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The wild Cicer species is well-known for having climate-resilient and

productivity-enhancing traits of interest. Therefore, wide hybridization could

be used as a realistic strategy for introgressing prospective traits from wild

species into the cultivated gene pool. The present study was, thus, undertaken

to evaluate F7 chickpea interspecific derivatives derived fromCicer reticulatum

Ladiz. and C. echinospermum P. H. Davis wild annual Cicer species. As a result,

a set of six interspecific crosses were advanced using the single seed descent

(SSD) method of breeding. The F7 generation of these crosses was assessed in

two diverse agro-ecological regions of India. The data revealed a wide range

of variation with respect to seed yield and its important component traits,

which resulted in the identification of the most promising derivatives carrying

desirable characters as indicated by range, mean, and coe�cient of variation.

Further, fruitful heterosis was also estimated as promising selection criteria for

identifying superior lines for earliness and high seed yield, including resistance

against prevailing stresses (ascochyta blight, botrytis gray mold, dry root rot,

and fusarium wilt). The superior derivatives carrying putative characters could

be recommended for further breeding and selection of genetic materials for

developing suitable genotypes.

KEYWORDS

transgressive segregation, fruitful heterosis, wild Cicer, genetic improvement, biotic

stress

Introduction

Chickpea (Cicer arietinum L.) is a true diploid (2n = 2x = 16) annual food legume

species having a genome size of ∼738 Mbp (Varshney et al., 2012). The domesticated

species has evolved from its immediate wild progenitor C. reticulatum Ladiz. through

the natural selection process. The genus Cicer consists of 9 annual and 35 perennial
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species (van der Maesen, 1987). Recently, Toker et al. (2021)

introduced one more wild annual species C. turcicum Toker,

Berger and Gokturk, thereby increasing the count to 10 annual

species in the existing gene pool. It is a winter-season legume

crop that thrives at temperatures between 20 and 25◦C during

the day and 15–20◦C at night temperatures, thereby performing

well in drier weather conditions (Saraf et al., 1998). In the

last two decades (1995–2016), the global chickpea area has

expanded by 8%, grain yield by 27%, and overall production by

40% (Food and Agriculture Organization, 2020). India, being

the world’s largest producer of chickpea, accounts for ∼70%

of total annual pulse production of ∼12 million tons, which

was harvested from ∼11 million ha, which is far less than

its true potential when compared to other major crops (Dixit,

2018). The main causes of such trivial gains are a variety of

stresses that limit yield and stability (Siddique et al., 2000;

Varshney et al., 2012). Furthermore, the non-availability of

genetically improved crop varieties remains a serious concern

in achieving desired production levels even in highly productive

environments (Chaturvedi andNadarajan, 2010). A narrow gene

pool, due to its single domestication event and a high rate

of self-pollination, is another constraint in breeding cultivated

chickpea (Abbo et al., 2003, 2005). However, resistant sources to

major biotic and abiotic stresses, including yield-related traits,

are often not available within cultivated germplasm due to the

domestication bottleneck, which has bifurcated the interest of

chickpea researchers to use crop wild relatives (CWRs) for its

genetic improvement (Croser et al., 2003; Mallikarjuna et al.,

2007; Bakir et al., 2021; Vance et al., 2021; Sari et al., 2022). In

the past, wild progenitors have been introgressed as potential

donors of productivity-enhancement related characters in some

other crop species, such as rice (Xiao et al., 1996) and tomato

(Tanksley and McCouch, 1996). Therefore, to attain further

breakthroughs for improving yield and stability in future crop

varieties, new traits of interest must be incorporated into

the cultivated background of chickpea. Moreover, it is also

imperative to accumulate other complimentary genes and alleles

from wild relatives to diversify the cultivated gene pool and

maximize genetic gains from selection (Vega and Frey, 1980).

The wild Cicer species consists of target characters for distinct

morphological features and resistance against biotic and abiotic

stresses (Robertson et al., 1997; Singh and Ocampo, 1997;

Abbreviations: CWRs, crop wild relatives; IDs, interspecific derivatives;

ANOVA, analysis of variance; ILWC, international legume wild Cicer;

EC, exotic collection; ICAR, Indian Council of Agricultural Research;

NBPGR, National Bureau of Plant Genetic Resources; MAREC, Mountain

Agriculture Research and Extension Center; ICARDA, International Center

for Agricultural Research in Dry Areas; PAU, Punjab Agricultural University;

BP, better parent; PBG, Punjab gram; BGD, Bangalore gram; PCA,

principal component analysis; PCV, phenotypic coe�cient of variation;

GCV, genotypic coe�cient of variation; SSD, single seed descent; ABD,

augmented block design; FAO, Food and Agriculture Organization.

Singh et al., 2005, 2014, 2021; Sandhu et al., 2006; Talip et al.,

2018; Toker et al., 2021). As far as their crossability with

cultivated chickpea is concerned, several cross-combination

studies involving C. reticulatum and C. echinospermum have

exhibited higher variability for important yield-related and

stress-resistant traits (Koseoglu et al., 2017; Singh et al., 2018).

So, an immediate thrust is required to broaden the genetic base

of domesticated chickpea cultivars using the introgression of

wild Cicer species. Consequently, the multi-location evaluation

of interspecific derivatives (IDs) will aid in the identification

of promising and stable recombinants across environments

(Rakshit et al., 2012). It would also help in the identification

of an optimal environment through which the stability of

improved progenies could be assessed. Hence, the present study

was carried out to evaluate and identify potential interspecific

derivatives of chickpea for yield and its important component

traits, including major biotic stress factors under two agro-

ecological regions of India.

Materials and methods

Genetic materials, population
development, and testing

The genetic materials included in the present study were

three cultivated chickpea varieties Pusa372, PBG5, and BGD72

of C. arietinum, selected as recipients with two wild annual

Cicer species, ILWC229 (EC720438) of C. reticulatum and

ILWC246 (EC720481) of C. echinospermum, which were chosen

as donor parents for interspecific hybridization. These wild

annual Cicer species were selected on the basis of their

resistance against ascochyta blight [Ascochyta rabiei (Pass.)

Labr.], and botrytis gray mold (Botrytis cinerea Pers. ex. Fr.),

including a high number of seeds plant−1 (Singh et al.,

2014, 2018). These wild accessions have also been tested for

their resistance against fusarium wilt [Fusarium oxysporum

f. sp. ciceris (Padwick) Matuo and K. Sato] and dry root

rot [Rhizoctonia bataticola (Taub.) E.J. Butler] (unpublished

results). The wide hybridization experiments were undertaken

at Indian Council of Agricultural Research (ICAR)-National

Bureau of Plant Genetic Resources, Pusa New Delhi (28◦ 35′ N′,
70◦ 18′ E, 226m amsl) and the Mountain Agricultural Research

and Extension Center (MAREC) of Chaudhary Sarwan Kumar,

Himachal Pradesh Krishi Vishvavidyalaya, Sangla (31◦ 55′ and
32◦ 20′ N and 77◦ 00′ and 79◦ 50′ E, 2758m amsl), Himachal

Pradesh, India during the winter season of 2012-13 and summer

2013. As a result, a total of six interspecific cross-combinations of

Pusa372× EC720438, PBG5× EC720438, BGD72× EC720438,

BGD72 × EC720481, PBG5 × EC720481, and Pusa372×
EC720481 were successfully obtained as F1 hybrid seeds.

Subsequently, the hybridity of true-to-type interspecific crosses

were confirmed using distinct morphological and molecular
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TABLE 1 Agro-climatic description of the Indian locations where chickpea interspecific derivatives were evaluated during the study period of winter

2019–2020 and 2020–2021.

Location Latitude Longitude Elevation (m asl) Mean rainfall (mm) Temperature ◦C Soil type

Min Max

Bhopal 23◦ 10′N 76◦ 88′E 498 9.67 19.33 29.83 Medium dark black

Ludhiana 30◦ 54′N 75◦ 48′E 247 55.7 11.00 24.7 Sandy loam

m asl, meters above sea level.

markers (unpublished results). From F2 onward, value-added

progenies of these interspecific derivatives (IDs) were advanced

upto the F7 stage through the single seed descent (SSD) method

of breeding (Goulden, 1939). Further, during the winter season

of 2019–2020, the F7 IDs of Pusa372 × EC720438, PBG5 ×
EC720438, BGD72 × EC720438, BGD72 × EC720481, PBG5×
EC720481, and Pusa372 × EC720481 were planted in an

experimental research farm of two different agro-ecological

locations viz. International Center for Agricultural Research in

Dry Areas (ICARDA) Pulse Research Platform, Bhopal (23◦

10′N, 76◦ 88’E, 498m amsl) and Punjab Agricultural University

(PAU), Ludhiana (30◦ 54′N, 75◦ 48′E, 247m amsl) of India.

The agro-climatic description of each location is also given in

Table 1. The experiments were undertaken in Augmented Block

Design (Federer, 1956), and the performance was compared with

regional and local checks of respective locations (susceptible

JG62 and resistant PBG7 checks at Ludhiana, India, and resistant

checks JG14, BG3043, and RVG202 at Bhopal, India). Seeds

of each ID were sown in 3-m long rows spaced at 10 cm

(plant to plant) and 40 cm (row to row) apart. One pre-sowing

irrigation was also given to ensure satisfactory seed germination.

Furthermore, recommended agronomic practices were followed

for raising the chickpea genetic materials. During the whole

cropping season, 2 natural rains were also experienced and

hence the necessity of manual irrigation was not felt. The

observations were recorded on five competitive plants from each

regional and local check and 15 plants from each F7 IDs of all six

crosses. The agro-morphological data were taken on days to 50%

flowering (DF), days to 80% maturity (DM), plant height (cm)

(PH), number of branches plant−1 (NBPP), number of seeds

pod−1 (NSPP), 100-seed weight (g) (SW), seed yield plant−1

(g) (SYPP), and biological yield plant−1 (g) (BYPP). Fruitful

heterosis was also estimated following Koseoglu et al. (2017) as

HF (%) = [(F7-BP)/BP] × 100, where, F7 is 7th generation of

IDs and BP is the mean of the better parent.

Screening against major biotic stresses

Ascochyta blight (A. rabiei)

Disease reaction of chickpea interspecific derivatives to

ascochyta blight was organized at the Experimental Farm of

Punjab Agricultural University, Ludhiana, India (30◦ 54’N,

75◦ 48′E, 247m amsl) during the winter season of 2019–

2020. All derivatives belonging to six interspecific crosses were

planted in 3-m long rows spaced at 10 cm (plant to plant)

and 40 cm (row to row) apart. All plant populations were

artificially inoculated by frequently spraying with ascosporic

suspension (1 × 106 spores ml−1) using local isolate of A.

rabiei. The observations were recorded on terminal disease

reaction at the vegetative and reproductive plant stages

on a rating scale of 1–9, as suggested by Pande et al.

(2010). Based on disease screening, the interspecific derivatives

were categorized for their reaction to pathogen infection

as: 1 = asymptomatic (Free), 3 = resistant (R), 5 =
moderately resistant (MR), 7 = susceptible (S), and 9 = highly

susceptible (HS).

Botrytis gray mold (B. cinerea)

Botrytis gray mold (BGM) is a devastating pathogen of

chickpea, especially in those regions where warm, cloudy, and

humid weather situation persists. Several epidemics of BGM

causing whole crop loss in chickpea growing in the areas of

northwestern India have been reported (Singh et al., 1991). All

the interspecific derivatives were screened at Ludhiana, India

using cut-twig screening technique, in which water was used

as supportive media. Three to four twigs of a single line from

each derivative were taken and placed in a test tube having

fresh tap water. Subsequently, twigs were inoculated by spraying

spore suspension of B. cinerea (10,000 spores ml−1) and covered

with moist chambers for 144 h. An incubation period of 8 h

dark and 16 h light was provided with fluorescent lamps [60

by 3.75 cm (24 × 1.5 in.); 20W, 32 lumens W−1]. Further,

observations on disease incidence against BGM were assessed

using a 1–9 rating scale (Singh et al., 1991) after 6 days of

inoculation where: 1 = asymptomatic (Free), 3 = resistant (R),

5 = moderately resistant (MR), 7 = susceptible (S), and 9 =
highly susceptible (HS).

Dry root rot [R. bataticola (Taub.)]

Dry root rot is more dominant when the crop is exposed

to drought stress (Rai et al., 2022). The symptoms of this

pathogen are obvious during the post-flowering stage, leading
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TABLE 2 Analysis of variance of chickpea interspecific derivatives for seed yield and its important component traits at Bhopal and Ludhiana, India.

Source DF DM NBPP PH SYPP

Bhopal

Block (ignoring treatments) 548.48** 835.29** 66.49** 708.87** 59.02**

Treatment (eliminating blocks) 28.79** 21.22** 50.63** 40.42** 14.66**

Treatment: check 52.33** 14.33** 212.05** 169.9** 43.76**

Treatment: test and test vs. check 28.52** 21.3** 48.83** 38.97** 14.34**

Ludhiana

Block (ignoring treatments) 164.1** 30.64** 21.03** 333.43** 100.84**

Treatment (eliminating blocks) 38.66** 8.44** 2.11* 25.48** 2.53**

Treatment: check 228** 16.33* 4.62* 202.87** 13.53**

Treatment: test and test vs. check 36.54** 8.35** 2.08* 23.5** 2.41**

*p= 0.01, **p= 0.05, ns, non-significant.

to drooping and chlorosis of petioles and leaves as well.

The leaves and stems of affected plants are generally straw-

colored, and in some cases, the lower leaves and stems

show brown discoloration and the tap root becomes dark.

For screening of chickpea interspecific derivatives at Bhopal,

India (23◦ 10′N, 76◦ 88′E, 498m amsl), inoculated seedlings

were observed and the data on disease severity was recorded

using a 1–9 rating scale developed by Nene et al. (1991),

where 1 = asymptomatic (Free), 3 = resistant (R), 5 =
moderately resistant (MR), 7 = susceptible (S), and 9 = highly

susceptible (HS).

Fusarium wilt (F. oxysporum)

Fusarium wilt is another devastating disease of chickpea,

and the selection of highly resistant interspecific derivatives

among enhanced progenies is the prime concern of this

study. All F7 derivatives belonging to six wide crosses were

screened under real field conditions at Bhopal, India. However,

resistant and susceptible checks were also repeated after 20

rows of each replication. Observations on disease incidence

were recorded using 1–9 rating scale (Nene and Haware,

1980) as: 1 = asymptomic (Free); 3 = resistant (R); 5 =
moderately resistant (MR); 7 = susceptible (S); 9 = highly

susceptible (HS). Wilt incidence percentage was also observed

during the flowering and pod filling stages, as described by

Biswas and Jubayer Ali (2017).

Statistical analyses

ANOVA for augmented design was carried out using

R package “augmented RCBD” (Aravind et al., 2020). The

linear mixed models were implemented in lmer from package

lme4 of R using REML to calculate BLUEs and BLUPs and

estimates of the variance components (R Core Team, 2018).

The adjusted means of all the quantitative traits were used

for the estimation of principal component analysis, cluster

analysis, and correlations. PCA and correlation studies were

done using ggplot and cor function in R, respectively. The R

package “corrplot” was used for the depiction of correlation

plots. The phenotypic and genotypic coefficients of variation

(PCV and GCV) for different traits were calculated as PCV

=
√
VP/ mean × 100, GCV =

√
VG/mean × 100 as per

Burton (1952). Heritability (bs) was estimated as h2 (ns) =
√
A/VP × 100 as per Lush (1940). The expected genetic

advance was calculated as EGA = k × VG/VP ×
√
VP, as

per the procedure of Johnson et al. (1955), where k = 2.06

(standard value assumed at 5% selection intensity), VG is the

genotypic variance, and VP is the phenotypic variance. However,

fruitful heterosis (HF) coined by Koseoglu et al. (2017) was

also estimated over better parent (BP) for identifying superior

derivatives in F7 generation as: HF (%) = [(F7-BP)/BP] ×
100%, where, BP is the mean value of the better parent of a

particular cross.

Results

Agro-morphological evaluation

Linear mixed model analysis showed significant

differences among genotypes for all the traits, except days

to maturity and number of seeds pod−1. The combined

analysis of variance indicated significant variation for block,

treatment, and interaction among test entries for days

to flowering, days to maturity, the number of branches

plant−1, plant height, and seed yield plant−1 at Bhopal,

India (Table 2, Supplementary Table 1). Likewise, it was also

significant for all the characters in Ludhiana, India (Table 2;

Supplementary Table 1). However, the summary of descriptive
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TABLE 3 Summary of descriptive statistical parameters for important agro-morphological traits.

Trait Min Max Mean Std Error Std Deviation Skewness Kurtosis

Bhopal

DF 61.14 90.14 74.87 0.49 6.55 −0.36* 2.24**

DM 109.05 128.38 120.57 0.47 6.34 −0.4* 1.66**

NBPP 7.95 38.57 15.14 0.38 5.07 1.71** 7.13**

PH 31.29 68.62 54.46 0.6 8.14 −0.58** 2.59 ns

SYPP 8.95 36.29 16.07 0.32 4.29 1.09** 5.22**

Ludhiana

DF 80 106.71 97.41 0.37 4.98 −0.6** 3.36 ns

DM 142.62 155.62 147.91 0.23 3.05 0.39* 2.37*

NBPP 6 16 11.07 0.12 1.67 0.37* 3.2 ns

PH 31.62 59.82 46.71 0.39 5.26 −0.17 ns 2.94 ns

SYPP 2.87 10.97 6.07 0.17 2.35 0.22 ns 1.91**

*p= 0.01, **p= 0.05, ns, non-significant.

statistical parameters revealed a wide range of variation with

respect to important agro-morphological characters as also

manifested by the range of variation. The distribution of genetic

materials was highly skewed and significant for all the characters

at both locations (Table 3). Further, the F7 interspecific

derivatives of cross Pusa372 × EC720438, PBG5 × EC720438,

BGD72 × EC720438, BGD72 × EC720481, PBG5 × EC720481,

and Pusa372 × EC720481 exhibited a wide range of variation,

as also reflected by the range, mean, and coefficient of variation

(Table 4). The results showed sufficient variability among

enhanced progenies of interspecific derivatives developed

from C. reticulatum and C. echinospermum species. In general,

days to flowering and maturity exhibited variation in two

locations as the genetic materials flowered and matured early

in Bhopal, India than Ludhiana, India. The maximum average

plant height was observed in the cross of BGD72 × EC720481

followed by PBG5 × EC720481, PBG5 × EC720438, and

minimum in cross Pusa372 × EC720438 and Pusa372 ×
EC720481 at both the locations (Table 4). As far as the number

of seeds pod−1 is concerned, it was reported as an average of

one to two seeds pod−1. The trait 100-seed weight revealed

substantial variation in different interspecific derivatives

and maximum 100-seed weight was reported in the cross of

BGD72 × EC720438 and minimum in Pusa372 × EC720438

at both the locations (Table 4). The seed yield plant−1, being

a very important economic trait of interest, also manifested

variation ranging from the cross PBG5 × EC720438 (15.30 g)

to Pusa372 × EC720438 (18.91 g) in Bhopal, India. Likewise,

cross PBG5 × EC720481 and BGD72 × EC720481 exhibited

maximum seed yield plant−1 in Ludhiana, India. In general,

the extent of genetic parameters indicated that the magnitude

of phenotypic variances and coefficient of variation was higher

than genotypic variances for the majority of the traits (Table 5).

Likewise, heritability was higher for all the agro-morphological

characters, but comparatively genetic advance along with gain

as a percentage of mean was low in magnitude. The summary

of identifying promising interspecific derivatives for important

agro-morphological traits has been depicted in Figure 1.

Estimation of fruitful heterosis (%)

The nature and magnitude of fruitful heterosis (%) of F7

interspecific derivatives were also estimated for days to maturity,

plant height, number of seeds pod−1, and seed yield plant−1

at both locations (Table 6). The extent of fruitful heterosis was

calculated using the percentage of deviation of interspecific

derivatives from a better parent (BP). At Bhopal, India, fruitful

heterosis means performance ranged from −0.35% (Pusa372

× EC720438) to 12.33% (PBG5 × EC720481) for days to

maturity. Likewise, it ranged from 0.31% (BGD72× EC720481)

to 2.04% (PBG5 × EC720438) for the same traits in Ludhiana,

India. However, an average mean performance for plant height

varied from−14.20% (Pusa372× EC720438) to 16.32% (BGD72

× EC720481) in Bhopal, India, and it ranged from −6.95%

(Pusa372 × EC720481) to 22.62% (PBG5 × EC720438) in

Ludhiana, India. The estimation of fruitful heterosis for number

of seeds pod−1 varied from 52.63% (Pusa372 × EC720481) to

100.00% (PBG5 × EC720481) in Bhopal, India and it varied

from −35.56% (BGD72 × EC720438) to −11.99% (BGD72 ×
EC720481) in Ludhiana, India. There was a substantial variation

for seed yield plant−1 that ranged from −46.75% (Pusa372

× EC720481) to −8.89% (Pusa372 × EC720438) in Bhopal,

India, and it varied −55.50% (Pusa372× EC720438) to 17.17%

(BGD72× EC720438) in Ludhiana, India.
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TABLE 4 Range, mean, standard error, and coe�cient of variation of agro-morphological traits in F7 generation of chickpea interspecific derivatives

at Bhopal and Ludhiana, India.

Bhopal Ludhiana

Trait/Cross Range Mean± SE CV% Range Mean± SE CV%

Days to flowering

Pusa372× EC720438 61.00–74.00 67.11± 0.43 4.50 86.00–102.00 94.80± 0.50 3.70

PBG5× EC720438 65.50–82.00 77.18± 0.52 4.58 96.00–104.00 100.93± 0.35 2.37

BGD72× EC720481 72.50–84.00 78.95± 0.66 4.24 88.00–106.00 98.42± 0.82 4.26

PBG5× EC720481 81.00–87.50 83.75± 0.71 2.39 93.00–103.00 99.25± 1.32 3.76

BGD72× EC720438 72.00–88.00 76.68± 0.68 4.83 88.00–106.00 98.07± 0.89 4.97

Pusa372× EC720481 67.00–80.50 74.47± 0.71 4.14 87.00–106.00 94.74± 1.40 6.43

Days to maturity

Pusa372× EC720438 108.50–116.50 112.92± 0.26 1.67 142.00–151.00 148.08± 0.39 1.85

PBG5× EC720438 113.00–128.00 124.96± 0.45 2.42 144.00–154.00 148.98± 0.40 1.80

BGD72× EC720481 118.00–128.00 126.12± 0.41 1.67 141.00–151.00 148.46± 0.49 1.70

PBG5× EC720481 123.00–128.00 125.50± 0.50 1.13 142.00–151.00 146.00± 0.87 1.68

BGD72× EC720438 115.00–128.00 122.00± 0.70 3.15 145.00–151.00 147.73± 0.54 2.02

Pusa372× EC720481 116.00–126.00 120.58± 0.54 1.94 140.00–151.00 142.63± 0.58 1.75

Plant height (cm)

Pusa372× EC720438 33.00–62.00 46.12± 0.96 14.74 30.66–55.00 42.47± 0.76 12.60

PBG5× EC720438 44.00–66.50 59.11± 0.61 6.98 38.33–57.33 49.17± 0.59 8.07

BGD72× EC720481 50.50–66.50 60.65± 0.73 6.11 40.33–59.33 50.23± 0.85 8.67

PBG5× EC720481 57.00–63.50 59.56± 0.68 3.22 47.00–56.33 50.17± 1.24 7.00

BGD72× EC720438 44.50–70.50 56.43± 1.03 9.96 41.66–56.00 49.15± 0.63 7.04

Pusa372× EC720481 43.50–62.50 52.81± 1.29 10.64 35.33–51.33 42.80± 0.89 9.10

No. of branches plant−1

Pusa372× EC720438 10.50–17.00 13.97± 0.77 11.54 6.33–11.66 09.69± 0.15 11.25

PBG5× EC720438 11.00–27.00 15.01± 0.48 21.82 8.66–15.00 11.43± 0.19 11.15

BGD72× EC720481 11.50–19.50 15.38± 0.45 14.83 8.99–13.66 11.31± 0.25 11.26

PBG5× EC720481 11.50–16.50 12.94± 0.55 11.95 7.99–11.66 10.58± 0.44 11.89

BGD72× EC720438 11.00–26.50 16.43± 0.75 25.16 8.66–15.66 12.04± 0.35 15.87

Pusa372× EC720481 11.50–19.50 15.68± 0.61 16.98 9.66–15.30 12.20± 0.41 14.67

No. of seeds pod−1

Pusa372× EC720438 1.00–3.00 1.80± 0.06 25.10 1.00–1.90 1.30± 0.04 19.78

PBG5× EC720438 1.00–3.00 1.93± 0.05 16.89 1.10–1.90 1.42± 0.03 16.24

BGD72× EC720481 1.00–2.00 1.81± 0.08 22.23 1.00–1.90 1.50± 0.04 14.82

PBG5× EC720481 2.00–2.00 2.00± 0.00 0.00 1.20–1.80 1.45± 0.06 12.23

BGD72× EC720438 1.00–3.00 1.73± 0.10 30.05 1.00–1.80 1.35± 0.04 17.00

Pusa372× EC720481 1.00–2.00 1.53± 0.12 33.61 1.00–1.90 1.47± 0.05 15.24

100-seed weight (g)

Pusa372× EC720438 09.42–20.48 13.59± 0.38 19.89 10.40–18.00 14.07± 0.19 9.35

PBG5× EC720438 12.30–20.64 19.24± 0.18 6.29 13.20–28.60 17.38± 0.33 12.91

BGD72× EC720481 17.76–21.84 19.47± 0.18 4.62 15.20–20.20 17.75± 0.23 6.63

PBG5× EC720481 18.08–20.68 19.60± 0.28 4.03 17.30–19.50 18.61± 0.25 3.86

BGD72× EC720438 17.48–23.44 21.21± 0.23 6.06 16.30–31.50 23.58± 0.88 20.42

Pusa372× EC720481 13.28–20.38 16.63± 0.52 13.75 11.90–19.30 15.87± 0.49 13.45

Seed yield plant−1 (g)

Pusa372× EC720438 10.63–31.83 18.91± 0.49 18.15 3.00–6.43 3.36± 0.07 15.47

PBG5× EC720438 12.23–19.50 15.30± 0.28 12.46 3.13–10.92 6.53± 0.26 27.44

BGD72× EC720481 13.00–21.50 15.45± 0.46 15.06 0.02–11.00 7.60± 0.51 34.15

PBG5× EC720481 13.68–18.50 16.13± 0.59 10.32 4.08–11.00 7.66±0.80 29.44

BGD72× EC720438 10.70–23.50 16.74± 0.50 16.51 0.01–11.13 7.40± 0.51 38.04

Pusa372× EC720481 11.00–32.50 16.37± 1.03 24.41 0.01–11.13 5.00± 0.62 53.68
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TABLE 5 Mean, variance, phenotypic, genotypic, and environmental coe�cient of variance, heritability, genetic advance, and genetic advance as

percent of mean for important traits.

Trait Mean GV PV EV GCV PCV ECV H (bs) GA GAM

Bhopal

DF 74.87 27.34 33.67 06.33 06.98 07.75 03.36 81.19 09.72 12.98

DM 120.57 39.01 39.67 00.67 05.18 05.22 00.68 98.32 12.78 10.60

NBPP 15.14 09.44 17.93 08.49 20.3 27.98 19.25 52.64 4.6 30.38

PH 54.46 54.26 56.72 02.46 13.53 13.83 02.88 95.66 14.86 27.29

SYPP 16.07 09.49 12.76 03.26 19.17 22.22 11.24 74.43 05.48 34.12

Ludhiana

DF 97.41 20.86 21.69 00.83 04.69 04.78 00.94 96.16 09.24 09.48

DM 147.91 05.8 08.19 02.39 01.63 01.93 01.04 70.83 04.18 02.83

NBPP 11.07 02.05 02.78 00.73 12.93 15.06 07.72 73.74 02.54 22.91

PH 46.71 23.2 30.05 06.85 10.31 11.74 05.60 77.21 08.73 18.69

SYPP 06.07 05.68 05.8 00.12 39.25 39.67 05.76 97.89 04.86 80.11

PV, phenotypic variance; GV, genotypic variance; EV, extreme variability; GCV, genotypic coefficient of variation; PCV, phenotypic coefficient variation; ECV, extreme climate variability;

H(bs), heritability in broad sense; GA, genetic advance; GAM, genetic advance over mean.

FIGURE 1

Performance of chickpea interspecific derivatives among di�erent crosses and checks for major agro-morphological traits under two

agro-ecological conditions of India. DM, days to maturity; NSPP, number of seeds pod−1; SYPP, seed yield plant−1.

Adjusted mean box plots

The results on adjusted mean box plot performance

exhibited that the chickpea interspecific derivatives exhibited a

high degree of variation for days to flowering, days to maturity,

and plant height, while the number of branches plant−1, 100-

seed weight, and seed yield plant−1 showed lesser variations in

Bhopal, India. The trend was similar in Ludhiana, India but the
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TABLE 6 Estimates of fruitful heterosis (%) in F7 wide cross populations for agro-morphological traits.

Bhopal Ludhiana

Trait/Cross Range Mean± SE CV% Range Mean± SE CV%

Days to maturity

Pusa 372× EC720438 (−3.56)−3.56 (−0.35)± 0.25 (−500.39) (−3.36)−6.16 0.40± 0.30 529.88

PBG5× EC720438 0.89–14.29 11.64± 0.40 0.40 (−1.37)−5.48 2.04± 0.27 89.95

BGD72× EC720481 4.89–13.78 12.24± 0.36 15.10 (−2.70)−3.38 0.31± 0.33 545.49

PBG5× EC720481 9.82–14.29 12.33± 0.47 10.76 (−0.69)−4.14 0.69± 0.60 244.95

BGD72× EC720438 3.13–14.29 8.96± 0.64 39.24 (−0.69)−6.90 1.89± 0.38 109.10

Pusa372× EC720481 3.11–12.00 7.04± 0.52 31.93 (−0.69)−6.90 0.44± 0.40 402.67

Plant height (cm)

Pusa 372× EC720438 (−38.89)−14.81 (−14.20)± 1.78 (−88.8) (−32.85)−20.46 (−2.25)± 1.67 (−524.89)

PBG5× EC720438 (−13.73)−28.43 15.92± 1.19 50.83 (−4.41)−42.97 22.62± 1.46 43.77

BGD72× EC720481 (−3.81)−43.33 16.32± 1.73 54.08 (−19.98)−17.72 (−0.34)± 1.69 (−2,388.38)

PB5× EC720481 8.57–20.95 13.45± 1.29 27.14 (−3.49)−15.67 3.01± 2.55 239.56

BGD72× EC720438 (−16.82)−31.78 5.48± 1.92 191.63 (−9.43)−21.74 6.86± 1.37 109.77

Pusa372× EC720481 (−21.62)−12.61 (−4.84)± 2.32 (−209.39) (−23.20)−11.59 (−6.95)± 1.94 (−121.85)

No. of seeds pod−1

Pusa 372× EC720438 0.00–200.00 82.00± 6.82 58.77 (−50.00)−5.56 (−31.53)± 2.02 (−43.21)

PBG5× EC720438 0.00–200.00 93.48± 4.82 34.95 (−35.29)−11.76 (−16.52)± 2.00 (−82.12)

BGD72× EC720481 0.00–100.00 80.77± 7.88 49.76 (−41.18)−11.76 (−11.99)± 2.56 (−108.80)

PBG5× EC720481 100.00–100.00 100.00± 0.00 0.00 (−36.84)–(−5.26) (−23.68)± 3.30 (−39.40)

BGD72× EC720438 0.00–200.00 73.33± 9.51 71.02 (−52.38)–(−14.29) (−35.56)± 2.00 (−30.81)

Pusa372× EC720481 0.00–100.00 52.63± 11.77 97.47 (−52.38)–(−9.52) (−30.08)± 2.44 (−35.43)

Seed yield plant−1 (g)

Pusa 372× EC720438 (−53.50)−39.28 (−8.89)± 2.56 (−203.43) (−61.47)–(−12.36) (−55.50)± 1.05 (−13.37)

PBG5× EC720438 (−45.65)–(−3.91) (−32.56)± 1.35 (−28.03) (−55.41)−55.41 (−7.09)± 3.76 (−359.73)

BGD72× EC720481 (−46.94)–(−12.24) (−36.88)± 1.90 (−26.25) (−42.80)−54.21 9.58± 5.12 272.56

PBG5× EC720481 (−44.18)–(−24.49) (−34.18)± 2.40 (−19.86) (−25.86)−30.72 (−3.29)± 7.31 (−629.07)

BGD72× EC720438 (−53.48)−2.17 (−27.20)± 2.19 (−44.18) (−27.34)−53.21 17.17± 4.28 136.60

Pusa372× EC720481 (−64.23)–(5.69) (−46.75)± 3.35 (−31.22) (−52.20)−18.07 (−25.54)± 4.26 (−72.72)

(–) negative range performance recorded in parentheses.

range of variation in data was tight, i.e., the variation in data was

low in comparison to Bhopal, India (Figure 2).

Correlations and principal component
analysis

The association between days to flowering, days to maturity,

and plant height showed positive correlations with each other

for chickpea interspecific derivatives in Bhopal, India. Similarly,

the number of branches plant−1 and seed yield plant−1 showed

positive correlations in Ludhiana, India (Figure 3). Further, PCA

biplots were used to ascertain this relationship among studied

characters at both locations, but they gave contrasting results.

It was observed that days to flowering, days to maturity, and

plant height were highly correlated to each other while traits like

the number of branches plant−1 and seed yield plant−1 showed

negative correlations in Bhopal, India. However, in Ludhiana,

India, days to flowering, days to maturity, and plant height

exhibited negative correlations against the number of branches

plant−1 and seed yield plant−1 which showed positive relations

(Figure 4).

Screening against major biotic stresses

Ascochyta blight

The selected agronomically promising F7 interspecific

derivatives of Pusa372× EC720438, PBG5× EC720438, BGD72

× EC720438, BGD72 × EC720481, PBG5 × EC720481, and

Pusa372 × EC720481 were screened against ascochyta blight

resistance (Figure 5). The following interspecific derivatives of
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FIGURE 2

Adjusted mean boxplots of di�erent agro-morphological traits for chickpea interspecific derivatives at Bhopal and Ludhiana, India. DTF, days to

flowering; HSW, 100-seed weight; MAT, days to maturity, NBPP, number of branches plant−1; NSPP, number of seeds pod−1; PH, plant height;

SYPP, seed yield plant−1.

cross Pusa372× EC720438 (2 IDs), PBG 5× EC720438 (18 IDs),

BGD72 × EC720438 (3 IDs), BGD 72 × EC720481 (14 IDs),

and PBG5× EC720481 (5 IDs) showed resistant disease reaction

against the pathogen. Likewise, cross Pusa372 × EC720438 (5

IDs), PBG5 × EC720438 (26 IDs), BGD72 × EC720438 (16

IDs), BGD72× EC720481 (11 IDs), PBG5× EC720481 (3 IDs),

and Pusa372 × EC720481 (9 IDs) were reported as moderately

resistant against ascochyta blight (Figure 5). The remaining

interspecific derivatives exhibited either susceptible or highly

susceptible disease reaction. Further, the mean disease incidence

score ranged in 1 to 9 scales with an overall mean of 6.18 and a

coefficient of variation of 29.49%. However, susceptible (JG62)

and resistant (PBG7) checks revealed disease reaction with a

rating of 9 and 3 scores, respectively. The overall latent semantic

indexing percentage (LSI %) against the disease infestation was

5.02 %.

Botrytis gray mold

The results of the screening of chickpea interspecific

derivatives against botrytis gray mold revealed that none of the

interspecific derivatives showed resistant disease reaction in real

field conditions. But a moderate level of resistance has been

reported in the following interspecific derivatives of Pusa372

× EC720438 (8 IDs), one each of PBG5 × EC720438, BGD72

× EC720438, BGD72 × EC720481, PBG5 × EC720481, and

Pusa372 × EC720481. The overall latent semantic indexing

percentage (LSI %) against the pathogen infestation was 7.02 %

(Figure 5).

Dry root rot

The results of the screening of chickpea interspecific

derivatives against dry root rot showed resistant disease

reaction in the crosses of Pusa372 × EC720438 (32 IDs),

PBG5 × EC720438 (36 IDs), BGD72 × EC720481 (14 IDs),

PBG5 × EC720481 (4 IDs), BGD72 × EC720438 (17 IDs),

and Pusa372 × EC720481 (13 IDs). Likewise, maximum

moderate resistance was reported in the cross of Pusa372

x EC720438, followed by BGD72 × EC720481, PBG5 ×
EC720438, BGD72 × EC720438, and Pusa372 × EC720481.

The remaining interspecific derivatives were either susceptible

or highly susceptible to the disease reaction (Figure 5).

Fusarium wilt

The results of chickpea interspecific derivatives against

fusarium wilt revealed that the crosses of Pusa372 × EC720438

(38 IDs), PBG5 × EC720438 (28 IDs), BGD72 × EC720481

(15 IDs), BGD72 × EC720438 (21 IDs), and Pusa372 ×
EC720481 (19 IDs) exhibited resistant disease reaction against

the pathogen. Likewise, a moderate level of resistance has also

been reported in the crosses of Pusa372 × EC720438 (12 IDs),

PBG5 × EC720438 (13 IDs), BGD72 × EC720481 (3 IDs),
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FIGURE 3

Correlation plots for agro-morphological traits among chickpea interspecific derivatives at Bhopal and Ludhiana, India. DTF, days to flowering;

HSW, 100-seed weight; MAT, days to maturity, NBPP, number of branches plant−1; NSPP, number of seeds pod−1; PH, plant height; SYPP, seed

yield plant−1.
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FIGURE 4

PCA biplots for chickpea interspecific derivatives at Bhopal and Ludhiana, India. DTF, days to flowering; HSW, 100-seed weight; MAT, days to

maturity, NBPP, number of branches plant−1; NSPP, number of seeds pod−1; PH, plant height; SYPP, seed yield plant−1.

and BGD72× EC720438 (8 IDs). The remaining derivatives

belonging to different crosses were either susceptible or highly

susceptible to disease reaction (Figure 5).

Discussion

Crop improvement programs are increasingly relying on

pre-breeding and genetic enhancement employing CWRs to

identify novel genes and alleles to broaden the genetic base of

released cultivars (Singh et al., 2015). In chickpea, 41% of the

crop varieties developed through hybridization had Pb7 as one

of the ancestors in their pedigree (Kumar et al., 2003). The

genetic base revealed by the pedigree records of released varieties

appears to be narrow in major pulse crops, including chickpea,

due to the frequent use of the same parents and their derivatives

in breeding programs. To overcome these constraints, an

attempt was, therefore, undertaken using wide hybridization

of cultivated varieties (Pusa372, PBG5, and BGD72) taken

as female and ILWC229 (EC720438) of C. reticulatum and

ILWC246 (EC720481) of C. echinospermum taken as the male

parents. True to type hybridity of F1 crosses was tested using

Inter Simple Sequence Repeats (ISSR) and Random Amplified

Polymorphic DNA (RAPD) markers (Singh et al., 2015). The

experimental results revealed sufficient variation among genetic

materials as indicated by mixed model analysis and analysis

of variance (ANOVA) for the target traits (significant at p

= 0.01, 0.05) assessed, and subsequently, the same was also

reflected by range, mean, and coefficient of variation for

important agro-morphological characters. However, descriptive

statistics like skewness and kurtosis exhibited the normal

distribution of expression performance for characters like the

number of branches plant−1 and seed yield plant−1. Further,

the interspecific derivatives provide a better opportunity for

selecting promising transgressive segregants carrying potential

traits of interest (Lewontin and Birch, 1966) along with classical

genetic studies that have given a very compelling approach to

the hypotheses that transgression can result from the expression

of rare recessive alleles (Rick and Smith, 1953) and/or due

to complementary gene action (Vega and Frey, 1980). Our

results also exhibited the presence of transgressive segregations

derived from C. reticulatum and C. echinospermum. All six
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FIGURE 5

Performance of chickpea interspecific derivatives among di�erent crosses and checks for ascochyta blight, botrytis gray mold, dry root rot, and

fusarium wilt, respectively.

interspecific derivatives were also assessed for their agronomic

performance at two locations, including prevailing biotic stresses

viz. ascochyta blight, botrytis gray mold, dry root rot, and

fusarium wilt resistance under real field conditions. The genetic

materials matured earlier in Bhopal, India than Ludhiana, India,

suggesting certain physical factors and role of genotypic ×
environmental interactions, which could be responsible for

the same. Erskine (1997) also reported the independent role

of temperature and day length in determining the onset of

ontogenesis in lentil. There were substantial variations with

respect to plant height, the number of branches, seed number,

and seed yield suggesting a good opportunity for selecting

desirable ideotypes carrying important trait of interest (Eker

et al., 2022). Further, hybrid vigor has also opened an era

of genetic amelioration of crop plants and is often described

as heterosis breeding. The fruitful heterosis also showed a

wide range of variations among all interspecific derivatives

for days to maturity, plant height, number of seeds pod−1,

and seed yield plant−1. Similar results were also obtained by

Singh and Ocampo (1997), Singh et al. (2005), and Singh

et al. (2015) for yield-related traits in chickpea. An expression

of the heterotic potential for certain interesting characters

in advanced interspecific derivatives might be primarily due

to the accumulation of favorable additive gene effects. Such

derivatives may be advanced as suggested by Redden and

Jensen (1974) for developing suitable genotypes. It was further

indicated using estimation of other genetic parameters which

revealed that high heritability and low genetic advance were

predominantly assessed for the majority of characters indicating

that non-additive gene effect and selection would be useful

in later segregating generations when non-additive gene effect

would have diminished. The genetic materials included in the

study are interspecific cross populations belonging to different

backgrounds carrying buffer hereditary information that lead to

more transgression. Therefore, the estimate of heritability acts

as a predictive approach in exercising reliability of phenotypic

value, helping breeders to make a selection for a particular

trait of interest when the heritability is high. Likewise, genetic

advance is a useful indicator of progress, which can be expected

as a result of exercising selection on population. Heritability in

conjunction with genetic advance is more useful than heritability

alone in predicting effects for selecting the best individual

genotype because additive gene effects are likely to be present

(Singh et al., 2014).

Furthermore, screening of chickpea enhanced progenies

against major biotic stresses, which revealed that large numbers

of interspecific derivatives were reported as resistant against

ascochyta blight, indicating a substantial source of interspecific
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genetic resistance against the pathogen. Likewise, we were

unable to find complete resistance against botrytis gray mold,

but moderate resistance has been reported in 13 interspecific

derivatives belonging to six cross-combinations of chickpea.

However, for dry root rot and fusarium wilt, the interspecific

derivatives exhibited resistance in various cross combinations

of chickpea suggesting the potential of genetic materials to

be taken further for developing disease-resistant cultivars.

Overall, the wild Cicer species are a potential resource of useful

untapped variations, including agro-morphological characters

and major biotic stresses, as demonstrated by our findings.

In F7 interspecific derivatives of chickpea, we found a wide

range of variability for agro-morphological characters andmajor

biotic traits, including considerable fruitful heterosis. It was

also observed that derivatives derived from wild species showed

more stability and yield levels, including resistance against

major stresses. Thus, more emphasis should be given to the

base-broadening program for tailoring usable germplasm with

wider adaptations in future chickpea improvement programs.

The potential lines carrying target traits could be a valuable

genetic material for generation advancement to develop suitable

genotypes. Lastly, useful geneticmaterials are being advanced for

further breeding and desirable selection.
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