al., 2015), CenterNet (Zhou et al.,

2019), and the proposed model. Among all of these algorithms,

the Faster R-CNN is a two-stage detector, and the others are

one-stage detectors. Moreover, CenterNet and the proposed

TomatoDet are anchor-free detectors, while the remaining are

all anchor-based methods.

The recall, precision, F1 score, average precision (AP),

and average detection time are the evaluation indicators, as

shown in Table 3. The precision-recall (PR) curves of different

detection models are shown in Figure 8. In terms of detection

performance, one can see that the proposed TomatoDet is

superior to the other five methods. The F1 score of TomatoDet

is 95.03%. It is 1.12% higher than that of YOLO-Tomato,

FIGURE 9

The (A) F1, (B) recall, and (C) precision curves of di�erent detection algorithms.

TABLE 4 Performance of the proposed TomatoDet under di�erent lighting conditions.

Illumination Tomato count
Correctly identified Falsely identified Missed

Amount Rate(%) Amount Rate (%) Amount Rate (%)

Sunlight 487 460 94.46 22 4.56 27 5.54

Shading 425 400 94.12 16 3.85 25 5.88
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which obtains the second-best performance. In terms of AP,

TomatoDet performs 1.76 and 1.57% better than YOLO-

Tomato and YOLOv4, respectively. Compared to CenterNet,

the proposed TomatoDet is about 2.8 and 2.4% higher in terms

of F1 score and AP, respectively. We also show the F1, recall

and precision curves in Figure 9, separately. In accordance

with the PR curves, they demonstrate the superiority of the

proposed TomatoDet over other methods. This verifies the

effectiveness of the proposed modifications. The introduction

of CBAM guides the model to pay more attention to the ROI

and thus improves the feature expression ability of the network.

Besides, the adoption of bounding circles makes it easier to

regress from center points to the size as the bounding circle

only has one parameter, i.e., radius. Furthermore, bounding

circles could match the shape of tomatoes better in nature and

improve the IOU. The average detection time of the proposed

model reaches 0.036 s per image. It is about 0.2 s less than

Faster R-CNN and almost the same as the YOLOv2 model. The

experimental results show that the proposed TomatoDet could

detect tomatoes in complex environments in real-time with

strong robustness.

4.3. Qualitative analysis

To better understand the prediction ability of our proposed

TomatoDet, the output feature is visualized. Figure 10 shows

FIGURE 11

PR curves of the proposed method under di�erent

lighting conditions.

FIGURE 10

(A–F) Some examples of detection results along with the output heatmap.
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some examples of detection results along with the output

heatmap. From the second row of the subfigures, one can see that

through the proposed attentive-DLA34 backbone, the heatmap

almost only fires at the area of tomatoes, including small and

severe occluded ones. This benefits from the combination of

CBAM and DLA34, which emphasizes the meaningful features

throughout the network and thus boosts the representation

power. Further, the keypoints for tomatoes are extracted from

the peaks of the heatmap and are then regressed to the radius

of the proposed bounding circle, which reduces the degree of

freedom of fitting compared to the traditional bounding boxes,

as is shown in the first row of the subfigures.

4.4. Performance of the proposed model
under di�erent lighting conditions

In the natural environment, tomatoes may be exposed

to different lighting conditions due to uneven illuminations.

The performance of the proposed TomatoDet under different

lighting conditions is evaluated in this study. Among all the

tomatoes in the test set, 425 tomatoes are in shading conditions,

while 487 tomatoes are in sunlight conditions. The correct

identification rate (or recall), false identification rate andmissing

rate are used as evaluation indicators.

As shown in Table 4, 460 out of 487 tomatoes are correctly

identified by the TomatoDet under sunlight conditions. The

counterpart is 400 out of 425 for the shading conditions.

The correct identification rates are comparable. The false

identification rates are 4.56 and 3.85% for sunlight and

shading conditions, respectively. This means that some of

the detections are falsely recognized as tomatoes, which in

fact are leaves, branches, or other backgrounds. This occurs

when the background presents similar color and shape to

tomatoes. The above results show that the proposed method is

robust under different lighting conditions in real scenes. From

Figure 11, one can see that the PR curves under sunlight and

shading conditions are comparable, showing the robustness of

the proposed method to different lighting conditions. Some

examples are shown in Figure 12.

4.5. Performance of the proposed model
under di�erent occlusion conditions

In the greenhouse, tomatoes are inevitably obscured by

leaves or branches and overlap with each other. This will

have a certain impact on tomato detection. In this study, we

also evaluate the performance of the proposed method under

different occlusion conditions. As in YOLO-Tomato (Liu G.

et al., 2020), depending on the degree of occlusion or overlap,

FIGURE 12

Some examples of the detection results under di�erent lighting conditions: (A–C) sunlight conditions, and (D–F) shading conditions.

TABLE 5 Performance of the proposed TomatoDet under di�erent occlusion conditions.

Occlusion
condition Tomato count

Correctly identified Falsely identified Missed

Amount Rate (%) Amount Rate (%) Amount Rate (%)

Slight case 609 576 94.58 22 3.68 33 5.42

Severe case 303 284 93.73 16 5.33 19 6.27
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we classify tomatoes as slight and severe occlusion cases. Severe

cases refer to tomatoes being blocked by leaves, branches, or

other tomatoes bymore than 50% degrees. Conversely, tomatoes

are regarded as slight cases. The detection results are shown in

Table 5 and Figure 13.

Based on the above experiments, one can see that the

detection performance for tomatoes under slight occlusion

cases is marginally better than that of tomatoes under severe

cases. This shows that occluded and overlapped tomatoes

cause inaccurate detections. Nevertheless, most of the occluded

and overlapped tomatoes can be detected by our model

correctly. This is achieved by the accurate keypoints estimation

resulting from the implicit contextual information utilization

of the convolutional neural networks since the networks learn

hierarchical features through multiple levels of abstraction.

FIGURE 13

PR curves of the proposed method under di�erent occlusion

conditions.

However, it is believed that the detection performance of

occluded tomatoes can be further improved by exploiting

contextual information explicitly (Liu L. et al., 2020). Figure 14

shows some examples of detection results for both cases.

5. Conclusions and future work

In this study, we propose TomatoDet, an improved

anchor-free detector for tomato detection based on

CenterNet. The proposed detector incorporates an attention

mechanism to optimize the focus of the network and

thus boost the representation power. In addition, a circle

representation is introduced to adapt the detector to

our specific detection task. With circle representation,

the degree of freedom for tomato fitting is reduced

and the regression process from keypoints to the size

is simplified.

The experimental results show that the

proposed TomatoDet is superior to other state-

of-the-art detectors for tomato detection in the

greenhouse. It can also detect tomatoes under

different lighting and occlusion conditions with

strong robustness.

Although the proposed model has achieved a good

performance on the tomato datasets, there is still much space

for further development. They can be summarized as follows:

When the overlap or occlusion area is high, the detection

rate will drop. One possible solution is to incorporate contextual

information such as branches or leaves to improve the detection

accuracy.

The experimental dataset is relatively small and more data

are needed for training and verification in the future study.

FIGURE 14

Some examples of detection results under di�erent occlusion conditions: (A–C) slight cases and (D–F) severe cases.
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Moreover, the characteristics of tomatoes in different

growing stages will be analyzed to realize multi-stage

tomato detection.
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