AUTHOR=Yu Ming , Yu Yang , Guo Sihai , Zhang Mingfei , Li Nan , Zhang Shuangxing , Zhou Hongwei , Wei Fan , Song Tianqi , Cheng Jie , Fan Qiru , Shi Caiyin , Feng Wenhan , Wang Yukun , Xiang Jishan , Zhang Xiaoke
TITLE=Identification of TaBADH-A1 allele for improving drought resistance and salt tolerance in wheat (Triticum aestivum L.)
JOURNAL=Frontiers in Plant Science
VOLUME=13
YEAR=2022
URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.942359
DOI=10.3389/fpls.2022.942359
ISSN=1664-462X
ABSTRACT=
Drought and salt stress can strongly affect the growth and development of wheat. Wheat adapts to drought and salt stress through osmotic regulation. Betaine aldehyde dehydrogenase (BADH) is a key enzyme in the synthesis of betaine, an osmotic regulator. We cloned a region of the TaBADH-A1 promoter and genomic DNA that included the introns and exons, from four Chinese wheat cultivars. Following the analysis of TaBADH-A1 genomic DNA and promoter sequence polymorphisms of 4 cloned and 15 cultivars from the database, 7 haplotypes of TaBADH-A1 gene were identified. We divided the 7 haplotypes with a 254 bp insertion or deletion (indel) into two main alleles, BADH-A1a and BADH-A1b. Meanwhile, a molecular marker was developed based on the 254 bp indel of the third intron of TaBADH-A1 gene. Expression levels of BADH-A1b were found to be significantly higher than those of BADH-A1a under drought and salt stress conditions. Betaine accumulation was significantly higher in wheat containing BADH-A1b compared to BADH-A1a under drought and salt stress. We also identified that the average relative germination and survival rates of wheat with the BADH-A1b allele were significantly higher than wheat with the BADH-A1a allele. The results reveal that wheat containing BADH-A1b has stronger drought and salt tolerance than wheat with BADH-A1a. Meanwhile, the geographic distribution and frequency of the TaBADH-A1 locus alleles indicate that BADH-A1a has been preferred in Chinese wheat breeding programs, while BADH-A1b, associated with favorable stress tolerance, has been neglected. The results of this study provide evidence for an excellent candidate allele for marker-assisted selection of new wheat cultivars with increased salt tolerance and drought resistance.