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Having DNA-binding profiles for a sufficient number of genome-encoded

transcription factors (TFs) opens up the perspectives for systematic evaluation

of the upstream regulators for the gene lists. Plant Cistrome database, a

large collection of TF binding profiles detected using the DAP-seq method,

made it possible for Arabidopsis. Here we re-processed raw DAP-seq data

with MACS2, the most popular peak caller that leads among other ones

according to quality metrics. In the benchmarking study, we confirmed that

the improved collection of TF binding profiles supported a more precise gene

list enrichment procedure, and resulted in a more relevant ranking of potential

upstream regulators. Moreover, we consistently recovered the TF binding

profiles that were missing in the previous collection of DAP-seq peak sets.

We developed the CisCross web service (https://plamorph.sysbio.ru/ciscross/)

that gives more flexibility in the analysis of potential upstream TF regulators for

Arabidopsis thaliana genes.

KEYWORDS

multi-omics data integration, DAP-seq, proximal promoters, RNA-seq, transcription
factor binding profiles

Introduction

Transcription factors (TFs) activate, repress, or fine-tune transcription of their
targets. As TFs bind short genomic regions with specific target sequences, transcription
factor binding sites (TFBS), the list of TF target genes can be predicted by localizing the
TFBS in promoters. Inversely, the regulatory regions of coordinately expressed genes
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possess TFBS for the same TFs, so that potential upstream
regulators can be detected via statistical enrichment analysis.

TFBSs are localized with greater or lesser precision
via a number of experimental and computational methods.
A variety of next-generation sequencing techniques have been
applied in recent years to detect genome-wide TF binding
profiles. For example, chromatin immunoprecipitation assay
with sequencing (ChIP-seq) captures genomic regions bound
by a DNA-associated protein in a sample for certain tissue,
cell type, or treatment (Johnson et al., 2007); the DNA Affinity
Purification and sequencing (DAP-seq) approach detects the
DNA fragments from genomic DNA libraries that are bound
by an in vitro expressed TF (O’Malley et al., 2016). DAP-seq
highlights all genome loci which can be potentially bound by a
TF, and it can be applied to hundreds of TFs.

Chromatin immunoprecipitation assay with sequencing and
DAP-seq TF binding profiles consist of extended TF binding
loci, also called peaks. One can use a peak set to assess an
enrichment in the regulatory regions of the candidate genes and
to test if the TF could be their common upstream regulator.
Large collections of peaks for hundreds of TFs (O’Malley et al.,
2016; Zheng et al., 2019; Kolmykov et al., 2021; Hammal
et al., 2022) may allow predicting the upstream regulators
systematically. Enrichr, a comprehensive gene list enrichment
analysis web server (Kuleshov et al., 2016), predicts mammalian
transcriptional regulators using hundreds of mammalian TF
binding profiles from ENCODE (Davis et al., 2018). In the plant
field, the large collection of DAP-seq profiles for 529 Arabidopsis
thaliana TFs (O’Malley et al., 2016) is used for the enrichment
analysis in web services TF DEACoN (Harkey et al., 2020) and
EAT-UpTF (Shim and Seo, 2020).

The primary processing of raw data from ChIP-seq or DAP-
seq experiments includes the peak calling step, a computational
method used to identify areas in the genome that have been
enriched with aligned reads. Peak caller GEM (Guo et al., 2012)
was used to process raw data of the DAP-seq experiment for the
Plant Cistrome database (O’Malley et al., 2016). The peak calling
tool MACS2 (Zhang et al., 2008) has been the most commonly
used peak caller (Nakato and Sakata, 2021) with over 6,400
citations as of Apr. 2022. A recent benchmark study of several
peak callers including MACS2 and GEM by the multiple quality
metrics confirmed that although these two tools outperformed
other peak callers, the MACS2 tool more often than any other
tool possessed the first rank in quality metrics (Kolmykov
et al., 2019). The quality of a peak set significantly influences
subsequent enrichment analysis, thus, a peak calling pipeline
should minimize possible errors. A benchmarking study of
simulated and real ChIP-seq data (Thomas et al., 2017) proved
that (1) the methods using windows of different sizes to scan
a genome for potential peaks were more powerful than ones
that did not, and (2) methods using a Poisson test to rank
the candidate peaks were more powerful than those using a
Binomial test. To rank the candidate peaks, the peak calling

tools GEM/MACS2 apply Binomial/Poisson tests, respectively
(Zhang et al., 2008; Guo et al., 2012). GEM reports the genomic
positions of peaks centers, and peaks are deduced as windows of
a certain length (200 bp) around these positions. MACS2 uses
the windows of multiple widths to scan a genome for candidate
peaks and produces a set of peaks with carefully adjusted lengths.
Apparently, MACS2-processed peak sets are more relevant for
the gene list enrichment analysis than GEM-processed.

For Arabidopsis, the enrichment tools TF DEACoN (Harkey
et al., 2020) and EAT-UpTF (Shim and Seo, 2020) used DAP-
seq peak sets from the Plant Cistrome database (O’Malley
et al., 2016). Here we re-processed DAP-seq raw data, getting
a collection of peak sets of better quality and bigger size (peak
sets for dozens of TFs were recovered). Finally, we developed
the CisCross web service that utilized the updated peak sets
profiles collections on Arabidopsis for the gene list enrichment
analysis to predict upstream regulators. The CisCross web
service implements the approach that we applied earlier (Shi
et al., 2021; Bobrovskikh et al., 2022). Overall, the CisCross web
service provides the opportunity for careful and flexible data
analysis, which potentiates a deeper insight into the mechanisms
of gene transcription regulation.

Materials and methods

Datasets

All 931 raw datasets from DAP-seq collection (O’Malley
et al., 2016) were downloaded from the GEO database
(GSE60143). The Plant Cistrome TF binding profiles collection
(processed by the GEM in O’Malley et al., 2016) consisted of 568
peak sets for 387 TFs. We collected the benchmark compilation
of 114 uniformly processed RNA-seq datasets from the EBI
Expression Atlas (Moreno et al., 2022; see Supplementary
Table 1),1 and five RNA-seq datasets on auxin treatments on
arabidopsis seedlings/roots were taken from Freire-Rios et al.
(2020).

DAP-seq data pre-processing

All 931 raw datasets (GSE60143) were processed and
aligned with snakePipes (v. 2.5.6) (Bhardwaj et al., 2019).
Reads were mapped to the TAIR10 genome with the following
parameters of snakePipes “DNA-mapping tair10 -i {input.dir}
-o {output.dir} –dedup –mapq 3 –fastqc –trim.” For these
options, bowtie2 (v. 2.3.5) was the default alignment tool
(Langmead and Salzberg, 2012). Peak calling was done by
MACS2 (v. 2.2.6) (Zhang et al., 2008) or GEM (v. 3.4) (Guo

1 https://www.ebi.ac.uk/gxa/home
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et al., 2012). In case of MACS2 we used snakePipes with
the following parameters “ChIP-seq -d directory_with_data –
peakCaller MACS2 tair10 TABLE.yaml –peakCallerOptions
‘–qvalue 0.05’ ”, “– singleEnd” or “–pariedEnd” were also
used, depending on the type of data. TABLE.yaml was
constructed as described in https://snakepipes.readthedocs.io/
en/latest/content/workflows/ChIP-seq.html. For all samples, we
used control SRR2926068 or SRR2926069 depending on the data
type. In case of GEM we used the following command “java
-jar gem.jar –expt sample.sam –ctrl control.sam –f SAM –g
tair10.chrom.sizes –d Read_Distribution_default.txt –q 5 –sl.”
We filtered out the peak sets with the fraction of reads in peaks
(FRIP, Landt et al., 2012) less than 0.01.

We merged the replicas (if available) using the IDR
(irreproducible discovery rate) tool (Li et al., 2011) with the
following parameters “idr –samples $rep1 $rep2 –output-file
$idr_out –soft-idr-threshold 0.01 -i 0.01.” To form the final peak
set, we applied the following procedure. If an idr-processed set
of peaks contained more than 2000 peaks, or its size at least twice
exceeded one for an individual replica with the maximal number
of peaks, then we chose an idr-processed set. In other cases, we
chose an individual replica with the maximal FRIP value.

Finally, we took in further analysis sets containing at least
200 peaks. As a result, we have got 608/577 peak sets for 404/393
TFs for MACS2/GEM versions of the DAP-seq collection.

Transcription factors families
assignment

TFs were assigned to the gene names and the gene families
based on the Plant Cistrome, PlantTFDB 3.0, and Araport
databases (Pérez-Rodríguez et al., 2010; Pruneda-Paz et al., 2014;
O’Malley et al., 2016; Pasha et al., 2020). In case of information
inconsistency among the databases, or lack of information, we
used other databases and focused studies (see Supplementary
Table 2). As the most general units, we utilized the superfamilies
according to Riechmann et al. (2000) and Zheng et al. (2016).

CisCross algorithm

5′-regulatory regions of genes from an input list are used as
the foreground and those for the rest of Arabidopsis genes as the
background (Figure 1). For each TF peak set, CisCross counts
the number of genes in the foreground/background, which 5′-
regulatory regions overlap or do not overlap the TF binding
peaks. The significance p-value of the input gene promoter
enrichment for the peaks is assessed using Fisher’s exact test.
These calculations are performed for each set of peaks. Finally,
CisCross runs through all the peak sets in the selected DAP-
seq collection and applies the correction for multiple testing to
compute the False Discovery Rate (FDR) for each peak set.

CisCross web service

The kernel of the CisCross web service is implemented in
the Perl language. The user interface (input/output data) and
running of the required Perl scripts were implemented in PHP
language (version 7.4.3). The CisCross web service2 includes
two modes: CisCross-Main and CisCross-Light. CisCross-Main
implements the algorithm described above and on Figure 1
with the following options. For the background one can choose
between Araport11 and TAIR10 annotations of the reference
genome; whole-genome annotation of gene promoters as the
regions of 500, 1000, 1500, 2000, or 2500 bp upstream to the
transcription start sites. This annotation defines the foreground
and background data as the promoters of the input genes and
the rest genes. The available versions for the DAP-seq peak
set collection are (1) GEM-processed Plant Cistrome (O’Malley
et al., 2016); (2) GEM-processed (CisCross-GEM), this study;
and (3) MACS2-processed (CisCross-MACS2), this study.
Options for the multiple testing procedure are: Benjamini–
Hochberg (Benjamini and Hochberg, 1995) or Bonferroni
methods. Output data of CisCross-Main represent the list of
potential upstream regulators in ascending order of the adjusted
significance (FDR or adjusted p-value). CisCross-Light gives the
list of DAP-Seq peaks detected in the 5′-regulatory region of the
given input gene.

Bed tracks treatment

We used the bedtools package (Quinlan and Hall, 2010)
to estimate for a pair of peak sets (tracks) the fraction of the
common overlapped length among the total genome length
covered by any of them (the Jaccard statistics)3 and the
significance of genomic co-localization of two tracks (evaluated
by the p-value of Fisher’s exact test).4 We used Python’s package
seaborn (v0.11.2) (Waskom, 2021) to visualize the distribution
of the Jaccard statistic.

De novo motifs search

We used the STREME tool (Bailey, 2021) for the de novo
motifs search to confirm the quality of the peak sets from
CisCross-GEM and CisCross-MACS2 versions of the DAP-
seq collection. In de novo motif search we took DAP-seq
datasets as the foreground datasets, and we compiled the
background datasets from the randomly chosen sequences from
the whole genome (Tsukanov et al., 2022).5 The significance

2 https://plamorph.sysbio.ru/ciscross/

3 https://bedtools.readthedocs.io/en/latest/content/tools/jaccard.html

4 https://bedtools.readthedocs.io/en/latest/content/tools/fisher.html

5 https://github.com/parthian-sterlet/sitega
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FIGURE 1

CisCross algorithm scheme (see section “Materials and methods”). Green/pink colors mark foreground and background data and respective
parallel processes of their analysis. Foreground and background data comprise the annotations of promoter regions of the input genes and the
rest genes, respectively. For one DAP-seq set of peaks, the first step of the analysis maps the peaks to promoters of the input genes and the rest
genes. The second step uses these data of genome mapping to compile a 2 × 2 contingency table for the input genes and the rest genes with
the counts of genes whose promoters overlap or do not overlap the peaks. Finally, Fisher’s exact test is applied to estimate the enrichment of
the peaks in promoters (p-value). Output data comprise the list of enriched TF binding profiles in the ascending order of FDR (the significance
p-value adjusted for multiple testing).

of the similarity of enriched motifs to motifs of known TFs
from the CIS-BP Arabidopsis motif collection (Weirauch et al.,
2014) was proven using the motif comparison tool TOMTOM
(p-value < 0.05; Gupta et al., 2007).

Results

Re-processing of DAP-seq TF binding
profiles for Arabidopsis thaliana

Firstly, we re-annotated raw DAP-seq data to make the
Arabidopsis peak sets collection more relevant for the task of the
gene list enrichment analysis. We used both GEM and MACS2
tools to pre-process raw DAP-seq data (see section “Materials

and methods”). As a result, we’ve got three versions of the DAP-
Seq peak sets collection processing: (1) 568 peak sets from Plant
Cistrome (GEM, O’Malley et al., 2016) for 387 TFs; (2) new
CisCross-GEM with 577 peak sets for 393 TFs; and (3) new
CisCross-MACS2 with 608 peak sets for 404 TFs (Figure 2A).
Note that re-annotation led to the recovery of the peak set for a
dozen of TFs, e.g. CisCross-MACS2 includes 40 peak sets more
than Plant Cistrome.

Plant Cistrome collection contained two types of peak sets
that differed in the source genomic DNA libraries: (1) leaf
gDNA possessing epigenetic DNA modifications (col data),
and (2) leaf gDNA with methylcytosines eliminated due to
PCR amplification (colamp data). Colamp data compared to
col contains additionally about 180,000 peaks for TFBS spared
from binding by DNA methylation (O’Malley et al., 2016).
Compared to Plant Cistrome data, the MACS2-processing
pipeline recovered novel TF binding profiles for 32 TFs
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FIGURE 2

Summary statistics on the Plant Cistrome, CisCross-GEM, and CisCross-MACS2 versions of the DAP-seq peak set collection. (A) The total
number of peak sets. “New” implies sets missing in the Plant Cistrome version. “Increase”/“Decrease” means that the number of peaks in sets
increased/decreased at least twofold; “Small changes” indicates any smaller changes. X-axes in panels (A,B) denote the version of the DAP-seq
collection. (B) The number of col and colamp peak sets in three versions of the DAP-seq collection. (C) Distribution of mean peak length (Y-axis)
in individual peak sets (X-axis) for the CisCross-MACS2 version of the DAP-seq collection. Red line denotes the fixed peak length in the Plant
Cistrome version (200 bp). Blue/orange colors mark the peak sets with shorter/longer mean peak length. A few example peak sets are named.

in total (Supplementary Table 3 and Figure 2B). Among
TFs with restored DNA-binding profiles, there are known
important regulators such as WUSCHEL (WUS), ETHYLENE
RESPONSE fACTOR 1 (ERF1), DEL1, and others (Table 1 and
Supplementary Table 3). To test the relevance of generated
peak sets we performed de novo motif search and compared
the overrepresented motifs with the known TF binding sites
(Supplementary Table 4). This procedure proved that all the
peak sets are enriched in the binding sites for the respective TFs
or their homologs.

Next, we compared the Plant Cistrome, CisCross-GEM,
and CisCross-MACS2 versions of the DAP-seq peak set
collection. Supplementary Table 5 shows the distribution of
the fraction of intersected regions and the significance of

overlapping (the Jaccard statistics and p-value of Fisher’s exact
test). We were unable to reproduce the Plant Cistrome data
(O’Malley et al., 2016), as our version CisCross-GEM peak
sets collection differed in size. Although Plant Cistrome had
a greater total number of peaks (∼5.3 million peaks vs. ∼4.5
in CisCross-MACS2 and ∼3 in CisCross-GEM), it yielded the
peak sets for a lesser number of TFs (Figure 2A). In CisCross-
GEM, 30% of peak sets possessed a smaller number of peaks
compared to those from Plant Cistrome. When comparing
Plant Cistrome and CisCross-MACS2, the TF peak sets were
classified into four groups: “New,” “Small changes,” “Decreased,”
and “Increased” (Figure 2A and Table 1). There were 71 “New”
peak sets. The “Increased” and “Decreased” groups contained
the peak sets with more than twofold increase and decrease in
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TABLE 1 Changes in the number of peaks between selected TF binding profiles from the CisCross-MACS2 and Plant Cistrome versions of the
DAP-seq peak set collection.

TF name TAIR ID TF family Number of peaks

Plant Cistrome MACS2

New DEL1 AT3G48160 E2F-DP absent 382

EIN3_colamp AT3G20770 EIL absent 774

GATA1_colamp AT3G24050 C2C2 (Zn) absent 1926

NAC16_colamp AT1G34180 NAC absent 1318

WUS_colamp AT2G17950 WOX absent 2443

Increase C3H67_colamp AT5G63260 C3H (Zn) 4364 7551

DAG2_colamp AT2G46590 C2C2 (Zn) 9982 17182

HB33_colamp AT1G75240 ZF-HD 14246 25968

OBP3_colamp AT3G55370 C2C2 (Zn) 5038 20300

SND2 AT4G28500 NAC 636 3695

Small change FUS3 AT3G26790 B3-domain 3266 2055

ERF19 AT1G22810 AP2/ERF 3765 4386

LBD13_colamp AT2G30340 LBD 3715 4437

NAC62_colamp AT3G49530 NAC 5883 5990

RVE5 AT4G01280 MYB 9550 8793

Decrease BBX31 AT3G21890 C2C2 (Zn) 16775 1654

ATHB13 AT1G69780 HD-ZIP 23232 2173

LBD23 AT3G26620 LBD 1451 383

VND4 AT1G12260 NAC 10458 5058

WRKY22 AT4G01250 WRKY 22769 7544

the number of peaks, accordingly. The remaining peak sets were
assigned to the “Small changes” group. The peak sets for most
TF families were affected, however, there were some trends in
how much reprocessing changed the peak set size. The peak sets
for TCP, GARP, NAC, and SPL/SBP TF families did not change
dramatically (“Small changes” group) while B3-domain, C2C2
(Zn), ZF-HD, and HD-ZIP TFs peak sets did (“Increased” or
“Decreased” groups).

As it was expected, MACS2-generated peaks greatly vary in
length (Figure 2C and Supplementary Figure 1). While the
default peak length in GEM (200 bp) approximates well the
average length of a peak (256 bp), some TFs show significantly
longer peaks (TRP1-2, ARF5, AIL7), and some shorter ones
(PHL4, WUS, WRKYs). The dependence between the mean
peak length and the number of peaks for Plant Cistrome,
CisCross-GEM, and CisCross-MACS2 versions of the DAP-seq
peak collection proved that the fixed peak length of 200 bp
used in GEM peak caller was a too rough estimate for a peak
length (Supplementary Figure 2). The pairwise comparisons
of the number of peaks in different DAP-seq TF binding
collections (Supplementary Figure 2) proposed that a portion
of MACS2-generated peaks experienced joining of neighboring
GEM-processed peaks. E.g., longer peaks of MACS2 (>200 bp)
may correspond to several tandemly arranged GEM peaks. The
shorter MACS2 peaks (<200 bp) may correspond to GEM peaks
of length 200 bp, whose flanking regions even do not contain

reads, or several extra short MACS2 peaks may be joined in one
GEM peak. Overall, the peak calling of MACS2 seems to be more
careful compared to GEM in mapping the start/end of the peaks.

In the CisCross-GEM and CisCross-MACS2 versions of the
DAP-seq collection, de novomotifs search (Bailey, 2021) resulted
in the motifs with significant similarities (p-value < 0.05) to
known matrices of respective target TFs or their homologs from
the CIS-BP database (Weirauch et al., 2014; Supplementary
Table 4). Since the overlap fractions between the CisCross-
GEM/CisCross-MACS2 versions and the Plant Cistrome are
moderate, though the fractions of genomics overlap are very
significant for the overwhelming majority of the respective
peak sets (Supplementary Table 5), it is reasonable to test all
three versions of the DAP-seq collection in subsequent analysis.
Though we expect that the CisCross-MACS2 collection should
be more suitable for the gene list enrichment analysis since this
collection provides a greater number of peak sets and the peaks
lengths are detected more precisely.

Benchmarking gene set enrichment
analysis

Next, we performed the gene list enrichment analysis
on the benchmark compilation of RNA-seq datasets for
Arabidopsis from EBI Expression Atlas (Moreno et al., 2022).
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FIGURE 3

Comparison of the results for the gene list enrichment analysis in pairwise combinations of different versions of the DAP-seq collection for the
benchmark compilation of RNA-seq data from the EBI Expression Atlas (see section “Materials and methods”). Panels (A–C) show the
percentage of overlap of the output lists for potential TF regulators (FDR < 0.05). Panels (D–F) show the total number of potential TF regulators
(FDR < 0.05).

We used the CisCross algorithm for gene list enrichment
analysis (Figure 1) and ran it with three versions of the
DAP-seq peak set collection. The overlap between the lists
of TF regulators generated for the same list of differentially
expressed genes by different collection versions varied between
60 and 90% (Figures 3A–C). The pairwise comparisons
of the number of potential TF regulators between Plant
Cistrome, CisCross-GEM, and CisCross-MACS2 collection
versions showed excellent positive correlations (Figures 3D–
F). In particular, the pair “CisCross-GEM vs. CisCross-
MACS2” respected the perfect diagonal linear trend, except
for two outlier points (Figure 3F). In the two remaining
pairs, the Plant Cistrome systematically predicted slightly
more TF regulators than CisCross-GEM or CisCross-MACS2
(Figures 3D,E). These differences might come from the
variation in the total number of TF regulators (568, 577, or 608,
respectively, Figures 2A,B) that affected the FDR in the multiple
testing correction, thus changing the cutoff threshold for the
significant enrichment of an upstream regulator TF between
the runs. Pairwise comparisons of the significance enrichment
levels assessed for the same TFs with different versions of
the DAP-seq peak sets collection (Supplementary Figure 3)
confirmed that the differences in the number of potential

TABLE 2 Gene list enrichment analysis of the series of transcriptomic
data for various treatment times by auxin hormone (see section
“Materials and methods”).

1 h 2 h 4 h 6 h 55 h

ARF5/MP

Plant Cistrome 1*** 78*** 23*** 51 124**

CisCross-GEM 1*** 42*** 6*** 74 114*

CisCross-MACS2 1*** 81** 3*** 54 40***

EIN3

Plant Cistrome 68 145* 81* 81 2***

CisCross-GEM 340 168 179 7*** 21***

CisCross-MACS2 37 115* 42* 2*** 1***

The ranks for two TF regulators ARF5, and EIN3 are shown. The asterisk marks
the significance of enrichment corrected with Benjamini-Hochberg (FDR), *** is
FDR < 0.001, **FDR < 0.01, * < FDR < 0.1. The hits with the lowest rank for the TF
over three versions of the DAP-seq collection are marked in bold.

regulators originated from low-scoring potential regulators
defined with Plant Cistrome.

The fact that CisCross-MACS2 and CisCross-GEM
collection versions had dozens of unique TF peak sets that
were absent in Plant Cistrome (Figure 2A) also influenced the
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FIGURE 4

Examples of the output data for the CisCross web service. (A) CisCross-Main mode for gene list enrichment analysis (for the list of auxin up
regulated genes from GSE149410). (B) CisCross-Light mode for the upstream region of PIN7 (AT1G23080) gene.

output. On the one hand, it made the multiple testing correction
more stringent, as more independent tests run at the same time.
On the other hand, new TF regulators whose peak sets were
unavailable in the Plant Cistrome were found in 90% of the
outputs for CisCross-MACS2. One example is the upregulated
genes in rhd6 mutant with defective development of the root
hairs (Huang et al., 2017) among other potential TF regulators
CisCross-MACS2 detected EIN3 (see Supplementary Table 6).
This is a relevant result because EIN3 and RHD6 were shown to
coordinatively regulate the root hair growth (Feng et al., 2017).

We also noted that the ranking of TFs upstream regulators
by the significance of enrichment differed in the output data
respecting three collection versions (Supplementary Table 6).
We exemplify this in the analysis of the transcriptomic datasets
for various treatment times of auxin hormone (Freire-Rios
et al., 2020). With CisCross we tested the lists of auxin-
activated genes for enrichment with TF binding profiles (see
Supplementary Table 6). Table 2 shows the ranks for two TFs
in the output: auxin regulator ARF5 and ethylene regulator
EIN3. All three versions of the DAP-seq collection showed
that ARF5 targets were the most overrepresented in the gene
regulatory regions activated at the earliest time point (1 h of
auxin treatment). The significant enrichment was observed for
all treatment time points till the latest one (55 h); however,
the rank of ARF5 was much lower in the late response

suggesting that other TFs played major roles. Among these
TFs, EIN3 appeared to be playing an important role in the
late auxin response. CisCross-MACS2 detected EIN3 gradually
improving its rank starting from 2 h of auxin treatment till
the first rank at 55 h of treatment. Although all three DAP-
seq collection versions showed concordant results for ARF5
and EIN3, CisCross-MACS2 performed the best in terms of the
ranking relevance (Table 2).

CisCross web service: Application
modes and functionality

As shown above, all three versions of the DAP-seq collection
performed well in a gene list enrichment analysis; however,
the list of potential TFs regulators and their ranking might
significantly change in specific datasets. One should have the
possibility to compare the output produced by three versions
of the DAP-seq collections. We developed the CisCross web
service (see text footnote 2) to solve this problem and to be more
flexible in the gene list enrichment analysis for Arabidopsis.
The CisCross functionality includes two application modes:
CisCross-Main and CisCross-Light (Figure 4).

CisCross-Main applies the gene list enrichment procedure
described above (Figure 1). To predict potential TF regulators,
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a list of genes is supplied as an input. The user should
define several parameters, including a promoter length to build
the foreground, the version of the DAP-seq collection, the
release of genome annotation, and the type of multiple testing
procedure, or use the default parameters values. The output
data provide a list of potential TF regulators (Figure 1), sorted
in ascending order of their significance. Other outputs include
the gene-to-TF table and the scatterplot visualizing prediction
results (Figure 4A).

CisCross-Light gives an overview of the TF binding regions
detected in the upstream regions of an input gene. A user should
define the promoter length and the version of the DAP-seq
collection. This analysis suggests the list of potential upstream
regulators with the genomic coordinates of their peaks detected
by the DAP-seq experiment. Location of the DAP-seq peaks is
presented in a table and as a genome map (Figure 4B).

Discussion

Modern transcriptome sequencing technologies (RNA-seq,
scRNA-seq) routinely generate thousands of lists of differentially
expressed genes or marker genes. To better understand the
transcriptomic changes one should have an access to user-
friendly and flexible tools to search for the enriched features
in these lists of genes. One of the standard procedures widely
used in genomics is the Gene Ontology (GO) enrichment
analysis. In the plant field, there are special web services
to solve this task: AgriGO (Du et al., 2010), ShinyGo (Ge
et al., 2020), or PANTHER (Mi et al., 2021). However, the
enrichment analysis can be equally applied to other gene
annotations, predicted features, and genome-scale experimental
data. TF binding profiles resolved for hundreds of TFs by the
DAP-seq experiment (O’Malley et al., 2016) is an appealing
collection of genome-scale data that can be used to find the
potential upstream regulators for a list of candidate genes.
TF-Decon shiny app tool (Harkey et al., 2020) performs
the gene list enrichment analysis for the Plant Cistrome
dataset for TF targets. Although it is user-friendly and
available online, one can not specify the promoter length or
change the statistical analysis procedure there. An alternative
command-line tool EAT-UpTF also utilizes the Plant Cistrome
TF binding profiles (Shim and Seo, 2020). Although it is
not available online and requires some programming skills,
one can adjust some steps in the analysis, e.g., modify the
length of the 5′-regulatory regions in the analysis. Both tools
adopted the originally processed peaks of the Plant Cistrome
collections which were prepared with the peak calling tool GEM
(Guo et al., 2012).

Previously, we also used the Plant Cistrome peaks in our
studies (Shi et al., 2021) and noted that their processing
procedure was not quite correct. Namely, the authors pre-
processed raw data with not the most popular peak calling tool

GEM (Guo et al., 2012) that reported exact genomic positions of
TF binding, and TF binding peaks were deduced as windows of a
certain length (200 bp) around these positions. In a benchmark
study (Thomas et al., 2017) MACS2 peak caller outperformed
GEM in terms of sensitivity and precision. The MACS2 is the
most popular and the sole peak caller that has been applied in
all basic whole-genome TF binding profile annotation databases,
e.g., ReMap (Hammal et al., 2022), CISTROME DB (Zheng et al.,
2019), ChIP-Atlas (Zou et al., 2022), and GTRD (Kolmykov
et al., 2021). What is important for the gene list enrichment
analysis, MACS2 uses the windows of multiple widths to scan
a genome for candidate peaks and produces a set of peaks with
carefully adjusted lengths. Indeed, we observed major changes
in the number of peaks and their length between the CisCross-
MACS2 and the Plant Cistrome (Figure 2). Both software tools
MACS2 and GEM were recommended to call peaks in the
standard protocol of DAP-seq data processing (Bartlett et al.,
2017).6 Some recent studies (da Silveira Falavigna et al., 2021;
Lai et al., 2021a,b) applied the MACS2 tool for DAP-seq data
processing for several TFs in Arabidopsis. The benchmark DAP-
seq collection (O’Malley et al., 2016) was also re-processed with
MACS2 in the ReMap and ChIP-Hub databases (Fu et al., 2022;
Hammal et al., 2022).

Although the lists of upstream regulators detected using
different versions of the DAP-seq collection were largely
overlapped, we saw the diversity in the content and ranking
of potential upstream regulators (Figure 3 and Table 2). We
noted that some relevant regulators were detected only by
CisCross-MACS2 or CisCross-GEM (e.g., the example with
EIN3 detection for the activated genes in rhd6 mutant, see
Supplementary Table 6). And we noted the ranking of TF
regulators being more relevant in CisCross-MACS2-processed
output (Table 2). Anyway, as Plant Cistrome gave more hits for
some gene lists, we cannot exclude that they might be relevant
and someone would like to use these predictions. This is why
we developed the CisCross web service that gives a user an
opportunity to perform the gene list enrichment analysis with
different settings, including the possibility to set the version of
peak sets collection. In the future, we plan to upgrade it with the
ChIP-seq data for Arabidopsis TFs.
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