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Phosphorus (P) is a nutrient limiting plant growth in subtropical regions. However, 

our understanding of how soil P responds to an increase in stand age is rather 

poor. In particular, little is known about how bioavailable P pools (soluble P, 

exchangeable P, hydrolyzable P, and ligand P) shift with a change in stand age. 

Moreover, the P cycle in rhizosphere soil has the most direct and significant 

influence on plants. The aim of the present study was to determine the 

concentrations of total P in various rhizosphere soil bioavailable P fractions in 5-, 

9-, 19-, 29-, and 35-year-old stands of Pinus massoniana Lamb. According to the 

results, total P (TP) concentration and N:P ratio in rhizosphere soil first decreased, 

and then increased with an increase in stand age. Soluble P concentration 

decreased first, and then increased with an increase in stand age; exchangeable 

P and ligand P decreased first, and then tended to be stable with an increase in 

stand age, whereas hydrolyzable P increased first, and then decreased. Structural 

Equation Model results suggested that ligand P and soluble P were the major factor 

affecting the TP. In addition, soil microorganisms and acid phosphatase-driven 

hydrolyzable P play a crucial role in soil bioavailable P cycling. Overall, the results 

of our study provide a mechanistic understanding of soil bioavailable P cycling 

under low available P conditions, and a basis for an effective P management 

strategy for the sustainable development of P. massoniana plantations.
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Introduction

Phosphorus (P) is one of the factors limiting tree productivity the most in tropical and 
subtropical ecosystems, especially in forests (Wright et al., 2018; Hou et al., 2020). Unlike 
carbon (C) and nitrogen (N), which enter the soil through biological fixation 
(photosynthesis and biological N fixation), P is basically derived from weathering of 
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primary phosphate mineral sources (Gao et  al., 2019). Once 
deposited in soil, P is converted into multiple co-existing inorganic 
and organic forms through complex chemical and biological 
processes (Chen et al., 2020). In addition, iron (Fe) and aluminum 
(Al) oxides can convert soluble P into a stable form that biota 
cannot exploit (Maranguit et  al., 2017; Wang et  al., 2017). 
Therefore, plants can adopt some strategies to cope with P 
deficiency and increase P supply, including biological processes 
(root exudates) that promote P supply. The balance between plant 
P uptake and soil P supply changes with stand age. However, little 
is known about the dynamics and mechanisms of change in P 
bioavailability with change in stand age.

P deficiency is a widespread phenomenon in subtropical forest 
ecosystems (Wu et al., 2011). The soil P cycle in forest ecosystems 
depends mainly on the internal system cycle. With the increase in 
forest age, the demand for P by trees, the composition and 
structure of forest ecosystems, and the distribution pattern and 
circulation law of soil P are affected by the P demand of trees (Wu 
et  al., 2020). In addition, soil P exists in a variety of forms, 
including soluble inorganic P, insoluble inorganic P, and surface-
adsorbed P (Bieleski, 1973). Transformation between different P 
fractions is regulated jointly by plants and microorganisms. For 
example, the demand for P in plants promotes the secretion of 
organic acids in plant fine roots, thus transforming insoluble 
organic P and inorganic P into soluble inorganic P (Fan et al., 
2020). Recent research has highlighted that the P cycle in soils is 
strongly controlled by soil microbial biomass (Spohn and Widdig, 
2017). In soils, microorganisms account for 68–78% of total P in 
the biomass and are involved in the accumulation and conversion 
of P in different soil P components (Turner et al., 2013). Data from 
previous studies suggest that soil microorganisms accelerate the 
release of unstable P by secreting hydrolases such as acid 
phosphatase, thereby breaking down organic P (Chen et al., 2018). 
In addition, when there is a cation–anion imbalance in a 
microorganism, it releases H+ or OH− to maintain charge balance 
between the inside and outside of the cell, thus altering soil pH 
and regulating P bioavailability (Deluca et al., 2015). In alkaline 
soil, microorganisms release H+, which reduces the solubility of 
Ca ions or Ca oxides, and further reduces the degree of binding of 
Ca compounds to P ions, in turn releasing phosphate ions 
available to plants and increasing P availability (Devau et al., 2009; 
Deluca et  al., 2015). However, in acidic soil, microorganisms 
release OH−, which reduces Fe and Al oxide activity, reduces the 
coupling of metal ions to phosphoric acid particles, and releases 
the coupled phosphoric acid ions into the soil solution, thus 
enhancing soil P availability (Devau et al., 2009; Deluca et al., 
2015). In addition, considering the complex interactions between 
plants, microbes, and soil, several chemical conditions of 
rhizosphere soil are distinct from those of non-rhizosphere, which 
directly affect plant growth, development, and the absorption and 
use of water and nutrients. Furthermore, beneficial and harmful 
organisms survive and reproduce in the soil, modifying the 
response of plants to adverse situations (Jian et  al., 2022). 
Regrettably, most of the current studies on the soil P cycle focus 

on non-rhizosphere soils, although it is the P cycle in rhizosphere 
soils that has the greatest and the most direct impact on plants 
(Wu et al., 2019a,b; Yang et al., 2021). Therefore, it is necessary to 
explore the strategies of P absorption and utilization in artificial 
forests from the perspective of P morphological characteristics in 
rhizosphere soils of different stand ages.

There is no unified standard for determining soil P fractions, 
although the methods of Chang and Jackson (1957) and Hedley 
et al. (1982) are widely adopted in the study of soil P fractions. For 
instance, using the methods proposed by Hedley et al. (1982) and 
Wang et al. studied the variations in soil P fractions in ginger fields 
(Wang et al., 2022). Using the methods proposed by Chang and 
Jackson (1957) and Adetunji (1994) studied the P requirements of 
corn–cowpea plantations. These methods have proven to be very 
useful in studies related to agriculture, as they provide direct 
indicators of P fertility; however, these methods do not adequately 
reflect rhizosphere processes (Johnson et al., 2003). P solubilized by 
rhizosphere processes, particularly by organic acids and extracellular 
enzymes, is not represented in these methods (Deluca et al., 2015). 
Furthermore, according to the different activities of each component 
of soil P, such fractionations dynamics may be well correlated with 
P accumulation and soil development, but they do not provide 
insight into the underlying mechanisms of P uptake or rhizosphere 
P conversion that drive ecosystem P dynamics (Deluca et al., 2015). 
Therefore, in order to better understand the mechanism of P 
utilization in plants, we need to use a targeted fractionation method, 
which can reflect the biologically mediated changes in available P 
and is sensitive to landscape-scale changes in soil P status.

As a unique native tree species in China, Pinus massoniana 
Lamb. has become the main pioneer tree species used in 
subtropical barren mountain afforestation because of its strong 
adaptability and drought resistance, with an estimated coverage 
area of 5.7 million hectares (Zhang et al., 2013). Research has 
shown that the soil total P (TP; 0.33 g·kg−1/4.04 × 102 g·m3) and 
available P storage (1.63 mg·kg−1/2.05 g·m3) of P. massoniana 
plantations were far lower than the average soil TP (8.2 × 102 g·m3) 
and available P storage (4.8 g·m3) of tropical and subtropical 
forests in China (Zhang et al., 2005). The low availability of P in 
the soil is one of the most important factors leading to the reduced 
productivity in P. massoniana plantations. However, little is known 
about the mechanism of the changes in soil bioavailable P in 
P. massoniana plantations.

In the present study, we selected P. massoniana plantations 
across different age classes to analyze changes in rhizosphere soil 
P fraction concentrations, physical and chemical properties, and 
microorganisms. We used the bioavailable-based P (BBP) method 
to determine the soil bioavailable P fractions; this is a novel 
method based on biological P utilization in the rhizosphere 
process and has not been reported in previous studies (Deluca 
et al., 2015; Gao et al., 2019). First, because of absorption by plants 
and nutrient return, P in the P. massoniana forest ecosystem shifts 
from acquiring system to recycling system; consequently, 
we hypothesized that (i) TP concentration in rhizosphere soil first 
decreases and then increases with an increase in stand age. 
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Second, because different P fraction can be converted to each 
other, we hypothesized that (ii) change in soil TP concentration is 
caused by changes in one or more types of soil bioavailable 
P. Third, subtropical forest soil is rich in soil microbes; therefore, 
(iii) changes in soil bioavailable P concentrations are correlated 
with microbial community composition and enzyme activity. The 
results of the present study could facilitate the formulation of 
effective P management strategies and offer a theoretical basis for 
the sustainable development of P. massoniana plantations.

Materials and methods

Study site description

This study was conducted at the Laoshan Forest Farm (29° 33′ 
N, 119° 03′ E; altitude, 152 m above sea level) in the Zhejiang 
Province, China, which has a subtropical monsoon climate 
(Figure  1). According to data recorded at a meteorological 
observation station about 7 km from the study area, the mean 
annual air temperature between 1980 and 2019 was 17.58°C, and 
the annual precipitation is 1,350 mm. The study area has two types 
of soil: red soil and lithological soil. The soil thickness is generally 
30–120 cm, and the topsoil layer is 15–30 cm (Zhang et al., 2021).

Experimental design

Due to the rapid growth in wood demand over the 20th 
century, China established several tree breeding bases, including 
our study sites (National P. massoniana improved seed base of 
Laoshan Forest Farm). The plantations in the study area have been 
established since the 1970s. Workers have harvested native trees 
and burned them on site, and then planted P. massoniana clones. 
In the first 3 years after planting, the workers cut down the 
undergrowth shrubs annually to promote seedling growth. 
Afterward, no management activities are carried out. Before the 
establishment of the plantation in the present study, the site 
conditions were as uniform as possible. The soil is mainly red soil 
and lithologic soil, with thin soil layer and poor nutritional status, 
and understory shrubs of the P. massoniana plantations were 
composed of Rosa multiflora, Smilax china, etc.

Field surveys and sampling were conducted in August 2021. 
P. massoniana plantations established in 1986, 1993, 2002, 2012, 
and 2016 were selected using the space-for-time (chronosequence) 
method (Figure 1). Although the chronological approach may 
be  inadequate because of the difficulty in avoiding differences 
between plots, careful site selection and consideration of 
developmental linkages can enhance the reliability of 
chronological studies (Walker et  al., 2010). The sample plots 
selected for this study were all at similar elevations. Three 
20 m × 20 m quadrats were randomly set for each stand age of 
P. massoniana plantation, and the distance between each quadrat 
was approximately 30 m.

Soil sample collection

Five standard trees of each were selected at random in each 
quadrat for rhizosphere soil samplings and then fully mixed these 
sampling points as a representative rhizosphere soil sample. The 
diameter at breast height of the standard tree was the average 
diameter at breast height for all trees in the quadrat, and there 
were no diseases and pests. Specifically, about a meter from each 
standard tree, soil was dug from a depth of 0–20-cm and the soil 
tightly attached to the surface of the fine roots gently shaken. 
Subsequently, the soil attached to the fine roots was brushed off 
gently and collected, and was regarded as the rhizosphere soil (Cui 
et al., 2019). The collected rhizosphere soil was divided into two 
parts: one part was dried naturally for the determination of total 
N (TN) and TP, and the other part was stored at 4°C for the 
determination of bioavailable P, microbial community 
composition, acid phosphatase, and phytase activity.

Chemical analysis of soil samples

The rhizosphere soil pH was determined using a 1:2.5 
soil:water solution (w/v), the TP concentration was analyzed 
using the ammonium molybdate method with colorimetry, and 
the TN concentration was measured using an elemental 
analyzer (CHN-O-RAPID, Heraeus, Germany; Ge et al., 2020). 
Phospholipid fatty acid (PLFA) analysis of the soil microbial 
community composition was performed using a gas 
chromatograph (Agilent Technologies 7890, Wilmington, DE, 
United States). The quantity (nmol·g−1 dry soil) of each PLFA 
was calculated based on the 19:0 internal standard (5 μg·ml−1), 
and the concentration of PLFA was used to estimate the biomass 
of specific microbiota in the soil sample. Fungi (F) include 
18:2ω6c and 18:1ω9c; Actinomyces (ACT) include 10Me16:0, 
10Me 17:0, and 10Me 18:0; arbuscular mycorrhizal fungi (AMF) 
include 16:1ω5c; Gram- (G-) include 16:1ω7c, 16:1ω9c, 18:1ω7c, 
18:1ω5c, cy17:0, and cy19:0; Gram+ (G+) include i14:0, i15:0, 
a15:0, i16:0, a16:0, and i17:0; and bacteria (B) include i14:0, 
i15:0, a15:0, i16:0, a16:0, i17:0, 16:1ω7c, 16:1ω9c, 18:1ω7c, 
18:1ω5c, cy17:0, cy19:0, 14:00, 15:00, 16:00, 17:00, and 16:1 
2OH (Malik et  al., 2008; Wang et  al., 2020). The enzyme 
substrate fluorescence microplate method was used to 
determine related enzyme activities: Acid phosphatase (AP) 
activity was oxidized by 1 nmol p-nitroaniline per gram of soil 
per minute as an enzyme activity unit, and the phytase (PE) 
activity was determined using 1 μmol of inorganic p released 
from 5 mmol L−1 phytate sodium solution per gram of soil 
sample per hour at a pH of 5.5 (Saiya-Cork et al., 2002).

Four soil bioavailable P pools were determined: (1) soluble 
P, which is readily absorbed by plants in small amounts and 
directly absorbed by root hairs and arbuscular mycorrhizas 
from soil solutions; (2) exchangeable P, which is a type of active 
P that is adsorbed on the surface of clay particles; when plants 
secrete organic acids, P in this form can be released into the soil 
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solution; (3) hydrolyzable P, which is a type of active organic P 
that can be mineralized by AP and PE; and (4) ligand P, which 
is difficult to utilize by plants and can only be released into the 
soil solution by proton replacement or physical shock secreted 
by plant roots and microorganisms. Soluble P was extracted 
with 10 mM CaCl2; exchangeable P was extracted with 10 mM 
citric acid solution; hydrolyzable P was extracted with 
0.02 U ml−1 phytase and acid phosphatase solution; and ligand 
P was extracted with 10 mM HCl, and the specific process is 
shown in Figure 2 (Deluca et al., 2015).

Statistical analysis

One-way analysis of variance (ANOVA) was used to 
compare the effects of different stand ages on the TP, N:P ratio, 
bioavailable P, AP activity, and PE activity of rhizosphere soil. 
Analyses were performed using SPSS (version 23.0; IBM, 
Armonk, NY, United States), and the significance level of all 
statistical tests was set at p < 0.05. The redundancy analysis 
(RDA) was used to evaluate the relationship between the 
microbial community composition, enzyme activity, and four 
types of soil bioavailable P. AMOS 25.0 (SPSS Inc., Armonk, NY, 
United States) was used for path analysis of the four types of soil 
bioavailable P and TP.

Results

Rhizosphere soil TP concentration and 
four types of soil bioavailable P

The TP concentration in the rhizosphere soil first 
decreased, and then increased with increasing stand age 
(Figure 3). The TP concentration in the 5 years rhizosphere soil 
was 0.53 g kg−1, which was significantly higher than that in the 
other four stand ages (p < 0.05). The TP concentration was the 
lowest in the rhizosphere soil at 9 years, which was 0.28 g kg−1, 
and increased gradually with the increase in stand age until it 
reached 0.35 g kg−1 at 35 years. The N:P ratio in the rhizosphere 
soil ranged from 4.36 to 6.62  in the five stand ages, which 
increased first, and then decreased with the increase in stand 
age, reaching a maximum of 6.62 in 19 years.

Stand age was observed to have a significant effect on the 
rhizosphere soil bioavailable P (Figure  4). The soluble P 
concentration decreased first, and then increased with the increase 
in stand age, reaching the lowest value of 0.68 mg P kg−1 at the 
9-year-old stand age and gradually increasing to 0.78 at the 
35-year-old stand age (Figure  4A). The exchangeable P 
concentration at 5 years was 52.33 mg P kg−1, which was 
significantly higher than that of the other stand ages (Figure 4B). 
The hydrolyzable P concentration first increased, and then 

A B

C D

E F

FIGURE 1

The study area is located in the Laoshan Forest Farm, Zhejiang Province, China. Tree survey (A), 5-year-old plantations (B), 9-year-old plantations 
(C), 19-year-old plantations (D), 29-year-old plantations (E), and 35-year-old-plantations (F).
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decreased with increasing stand age, reaching the highest value of 
4.45 mg P kg−1 at 19 years and gradually decreasing to 2.22 mg P 
kg−1 at 35 years (Figure 4C). The ligand P concentration at the age 
of 5 years (98.95 mg P kg−1) was significantly higher than that of 
the other stand ages (p < 0.05; Figure 4D). There was no significant 
difference in the ligand P concentration between 9, 19, 29, and 
35 years (p > 0.05).

According to the Structural Equation Model (SEM), the ligand 
P and soluble P were the major factors affecting TP, with path 
coefficients of 0.770 and 0.222, respectively (Figure  5). The 
exchangeable P fraction directly affected the soluble P fraction, 
with a path coefficient of 0.578. The exchangeable P fraction 
interacted with the ligand P fraction, and there was a positive 
covariance relationship (path coefficient = 0.943).

FIGURE 2

Fraction sequential extraction methods for the four types of soil bioavailable P.

FIGURE 3

Changes in the total P concentrations and N:P ratio in the rhizosphere soil depending on stand age. Different lowercase letters indicate significant 
difference at the 0.05 (p < 0.05) level among the different stand ages.
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AP, PE, and microbial community 
composition in the rhizosphere soil

The concentration of AP in the rhizosphere soil at 35 years was 
significantly higher than that at the other stand ages (p < 0.05), while 
the concentration of AP in the rhizosphere soil of the other four 
stand ages had no significant difference (P > 0.05), ranging from 
143.19 to 185.99 μg g−1 soil h−1 (Figure 6A). The PE concentration 
in the rhizosphere soil first increased, and then decreased with the 
increase in stand age, and the highest value was 6.73 μg g−1 soil h−1 
(29 years; Figure 6B). The PLFAs concentration of the G+,G−, B, 
AMF, ACT, and F communities and the total PLFAs concentrations 
were higher than that of other forest ages at 9 years (p < 0.05; 
Figure 6C).

Relationships between rhizosphere soil P 
fractions and rhizosphere soil 
biochemical properties

The RDA results for bioavailable P, PE, AP, and microbial 
community composition in the rhizosphere soil showed that 

soil biochemical properties explained 74.62% of the variation 
in soil P fractions. The first axis explained 57.44% of the total 
variation, and the second axis explained 17.18% of the total 
variation (Figure 7). In addition, hydrolyzable P was positively 
correlated with AP but negatively correlated with microbial 
community composition. Soluble P, exchangeable P, and ligand 
P had high positive correlations, and all of them had a high 
negative correlation with PE.

Discussion

Effects of stand age on the TP in the 
rhizosphere soil

The results of this study showed that the TP concentration 
in the rhizosphere soil decreased first, and then increased with 
an increase in stand age. The change pattern can be explained 
based on the process of P cycling in the ecosystem, that is, at 
the initial period stages after P. massoniana are planted, trees 
absorb P from the rhizosphere soil for growth and development, 
resulting in the consumption of P in the rhizosphere soil 

A B

C D

FIGURE 4

Changes in the concentrations of soluble P (A), exchangeable P (B), ligand P (C), and hydrolyzable P (D) in the rhizosphere soil, depending on the 
stand ages. Different lowercase letters indicate a significant difference at the 0.05 (p < 0.05) level among the different stand ages.
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(Turner and Lambert, 2010). Therefore, when the P. massoniana 
plantation was less than 19 years, the TP concentration in the 
rhizosphere soil decreased continuously. With increasing stand 
age, the input of litter increased, and the decomposition 
process continued, such that P in the litter was returned to the 
soil (Chen et  al., 2020). Therefore, when the P. massoniana 
plantation was older than 9 years, the concentration of TP in 
the rhizosphere soil increased continuously. It is worth noting 
that the rhizosphere soil TP concentration at 35 years was only 
66.04% of that at 5 years, indicating that the return of P in the 
P. massoniana plantation is very slow. Data from several studies 
suggest changes in litter yields in plantations compared to that 
of natural forests (Yang et al., 2009; Maranguit et al., 2017). For 
instance, the annual litter yield of a natural broad-leaved forest 
was 13.39 t ha−1 y−1, while that of a P. massoniana plantation 
was only 7.61 t ha−1 y−1, and less litter yield has been observed 
to lead to decreased soil P input (Guo et al., 2016). Previous 
research has established that it takes 27 years for soil carbon 
concentration to recover to the level of an evergreen broad-
leaved forest after plantation, which is much shorter than the 
recovery time of P concentration (Zhang et al., 2013). The N:P 
ratio can be used as a diagnostic index of P supply and can 
be  used to determine the threshold of nutrient limitation, 
indicating the supply of soil nutrients during plant growth (Bui 
and Henderson, 2013; Zhao et al., 2015). In this study, the N:P 
ratio first increased, and then decreased with increasing stand 
age, reaching a maximum at 19 years. This is also because in the 
early stages, P. massoniana plantations have a strong demand 

for P, and with the increase in stand age, the increase in litter 
input alleviates the P limit. Therefore, attention should be paid 
to soil P management in the management process of 
P. massoniana plantations, especially for timber stands, as the 
rotation period should be  appropriately extended or soil P 
should be  artificially supplemented to increase economic 
benefits and improve ecosystem services.

Effect of stand age on the bioavailable P 
in the rhizosphere soil

It is well known that the bioavailability of P in soil depends 
largely on the transformation that takes place between different 
soil P fractions (Deluca et al., 2015; Fan et al., 2019). Because 
some soil P fractions are not directly available to plants, 
transitions between biological P fractions play a key role in 
determining plant P availability (Richardson et al., 2011; Yang 
and Post, 2011). In this study, the soluble P concentration 
changed only to a small extent with the increase in stand age 
(range, 0.68–0.84 mg P kg−1), and the concentration of 
exchangeable P and ligand P decreased sharply at 9 years 
(decreased by 88.59% and 81.79%, respectively) and then tended 
to be constant. In the early stage, the exchangeable P and ligand 
P decreased because of fine root absorption and consumption, 
while in the middle and late stages, the content tended to 
be constant because the input in litter was supplemented (Ma 
et al., 2007). A 32P isotope labeling experiment showed that 99% 

FIGURE 5

Structural equation model (SEM) showing the transformation between different rhizosphere soil P fractions. Numbers on arrows are standardized 
path coefficients. Arrow thickness represents the magnitude of the path coefficient. The overall fit of the model: χ2 = 0.730, p = 0.866, comparative 
fit index (CFI) = 1.000, RMR = 0.011.
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of P in Pinus pinaster seedlings originated from litter, indicating 
that litter is important for soil P pool replenishment (Jonard et al., 
2009). A recent study showed that there is an unambiguous 
relationship between average annual P uptake and exchangeable 
P (Wu et al., 2019a,b).

We found that the change in ligand P was strongly 
correlated with exchangeable P, and exchangeable P was the 
main reason for the change in soluble P concentration. This is 
because there is a dynamic balance between exchangeable, 
ligand, and soluble P. Several lines of evidence suggest that 
plant roots can secrete citric acid, which can promote the 
transformation of exchangeable P to soluble P, and the 
concentration of citric acid decreases with increasing stand age 
(Fan et  al., 2019; Wu et  al., 2019a,b). This explains why 
exchangeable P causes variation in soluble P concentration, 
and it also provides support for the research result that 
exchangeable P concentration tends to be  constant in the 
middle and late periods. In addition, we  found that 
hydrolyzable P first increased and then decreased and was 
positively correlated with AP but negatively correlated with the 

microbial community composition. The relationships between 
soil microbial biomass, alkaline phosphatase activity, and P 
fractions could be  explained based on several mechanisms. 
First, soil microbial activity can accelerate soil Po 
mineralization rate, and thus mobilize more Pi from both 
insoluble and Po sources (Richardson and Simpson, 2011). 
Second, some P soluble soil microorganisms can significantly 
promote the acidification of alkaline soil through various 
mechanisms, such as promotion of the production and 
secretion of organic acids (Eisenhauer et al., 2017). In addition, 
several studies have reported that increased microbial biomass 
and diversity generally promote the activity of related phospho-
soluble soil enzymes, such as acid phosphatase (Kim et  al., 
1998), ultimately leading to the transfer of more P to the 
unstable P pool, which is also consistent with the results of our 
SEM. Therefore, the change in hydrolyzable P may be due to 
the comprehensive action of various P fractions, and 
concentration of hydrolyzable P is positively and significantly 
correlated with AP and negatively and significantly correlated 
with the microbial community (Figure 8).

A

C

B

FIGURE 6

Changes in the concentrations of AP (A) and PE (B) in the rhizosphere soil, depending on the stand ages, AP, PE, and microbial communities in the 
rhizosphere soil. Effects of stand age on the PLFAs of microbial communities in the rhizosphere soil (C). Different lowercase letters indicate a 
significant difference at the 0.05 (p < 0.05) level among the different stand ages.
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Conclusion

Stand age has strong effects on P availability, as reflected 
by the composition of available P fractions in the rhizosphere 

soil. In general, in the early stages of P. massoniana plantations, 
P demand was high and organic acids were secreted. 
Exchangeable P and ligand P were converted into soluble P for 
plant absorption and utilization, resulting in a decrease in TP 
concentration in the rhizosphere soil with increasing stand 
age. In the middle and late stages, the secretion of citric acid 
decreased, the consumption of exchangeable P and ligand P in 
the soil decreased, and the concentrations of exchangeable P 
and ligand P in the soil tended to remain constant. At the 
same time, the nutrient supplement in the litter gradually 
increased, and P in the plant gradually returned to the soil, 
resulting in an increase in the TP concentration in the 
rhizosphere soil with increasing stand age. Meanwhile, 
soil microbial community composition and AP-driven 
hydrolyzable P changes played an important intermediate role 
in all the stand ages. In short, these results reflect the potential 
relationship between different bioavailable P pools in 
rhizosphere soils, which could help to deepen the 
understanding of soil P cycle during the development of 
P. massoniana plantations and provide a reference for 
artificial intervention.
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FIGURE 7

Relationships between soil bioavailable P fractions and AP, PE, 
and microbial community composition as examined by 
redundancy analysis. AP, acid phosphatase; PE, phytase; F, fungi; 
ACT, Actinomyces; AMF, arbuscular mycorrhizal fungi; G−, 
Gram−; G+, Gram+; B, bacterial.

FIGURE 8

Schematic representation of the changes in rhizosphere soil bioavailable P and total P (TP) in relation to the changes in stand age.
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