AUTHOR=An Yunru , Sun Haoyang , Zhang Wei , Sun Yunfu , Li Shuxia , Yu Zhouchang , Yang Rongchen , Hu Tianming , Yang Peizhi TITLE=Distinct rhizosphere soil responses to nitrogen in relation to microbial biomass and community composition at initial flowering stages of alfalfa cultivars JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.938865 DOI=10.3389/fpls.2022.938865 ISSN=1664-462X ABSTRACT=

In the long-term growth process, alfalfa rhizosphere forms specific microbiome to provide nutrition for its growth and development. However, the effects of different perennial alfalfa cultivars on changes in the rhizosphere soil characteristics and microbiome are not well understood. In this study, 12 perennial alfalfa cultivars were grown continuously for eight years. Rhizosphere samples were tested using Illumina sequencing of the 16S rRNA gene coupled with co-occurrence network analysis to explore the relationship between alfalfa (biomass and crude protein content), soil properties, and the microbial composition and diversity. Redundancy analysis showed SOC and pH had the greatest impact on the composition of the rhizosphere microbial community. Moreover, microbial diversity also contributes to microbial composition. Soil properties (AP, EC, SOC and pH) exhibited a significant positive correlation with soil bacterial communities, which was attributed to the differences between plant cultivars. Partial least squares path modeling (PLS-PM) revealed that microbial biomass and community composition rather than diversity, are the dominant determinants in the rhizosphere soil nitrogen content of perennial alfalfa. Our findings demonstrate that the soil microbial biomass and composition of rhizosphere bacterial communities are strongly affected by cultivar, driving the changes in soil nitrogen content, and variances in the selective capacities of plants.