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Light traps have been widely used as effective tools to monitor multiple agricultural

and forest insect pests simultaneously. However, the current detection methods of

pests from light trapping images have several limitations, such as exhibiting extremely

imbalanced class distribution, occlusion among multiple pest targets, and inter-species

similarity. To address the problems, this study proposes an improved YOLOv3 model in

combination with image enhancement to better detect crop pests in real agricultural

environments. First, a dataset containing nine common maize pests is constructed

after an image augmentation based on image cropping. Then, a linear transformation

method is proposed to optimize the anchors generated by the k-means clustering

algorithm, which can improve the matching accuracy between anchors and ground

truths. In addition, two residual units are added to the second residual block of the

original YOLOv3 network to obtain more information about the location of the underlying

small targets, and one ResNet unit is used in the feature pyramid network structure

to replace two DBL(Conv+BN+LeakyReLU) structures to enhance the reuse of pest

features. Experiment results show that the mAP and mRecall of our proposed method

are improved by 6.3% and 4.61%, respectively, compared with the original YOLOv3. The

proposed method outperforms other state-of-the-art methods (SSD, Faster-rcnn, and

YOLOv4), indicating that the proposedmethod achieves the best detection performance,

which can provide an effective model for the realization of intelligent monitoring of maize

pests.

Keywords: pests and diseases, pest detection, YOLOv3, image cropping, convolutional neural network

1. INTRODUCTION

Maize is the staple crop with the largest production worldwide, with an estimated 1,026million tons
(Cerquiglini et al., 2016). This grain is the basic food for calorie and protein intake in developing
countries (Shiferaw et al., 2011). However, the wide variety of pests in the field brings a great
obstacle to corn production. Therefore, the control of common maize pests is of great importance
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for maize production (Fotso Kuate et al., 2019; Veres et al.,
2020; Wang et al., 2020; Ratnadass et al., 2021). Traditionally,
spraying chemical pesticides is still the primary way to implement
the pest control task, however, inappropriate use of pesticides
can damage the ecosystem and reduce the agricultural economy
(Dhananjayan et al., 2020). In order to optimize the use of
pesticides for periods and areas where pests are present, it is
necessary to detect insect pests and evaluate their population.

Light traps have been widely used as effective tools to monitor
multiple agricultural and forest insect pests simultaneously.
However, for a long time, the recognition and counting of insects
in these light traps have been mainly performed manually by
humans, which is not only time-consuming and easy to make
mistakes but also the delay of information acquisition will lead
to missing the best time to pest control (Ding and Taylor,
2016). To avoid labor-intensive manual counting, image-based
automated recognition methods have been widely reported in
many studies (Fina et al., 2013; Xiao et al., 2018; Jiao et al.,
2020; Wang et al., 2020). The image-based method captures
images of traps and recognizes and detects pests on traps
using image processing technology. Generally, these image-based
methods include two main types: traditional machine learning-
based methods and deep learning-based methods. The methods
based on traditional machine learning rely on handcrafted
features, which are usually designed for some specific tasks.
For example, Fina et al. (2013) combined a k-means clustering
algorithm with corresponding filters to achieve pest detection
and identification. The detection method uses relative filters for
feature extraction of different types of pests and provides effective
identification of pests, but it is not very applicable in the case of
a large amount of pest data and complex background. Liu et al.
(2016a) used maximum stable extreme value region descriptors
to simplify the background of field images containing aphids
and then developed aphid recognition models using histograms
of oriented gradient features and support vector machines,
achieving an average recognition rate of 86.81% percent.
Compared with methods based on traditional machine learning,
methods based on deep learning have shown more robust and
higher performance for the task such as pest classification and
detection. For example, Liu et al. (2019) proposed a region-
based end-to-end method PestNet and applied contextual RoI
(Contextual Region of Interest) as contextual information of
pest features to improve the accuracy of detection with good
detection results in Multi-class Pest Dataset 2018 (MPD2018).
One year later, Jiao et al. (2020) designed a CNN-based pest
feature extraction module, and also introduced perceptual fields
in the region proposal generation network, and changed the IoU-
based matching method to construct an end-to-end two-stage
framework that improves the detection accuracy of small pests.
Successively, Liu andWang (2020) designed a multi-scale feature
detector using image pyramids to improve the detection accuracy
and speed of tomato pests and diseases, and Zhang et al. (2020)
introduced an improved Faster RCNN architecture using Online
Hard Sample Mining Strategy in the training phase to enhance
the detection of pests. A step further, to improve the performance
of small target detection of pests, Lyu et al. (2021) proposed
a feature fusion SSD algorithm based on Top-Down strategy,

and Wang et al. (2021) introduced the attention mechanism into
the residual network to obtain detailed pest characteristics and
proposed an adaptive RoI selection method for pinpointing and
classifying small pests.

However, the current pest detection methods still have some
limitations, including: (1) Exhibit extremely imbalanced class
distribution. A few classes contribute to most of the training
samples, while some classes are under-represented in data.
(2) Occlusion among multiple pest targets, a large number of
redundant bounding boxes lead to low accuracy. (3) Inter-species
similarity, fine-grained detection becomes more difficult.

In this study, to address these problems, we first collected
a large number of very small-scale pest instances, including
17,049 images with nine categories. Second, we preprocessed the
unbalanced original data by instance augmentation to reduce the
impact of unbalanced sample distribution on model training,
then we proposed a method to generate anchors based on k-
means linear scaling to improve the matching of anchors with
real boxes. Finally, we effectively used the residual structure
to improve the reusability of features by the model and used
a single detection head to reduce the computation of anchors
during prediction. Through extensive experimental analysis, our
proposed method outperforms other advanced detectors with
better detection performance.

In summary, our main contributions to this study are listed as
follows:

(1) The number of pest instances is balanced by instance
expansion to reduce the impact of model training on pest
classes with few instances.

(2) A k-means based linear transformation method was
proposed to improve the matching of anchors to real labels.

(3) Changing the Backbone network and Head of the original
YOLOv3 architecture to improve detection performance.

(4) The proposed method achieved an mAP of 77.29% and
mRecall of 68.90%, which outperforms other advanced
detectors.

2. MATERIALS AND METHODS

2.1. Data Introduction
In this study, to construct a specific dataset and improve
the detection accuracy for pest monitoring in the maize
field, we selected nine common species of maize pest,
namely Armyworm, Bollworm, Athetis Lepigone, Little Gecko,
Yellow Tiger, Holotrichia Oblita, Holotrichia Parallela, Anomala
Corpulenta, Agriotes Fuscicollis Miwa, as shown in Table 1.
The image collection was done by collating from the public
dataset Pest24 (Wang et al., 2020), which is a large-scale multi-
target standardized data set of light trap pests. During the
dataset collation, we constructed a new dataset by traversing
the operation to remove other kinds of tags from the XML file
and also removed the images that have no target objects. The
details of the collated datasets were shown in Table 1. We can see
from Figure 1 that Holotrichia Oblita, Yellow Tiger has very few
images and instances compared to the other seven classes of pests.
Moreover, the existence of an overlap between pests reduces the
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TABLE 1 | Description of the 9 classes of corn pests from the Pest24 dataset.

Pest name Portrait Index Images Instances
Images

Augmentation

Instances

Augmentation

Average relative

scale (%) *

Armyworm 5 3,828 8,880 4,281 9,333 0.394

Bollworm 6 9,049 28,014 9,955 29,675 0.281

Athetis Lepigone 8 7,520 30,339 7,520 30,339 0.13

Little Gecko 13 2,503 4,279 3,860 17,849 0.57

Yellow Tiger 24 1,388 1,686 1,991 9,084 0.398

Holotrichia Oblita 29 90 108 1,447 13,678 0.334

Holotrichia Parallela 31 3,111 11,675 3,261 11,825 0.255

Anomala Corpulenta 32 5,228 53,347 5,681 53,951 0.249

Agriotes Fuscicollis Miwa 36 1,814 6,484 2,720 11,618 0.114

* Represents (size of GT)/(size of original image).

accuracy of the model, such as the portrait of Athetis Lepigone in
Table 1, and the similarity between pests such as Bollworm and
Yellow Tiger is so similar that the model cannot extract features
well, which leads to model overfitting.

In summary, the dataset is featured typically with extremely
imbalanced class distribution, occluded distribution of insects,
and high insect similarity. These features pose great challenges
for object detection methods on the dataset.

2.2. Image Processing
2.2.1. Image Enhancement
The image enhancement of training samples can improve
the quality and diversity of samples, which is conducive
to the improvement of CNN detection accuracy (Wan
and Goudos, 2020). Data augmentation consists of two
main categories, such as offline augmentation and online
augmentation. Offline enhancement operates directly on the

dataset and can be applied to relatively small datasets. For
large datasets, online enhancement is a more appropriate
approach. The essence of image enhancement is all operations
such as spatial geometric transformation, pixel color
transformation, and blurring of the original image. In this
study, due to the large dataset, we used online enhancements.
We scaled and distorted the aspect of the pest images of
each batch during training data, added gray bars to the
excess parts of the images, and flipped the scaling so that
different batches have different input images, as shown in
Figure 2, which can effectively improve the robustness of
the model.

2.2.2. Instance Augmentation
To alleviate the problem of extremely imbalanced class
distribution, instance expansion for pest species with few
individuals was implemented in this step. We augmented the
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FIGURE 1 | The number of instances and images for each pest category.

FIGURE 2 | Original image and Enhanced images, where Enhanced images are images generated from different batches of original images after image enhancement

operations. The Enhanced images in the figure represent the four images generated under four batches.

instances of specific pests by cropping and pasting and generating
new images and xml files as shown in Figure 3.

We flipped the pests randomly before pasting them into
the background image and ensured that the pasted objects
did not overlap with any existing objects and that the pasted
objects were as far away from each other as possible. Table 1
shows the number of pest instances and images after instance
augmentation, and Figure 4 shows the matching of anchors with
pests at different scales, it is clear that the number of matching
anchors with pests is found to increase positively with the amount
of pest paste, and the increase in anchor frames also improves the
model’s ability to detect small-sized pests and overlapping pests.
We also divided the data for the expanded training, keeping the
test set unchanged, the ratio of the training set to the validation
set was 8:2. The divided training set, validation set, and test set
were 12,465, 2,985, and 3,411 images, respectively, totaling 18,861
images.

2.3. Detection Method
The whole flowchart of the proposed detection framework is
shown in Figure 5. This flowchart mainly includes four stages:

dataset collection, backbone evaluation and selection, model
improvement, model training and validation. The collected
data are input to the feature extraction network after image
processing, and different backbone networks are used to extract
features from the pest images, while the network structure is
further optimized and trained to obtain the optimal model.

2.3.1. YOLOv3 and Problem Analysis
The YOLO series model is one of the most commonly used
target detection models, of which YOLOv3 is an improved
version of YOLOv2. Compared with other commonly used
models such as Faster-rcnn and SSD, YOLOv3 achieves a balance
between detection time and accuracy (Adarsh et al., 2020),
and has achieved great success in major fields such as military
(Calderón et al., 2020) and pedestrian detection (Molchanov
et al., 2017; Lan et al., 2018), and its most important feature
is that it uses a feature pyramid network to achieve the fusion
of multi-layer features, which improves the feature extraction
capability of the network model. The feature extraction network
of YOLOv3 uses the Darknet-53 network, which has a unique
residual module to improve the stability and convergence speed
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FIGURE 3 | Schematic diagram of instance augumentation. (A) Iterate through all XML files and crop out instances of specific species of pests. (B) Manual selection

to filter blurry and sticky images. (C) Select an image with a low number of pets from the dataset and use it as a background image. (D) Copy image instances to the

selected background image.

FIGURE 4 | (A) is a schematic diagram of an anchor, and (B) represents one anchor point corresponding to a small target, there are only three anchors that can be

paired with small targets, and the IoU of the pairing is not high. (C) originally had only one small target, and the number of anchors corresponding to it was three, but

now it is copied in three copies, then there are four small targets in the graph, and the number of anchors corresponding to it becomes 15, which greatly increases the

probability of this small target being detected.

of the detection model. In addition, YOLOv3 adopts a feature
pyramid to achieve the fusion of features at different scales.
Specifically, YOLOv3 downsamples the input image five times
and considering that large-scale features are rich in image texture

and grayscale information and small-scale features are rich in
semantic information, YOLOv3 inputs the last three layers of the
network into the feature pyramid to achieve the fusion of large-
scale and small-scale feature information. YOLOv3 improves
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FIGURE 5 | The overall process of the proposed model from (1) data collection to, (2) backbone selection and model improvement, and (3) model training and

validation.

the feature extraction ability of the model and the accuracy of
target detection and enhances the small target detection ability
(Redmon and Farhadi, 2018).

In YOLOv3, the idea of anchors is borrowed from Faster-rcnn.
The authors (Redmon and Farhadi, 2018) clustered the COCO
dataset by k-means and generated nine anchors, such as (30×61),

(62×45), (59×119), (30×61), (62×45), (59×119), (116×90),

(156×198), and (373 ×326). Different anchors match different
feature layers in three branches, each feature layer corresponds

to a different receptive field. Thirty-two times downsampling has
the largest receptive field, which is suitable for detecting large

targets, so when the input is 416 × 416, the three anchor boxes

for each cell are (116×90), (156×198), and (373×326). Sixteen
times downsampling is suitable for the middle size object, the

anchor boxes are (30×61), (62×45), and (59×119). Eight times

downsampling has the smallest receptive field and is suitable
for detecting small targets, so the anchor boxes are (10×13),

(16×30), and (33×23). However, anchors generated by k-means
can produce bad results in practical applications. Compared

with the COCO dataset, most target detection datasets belong
to specific scenarios where the real labels are only at a single or

specific scale. Using k-means to generate anchors would result in
objects of similar size being forced into different feature layers

for prediction, which is obviously unreasonable. Therefore, we
propose the following improvement methods.

2.3.2. The Improved YOLOv3 Network
When using the pest dataset for training, the anchor boxes
generated by the k-means clustering algorithm are very
concentrated as shown in Figure 6 because of the many types
of pest images and the similar and concentrated size of the
real labels, which do not reflect the advantage of the model’s
multi-scale output; Also, there exist many real boxes with larger
sizes than the anchor boxes obtained by the k-means clustering
algorithm, which is not conducive to the training of the model
for pest localization.

2.3.2.1. Anchor Parameter Optimization
To improve the matching of anchors to real labels, We propose
a method to linearly scale the anchors by stretching the size of
the anchor generated by the k-means algorithm to both sides to
better fit the real frame at different scales of the pest dataset and
improve the detection accuracy. The formula is as follows (1), (2),
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FIGURE 6 | Size distribution and the number of pests. The kmeans clustering generates 9 centroids, cluster represents the centroid number, N represents the number

of instances in each class, a total of 187,352.

and (3).

x9
′
= βx9 (1)

xi
′
=

(xi − x1)

(x9 − x1)

(

x9
′
− x1

′
)

+ x1
′ (2)

yi
′
= xi

′
yi

xi
(3)

where xi, yi (i = 2, 3, ..., 9) represents the anchor with the serial
number i before and after the transformation, the first anchor
box is scaled by 0.5 times by default, β represents the stretch
factor from the second anchor box to the ninth anchor box. The
transformed schematic is shown in Figure 7.

2.3.2.2. Improvement of Backbone
Although YOLOv3 outputs a three-scale feature map through
feature fusion andmulti-objective prediction, the accuracy of pest
detection still needs to be improved. The object detection output
layer of the YOLO V3 network contains six DBL units and one 1
× 1 conv. Inspired by the DSSD network Fu et al. (2020), the first
five DBL units are turned into three DBL units and one ResNet
unit in order to avoid gradient disappearance and enhance
feature reuse. Meanwhile, as shown in Figure 8, two residual

units are added to the second residual block of the original
network to extract more information about the location of small
targets at lower levels. Backbone network input, convolution, and
output details are shown in Table 2, Improved network makes
extensive use of hopping connections of residuals and directly
discards pooling in order to reduce the negative effect of gradients
from pooling and uses conv to achieve downsampling. In this
network structure, convolution with a step size of two is used for
downsampling.

3. EXPERIMENT DESIGN

3.1. Experimental Running Environment
Experimental platform: All experiments are performed on two
GTX 2080Ti GPU with 11 GB memory, and the software is
Window 10, Python 3.8, and CUDA 11.4. Pytorch and Caffe are
used to build convolutional neural networks. Evaluation metrics:
To fairly evaluate the detection performance, we use the standard
average precision (AP) of each class and mean average precision
(mAP) values with IoU thresholds at 0.5. Training settings:
The models are trained with 2 GPU with a batch size of 16
for 100 epochs using the Adaptive Moment Estimation (Adam)
optimizer. The learning rate is initialized to 0.002 and multiplied
by 0.94 after each epoch.
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FIGURE 7 | Schematic diagram of the linear shift of anchors.

FIGURE 8 | The architecture diagram of the improved YOLOv3 network.

3.2. Model Training
In this experiment, a transfer learning approach is used for
training. The transfer learning uses the existing part of pre-
training weights, and the part of the network to which these
pre-training weights are applied is generic, such as Darknet53.We
first freeze the training of this part of the weights and put
more resources into training the later part of the network
parameters, so that both time and resource utilization can be
greatly improved. The later network parameters are trained for
50 epochs before the backbone network is unfrozen, and then all
of them are trained together. This operation can accelerate the
convergence of the model and reduce the training time of the
model. The loss value curves of the training set and validation
set of the improved model in this article are shown in Figure 9.

3.3. Model Evaluation Indices
Model evaluation is a key step in evaluating model detection
performance and is the main criterion for verifying model
robustness and detection capability. The commonly used indices
for evaluating target detection models are Recall (R), Average
precision (AP), Average category precision (mAP), and FPS,
where the formulas for P, R, AP, and mAP are shown in

Equations (4–7).

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

AP =

∫ 1

0
P (R)dR (6)

mAP =

∫ Q
q=1 AP

(

q
)

Q
(7)

TP: Positive samples are correctly identified as positive
samples.

FP: False positive samples, negative samples are incorrectly
identified as positive.

FN: False negative samples, positive samples are incorrectly
identified as negative samples.
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TABLE 2 | Backbone architecture details.

Layer Filter Size Output

Conv2 32 3×3 256×256

Conv2 64 3×3/2 128×128

Conv2 32 1×1

1× Conv2 64 3×3

Residual 128×128

Conv2 128 3×3/2 64×64

Conv2 64 1×1

4× Conv2 128 3×3

Residual 64×64

Conv2 256 3×3/2 32×32

Conv2 128 1×1

8× Conv2 256 3×3

Residual 32×32

Conv2 512 3×3/2 16×16

Conv2 256 1×1

8× Conv2 512 3×3

Residual 16×16

Conv2 1,024 3×3/2 8×8

Conv2 512 1×1

4× Conv2 1,024 3×3

Residual 8×8

Conv2 1,024 3×3/2 8×8

P: The percentage of True positives among the recognized
images. That is the proportion of all identified pests that are true
positives in this hypothesis.

R: The ratio of all positive samples in the test set that are
correctly identified as positive samples. In this hypothesis, the
ratio of the number of correctly identified pests of a certain
species to the number of all true pests of that species in the test set.

AP: The area under the precision-recall curve, generally the
better a classifier is, the higher the AP value.

mAP: The average of all categories of AP represents a
composite measure of the average accuracy of the detected
targets.

FPS: Number of picture frames detected per second.

3.4. Experimental Results and Analysis
3.4.1. Detection Performance With Different Stretch

Factors
In order to improve the level of matching of anchors to real boxes,
based on kmeans clustering to generate anchors, we perform a
linear shift on the anchor to improve the performance of the
model for pest detection. The maximum anchor enlargement

FIGURE 9 | Loss and validation curves during the training process.

FIGURE 10 | Schematic diagram of the linear shift of anchors.

factor is β . As can be seen from the figure, the map reaches a
maximum of 77.19% when β is 7.

In Figure 10, the folded graph shows that the anchors
generated by the k-means algorithm do not match the real
labels of the model well, resulting in poor model training
and a low map effect. We propose a linear transformation to
optimize the anchors, and the model has the best effect on
pest detection with 77.19% when the anchor boxes are (4×6),
(21×39), (56×56), (56×86), (83×152), (91×96), (100×135),
(153×147), and (162×216).

3.4.2. Detection Performance With Different

Backbones
To evaluate the performance, we enhanced the proposed network
further on the basis of the optimized anchor, compared with
several excellent CNN networks, such as Resnet53, Resnet101,
and CSPdarknet53, and optimized the Neck and Head of the
model to derive the best detection model, which was configured
to use the same configuration, such as Optimizer (Adam),
weight decay (0.00005), the classifier (softmax) and learning rate
(0.0002), gamma (0.94).

Table 3 shows the performance improvement of our backbone
compared to other backbones. Among them, for all types of
pests, the AP and R of our method are higher than those of
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TABLE 3 | Performance comparison results using different feature extraction and fusion methods.

Classes Darknet53 Resnet53 Resnet101 CSPDarknet53 Darknet53-SPP Ours

AP R AP R AP R AP R AP R AP R

5 77.02 72.61 49.66 28.98 55.98 36.81 77.21 70.70 65.24 52.99 79.8779.8779.87 74.1474.1474.14

6 88.98 81.75 77.76 64.94 80.40 64.25 88.90 81.94 84.42 72.24 90.0290.0290.02 84.3184.3184.31

8 67.12 43.56 48.36 24.74 49.95 22.30 67.37 49.83 58.13 32.96 69.6369.6369.63 48.5648.5648.56

13 86.63 74.92 64.49 34.34 70.58 44.24 86.00 77.83 78.97 58.99 86.8286.8286.82 78.5878.5878.58

24 48.44 42.42 0.40 0.30 5.68 0.91 47.12 40.61 29.04 15.45 54.1854.1854.18 48.4848.4848.48

29 59.4159.4159.41 21.62 8.78 2.70 10.18 2.70 44.96 16.22 6.05 2.70 47.07 27.0327.0327.03

31 93.11 88.83 88.13 81.46 87.63 80.28 93.23 90.53 88.49 86.13 93.4293.4293.42 92.1992.1992.19

32 97.09 96.4196.4196.41 95.89 93.34 95.80 92.21 96.76 95.68 95.51 91.77 97.0997.0997.09 95.69

36 76.89 66.28 60.35 44.43 61.30 48.19 75.55 68.09 67.01 54.70 77.4677.4677.46 71.1371.1371.13

The parts in bold represent the best performance.

TABLE 4 | The detection performance of different branches.

Method Branch Feature map mAP R

Yolov3(baselines) 3 Branches - 70.98 64.29

Ours Branch-1 13×13×42 0 0

Branch-2 26×26×42 0.09 0

Branch-3 52×52×42 77.29 68.9

3 Branches - 77.29 68.9

other methods. Not only our method improves the detection
performance for objects of different sizes but also reduces the
rate of missed detection by the model for pests that need to be
detected.

3.4.3. Detection Performance With Different Head

Branches
To further improve the inference speed of the model, we test the
Head part of the model and detect the pest images to compare
the FPS values before and after the model improvement, and the
experimental results are shown in Table 4. It can be seen that
among the three branches, Branch-3 plays a decisive role in the
detection, while Branch-1 and Branch-2 do not play a detective
effect. For this reason, we remove them in detection to reduce the
corrective computation of prediction frames and true frames and
improve the inference speed of the model.

3.4.4. Ablation Experiments
We can see in Table 5 through the ablation comparison
that our improved YOLOv3 model achieves good results in
terms of detection accuracy and detection time and has good
generalization performance for field pest datasets.

3.4.5. Comparison With Other Advanced

Architectures
To validate the overall performance of the proposed method for
pest detection, we compared it with state-of-the-art detectors,
including the one-stage detectors SSD (Liu et al., 2016b),

YOLOv3 (Redmon and Farhadi, 2018), YOLOv4 (Bochkovskiy
et al., 2020), two-stage detectors Faster-RCNN (Ren et al., 2015).
Table 6 shows the detection results of different models in our
dataset. Compared with the original YOLOv3, our proposed
method has improved mAP and R by 6.3 and 4.61%, respectively.
The highest mAP and R of our method compared with other
advanced methods indicates that our proposed method achieves
the best detection results.

Table 7 shows the inference time and the total number of
trainable parameters for the above methods. SSD has the least
number of trainable parameters and the fastest inference speed.
Followed by Faster-rcnn with the slowest inference speed, and
finally, our proposed method, although it has the most trainable
parameters, has the highest detection accuracy and the inference
speed can reach the level of real-time application, 61 frames per
second.

Our method performs well for sparse or dense pest instances.
In particular, our method can accurately distinguish pests with
similar textures and can detect and identify pests that overlap
together with high performance as well. For example, as shown in
Figure 11, in the first column of plots, our method can accurately
detect overlapping pest number 6, in the second column of plots,
our method is still able to detect pest number 24 in dense cases,
and in the third column of plots, our method detects a larger
number of pests compared to other algorithms. It is worth noting
that our detector does not detect other noises (pest categories
not in our dataset). Experimental results show that the proposed
method can improve the detection rate of small and obscured
objects.

4. DISCUSSION

In this study, we improved the YOLOv3 algorithm with various
techniques to achieve optimal performance after 77,900 iterations
when the loss was stabilized. Compared with other classical
methods, although the second residual block in darknet53 of the
proposed method adds two residual units and residual units to
replace two DBL units, which increases computational overhead,
it can enable the network training deeper, further improve the
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TABLE 5 | Enhancement effect of different improvement methods.

Default
Instances

augmentation

Anchor parameter

Optimization

Improvement

of backbone
mAP R FPS

YOLOv3 X 70.98 64.29 53

X X 73.52 60.49 54

X X X 77.19 65.37 54

Ours X X X X 77.29 68.90 61

The parts in bold represent the best performance.

TABLE 6 | Comparison of detection results of state-of-the-art detectors.

Classes YOLOv3 Faster-rcnn SSD YOLOv4 Ours

AP R AP R AP R AP R AP R

5 78.70 68.96 50.84 53.68 77.02 64.30 74.48 62.72 79.87 74.14

6 89.88 81.59 59.69 68.38 87.50 73.50 88.62 80.31 90.02 84.31

8 68.80 83.24 27.13 47.26 54.72 19.94 66.20 42.56 69.63 48.56

13 85.49 72.34 65.45 75.46 86.10 77.72 84.19 73.74 86.82 78.58

24 34.65 17.27 13.95 0.30 52.42 39.39 41.50 33.64 54.18 48.48

29 14.72 0.0 9.58 0 32.31 0.00 31.04 8.11 47.07 27.03

31 93.33 89.79 65.19 69.94 90.83 77.09 91.78 86.47 93.42 92.19

32 96.95 96.14 78.65 83.64 96.02 87.79 97.12 95.83 97.09 95.69

36 76.26 69.32 33.44 41.39 65.15 30.82 75.85 65.34 77.46 71.13

Mean 70.98 64.29 44.88 48.89 71.34 55.28 72.31 60.97 77.28 68.90

The parts in bold represent the best performance.

detection performance of the network and increase the detection
rate of pests. We mainly implemented the optimization related
to data, anchor generation, and network structure, by cropping
and copying the original data for data expansion to reduce the
impact of data imbalance on the model. We also scaled the
anchors generated by the k-means algorithm using the linear
transformation method, and set anchors of different scale sizes
for different feature layers, increasing the anchors that match
the real labels, which greatly improves the detection accuracy.
The output layer removes Branch-1 and Branch-2 which have
no role, simplifies the computation of anchor correction during
prediction, and improves the detection speed of the model. It
can also be seen from Table 6 that the network proposed in
this study has the highest mAP, the lowest miss detection rate,
and also achieves real-time detection in terms of detection time.
Compared with other classical algorithms, the proposed method
outperforms other state-of-the-art methods. Of course, although
the model can meet the real-time detection requirements, it is
still not good enough compared to other lightweight networks
and still needs to be improved in terms of mobile applications.

5. CONCLUSION

This study’s main goal is to solve the problem of low accuracy of
common object detection for small-scale pests, and the challenge
focuses on the detection of small size, multi-scale and uneven

TABLE 7 | Training parameters and inference time for different models.

Model Trainable

parameters

Forward/backward

pass size (MB)

Inference

time(FPS)

YOLOv3 61,566,814 992.36 54

Faster-rcnn 28,357,288 916.44 26

SSD 24,681,542 790.90 70

Ours 61,731,422 1117.79 61

numbers of pests. Therefore, we proposed an improved method
based on YOLOv3, including the cropping and pasting of the real
labels of pests, the linear shift of anchors, and the replacement
of DBL and Res-Unit in the network of Darknet53 is used to
enhance the feature reuse of the model. The experimental results
show that the proposed method has improved R and mAP for
small targets and effectively improved the detection ability of
pests.

In future study, we will focus on the lightweight design of
the proposed method by applying Mobilenet, Shufflenet, or other
lightweight networks for image feature extraction to reduce the
number of parameters without sacrificing model accuracy, and
design a more flexible and effective detection filtering method to
alleviate the problem of missing detection. In addition, we will
expand the pest species and collect more images from actual corn
fields to optimize the proposed algorithm.
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FIGURE 11 | Examples of detection results using the proposed method and other state-of-the-art methods.
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