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Agriculture has been considered as a fundamental industry for human survival since 
ancient times. Local and traditional agriculture are based on circular sustainability models, 
which produce practically no waste. However, owing to population growth and current 
market demands, modern agriculture is based on linear and large-scale production 
systems, generating tons of organic agricultural waste (OAW), such as rejected or inedible 
plant tissues (shells, peels, stalks, etc.). Generally, this waste accumulates in landfills and 
creates negative environmental impacts. The plant kingdom is rich in metabolic diversity, 
harboring over 200,000 structurally distinct metabolites that are naturally present in plants. 
Hence, OAW is considered to be a rich source of bioactive compounds, including phenolic 
compounds and secondary metabolites that exert a wide range of health benefits. 
Accordingly, OAW can be used as extraction material for the discovery and recovery of 
novel functional compounds that can be reinserted into the production system. This 
approach would alleviate the undesired environmental impacts of OAW accumulation in 
landfills, while providing added value to food, pharmaceutical, cosmetic, and nutraceutical 
products and introducing a circular economic model in the modern agricultural industry. 
In this regard, metabolomics-based approaches have gained increasing interest in the 
agri-food sector for a variety of applications, including the rediscovery of bioactive 
compounds, owing to advances in analytical instrumentation and data analytics platforms. 
This mini review summarizes the major aspects regarding the identification of novel 
bioactive compounds from agricultural waste, focusing on metabolomics as the main tool.

Keywords: bioactive compound, metabolomics, organic agricultural waste, valorization, value-added product

INTRODUCTION

For centuries, the agricultural industry has been vital for providing food and materials to 
humankind. Traditional and local agriculture utilize available plants and resources (water, soil, 
land, etc.) in a sustainable way, ensuring the subsistence of the local community. Practically 
no waste is produced in these approaches as waste and unexploited products are utilized 
further as fertilizers, which are easily absorbed by soils (Harris and Hillman, 2014). In the 
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wine production industry, the generated grape marc would 
be  further utilized in the production of other alcohols, and 
the final product would be  used to fertilize the soil (Nerantzis 
and Tataridis, 2006). However, population growth and its 
consequent need to produce large amounts of food, as well 
as globalization and the pursuit of individual economic benefits 
have promoted the emergence of a linear-producing modern 
agricultural system. Unlike traditional and local agriculture, 
which are based on circular sustainability models, the modern 
system aims to meet global demand by increasing the profitability 
of production. To achieve this aim, modern agriculture 
overexploits natural resources by using the soil extensively 
along with large amounts of water and energy, applying pesticides 
to eliminate insects, and choosing monocultures over mixed 
production (Rockström et  al., 2017; Ramankutty et  al., 2018; 
Duque-Acevedo et al., 2020). The world population is predicted 
to reach ~10 billion by 2050 (data from Department of Economic 
and Social Affairs, United Nations (UN), n.d., Food and 
Agriculture Organization (FAO), n.d.). Accordingly, agricultural 
production also needs to grow, albeit in a sustainable way 
(Ramankutty et  al., 2018). However, a major drawback of this 
modern system is the increased production of organic agricultural 
waste (OAW) from crops (Gustavsson et  al., 2011), including 
rejected or inedible plant tissues such as pruning, fruit trimming, 
shelling or forestall residues, and food processing wastes such 
as rice husk and wheat straw. Notably, fruit pulp is also 
considered a major OAW because fruit juice production generates 
tons of squeezed pulp. In addition, huge quantities of fruit 
pulp may be rejected owing to post-harvest loss, as is commonly 
seen for climacteric fruits that possess a strikingly limited 
shelf life after harvesting. Generally, OAWs that are not further 
utilized accumulate uncontrollably in landfills. If poorly managed, 
the accumulated OAW would generate various biotic and abiotic 
by-products that would negatively impact the environment, 
health, and economy (El-Haggar, 2007; Nagendran, 2011; He 
et  al., 2019). Moreover, such landfills generate considerable 
amounts of methane, nitrous oxide, sulfur dioxide, and smoke 
when the OAW is burned in open air, a practice which is 
common in many landfills and leads to atmospheric pollution 
with significant emissions of carbon dioxide (Wang et al., 2019).

TOWARD A SUSTAINABLE 
BIOECONOMY USING ORGANIC 
AGRICULTURAL WASTE

The question arises as to why OAW is not reutilized. Different 
reutilization approaches for these residues have been described, 
including as animal feed and subjection to anaerobic digestion 
and composting. Although the effectiveness of these strategies 
has been described by several studies, such as those demonstrating 
the beneficial effects of using OAW as fertilizer (Sud et  al., 
2008; Meng et  al., 2017), OAWs continue to accumulate. The 
reason for this is profitability. For instance, farmers are not 
willing to risk replacing synthetic fertilizers, which deliver a 
precise quantity of nutrients, with OAW, which provides an 

imprecise quantity (Innes, 2013). Moreover, these strategies do 
not typically generate significant economic value (Garcia-Garcia 
et al., 2019). Therefore, a shift toward a more sustainable approach 
is vital. Over the last decades, the development of novel value-
added products based on the exploitation of bioactive compounds 
from OAW has gained considerable interest, which makes OAW 
a suitable feedstock for valorization. The plant kingdom is 
extensively rich in metabolic diversity, harboring over 200,000 
structurally distinct metabolites (Wurtzel and Kutchan, 2016) 
that are naturally present in plants, especially under stress and/
or damage conditions, which also magnifies their presence in 
OAWs. Hence, OAW is a rich source of bioactive compounds, 
including phenolic compounds (PCs) and secondary metabolites, 
which exert a wide range of health benefits such as antioxidant, 
anti-cancer, anti-inflammatory, cardioprotective, anti-microbial, 
and anti-allergenic activities (Coman et al., 2020; Jimenez-Lopez 
et  al., 2020). PCs are a large group of secondary metabolites 
generated by plants in response to multiple environmental stimuli. 
Owing to the numerous health-beneficial properties associated 
with PCs and their abundance in OAW, PCs from OAW are 
increasingly attracting industrial interest. Moreover, since some 
of these compounds are difficult and/or expensive to synthesize, 
their availability from OAW makes chemical synthesis unnecessary 
(Burri et  al., 2017; Jimenez-Lopez et  al., 2020).

The importance of converting OAW into value-added products 
has been incorporated into various market sectors. According 
to a recent study, the market value of agricultural waste products 
peaked at USD 63.3 billion in the beverage industry, followed 
by USD 48 billion in the medical industry and approximately 
USD 46 billion in the food and consumer goods sector (Beltrán-
Ramírez et  al., 2019). Taken together, the valorization of OAW 
generates a significant economic value by increasing income 
per harvest and improving the livelihood of the local 
communities, while reducing the excessive costs for waste 
disposal and minimizing the carbon footprint (Lucarini et  al., 
2018; Singh et  al., 2019).

SHIFT TOWARD SUSTAINABLE 
AGRICULTURE: VALORIZATION OF OAW 
AS A POTENTIAL SOURCE OF 
BIOACTIVE COMPOUNDS

Moving toward a systemic, circular model of “reuse, recycle, 
and regenerate” is vital for developing a sustainable agricultural 
industry. In this context, OAW biomass should be  considered 
a sustainable resource rather than a waste product. OAW 
valorization is based on the concept that any residual material 
or by-product can be  used as an extraction material, and the 
recovered bioactive compounds be reinserted into the production 
chain. The reutilization of these functional compounds not 
only represents various potential applications, including in the 
preparation of functional foods, food and feed additives, and 
nutraceutical and cosmeceutical products, but also alleviates 
certain negative effects of OAW accumulation in landfills, thus 
representing a favorable measure for the environment.
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The extraction of these functional bioactive compounds is 
an important aspect of OAW valorization both in the context 
of economic benefit, owing to the recovery of valuable compounds, 
and in the context of waste detoxification, owing to the removal 
of some compounds which could be  undesirable in subsequent 
biological post-treatments (Serrano et  al., 2017; Negro et  al., 
2018). Over the last few decades, researchers have focused on 
optimizing the extraction processes. Different parameters have 
been investigated to optimize the extraction yields of bioactive 
compounds available in OAW (Kareem and Rahman, 2013; 
Dorta et  al., 2014; Wong et  al., 2014). Table  1 summarizes 
the different OAWs from various crops, the amounts generated 
in Asia (tons/year) as of 2020, the bioactive compounds extracted 
from them, and the main analytical platforms utilized according 
to the literature published in the last 5 years (2017 until now).

METABOLOMICS IN AGRI-FOOD 
SECTOR: CURRENT PRACTICES FOR 
VALORIZATION OF OAW

Metabolomics is the comprehensive characterization of small 
molecules or metabolites present in a biological sample. Owing 
to the development of chemometrics and advanced analytical 
platforms, metabolomics has deepened our understanding of 
various metabolomic and pathway networks (Hollywood et  al., 
2006). Numerous high-throughput analytical platforms, including 
liquid chromatography and gas chromatography–mass spectrometry 
(LC–MS and GC–MS), and nuclear magnetic resonance (NMR) 
spectroscopy, have been extensively utilized for this purpose 
(Johanningsmeier et al., 2016). Metabolomics studies use untargeted 
or targeted approaches, and the selection of the analytical approach 
depends mainly on the research question and expected outcomes. 
Targeted analyses focus on a class of metabolites of interest 
based on our pre-existing knowledge. However, untargeted analyses 
utilize unbiased metabolite fingerprinting to profile the global 
metabolome of diverse chemical classes of metabolites associated 
with various known and/or unknown pathways (Scalbert et  al., 
2009; Patti et al., 2012). As shown in Table 1, high-performance 
liquid chromatography (HPLC) has been extensively utilized as 
the main analytical platform for the identification and/or discovery 
of various bioactive compounds from OAW using a targeted 
approach. However, over the past few years, a combination of 
both targeted and untargeted approaches (HPLC coupled with 
LC–MS and/or GC–MS) has been utilized to obtain a complete 
profile of the metabolites present in OAWs (as seen in Table 1).

Over the past few decades, metabolomics has been extensively 
applied to the valorization of different OAWs from various 
crops. Owing to recent advances in analytical instrumentation 
and data analytics platforms (Putri et  al., 2013; Rubert et  al., 
2015), metabolomics-based approaches have gained significant 
interest in the agri-food sector for the identification and/or 
rediscovery of diverse high-value bioactive compounds, especially 
PCs, from OAWs. Over 10,000 different PC structures with 
diverse natures are currently known, the most well-known of 
which include phenolic acids, flavonoids, and tannins (Kennedy 

and Wightman, 2011). These exist naturally in various 
concentrations in different plant parts, from roots to shoots, 
as well as in fruits. Accordingly, they are also present in OAWs. 
Recently, numerous studies have focused on the research and 
development of natural compounds as substitutes for synthetic 
additives because synthetic substances are strongly associated 
with various health risks, such as the appearance of allergies 
or even carcinogenesis (Zheng and Wang, 2001). In this context, 
OAWs are considered as suitable source materials for the extraction 
of numerous natural bioactive compounds, such as PCs, and 
metabolomics can be  considered as an ideal approach for the 
identification and/or rediscovery of these compounds from OAWs.

Numerous value-added products have been generated in 
the food, pharmaceutical, cosmetic, and nutraceutical industries 
by reinserting these high-value compounds into the production 
chain, as in a circular economic model. Typical examples include 
thickening, gelling, and food stabilizing agents from tomato 
and citrus waste (John et  al., 2017; Morales-Contreras et  al., 
2017); food preservatives (meat and oil product preservatives), 
food stabilizers, and bactericidal agents from potato peel (Sampaio 
et  al., 2020); essential oils with anti-cancer agents from orange 
waste (Yang et  al., 2017); biobutanol from rice husk (Quispe 
et  al., 2017); hydrogel from durian rind (Cui et  al., 2021); 
and single-cell protein (SCP) from corn stover and orange 
peel (Diwan et  al., 2018).

These value-added products, produced through OAW 
valorization, generate significant economic value. However, 
further research and development is vital to fully convert the 
still-evolving valorization process into a sustainable approach. 
By integrating metabolomics into this process, we  can gain a 
deeper understanding of the metabolic profiles of OAWs, and 
this can further promote the valorization process and add 
greater value to such products. To the best of our knowledge, 
only a few studies have utilized metabolomics to fully profile 
the metabolome of OAW and enhance the value of such 
products. These include studies on the production of pineapple 
wine and vinegar from pineapple peel and pulp (Roda et  al., 
2017), essential oils from the aerial parts of plants belonging 
to the genus Lavandula, mainly L. angustifolia (LA) and L. × 
intermedia (LI; Truzzi et al., 2022), supplements with therapeutic 
applications from Passiflora mollissima seeds (Ballesteros-Vivas 
et  al., 2020), and functional foods and nutraceuticals from 
bean (Vicia faba L.) by-products (Abu-Reidah et  al., 2017).

Taken together, the recovery of functional bioactive 
compounds can be  achieved by obtaining products that can 
be  reinserted into the economy as new raw materials within 
a circular and sustainable bioeconomy. Figure  1 presents a 
schematic overview of the application of metabolomics in OAW 
valorization using a circular economy concept. OAW was 
considered as the input material for the valorization process 
in this overview. To gain a deeper understanding of the metabolic 
profile of OAW, we  can take advantage of metabolomics to 
identify and/or rediscover bioactive compounds that can then 
be reinserted into the production chain to generate value-added 
products. Notably, for non-edible wastes such as peels and 
seeds, more studies, including toxicity tests and/or animal 
model studies, are needed to ensure their safety.
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TABLE 1 | List of organic agricultural wastes (OAWs) from various crops, the major bioactive compounds identified and/or extracted from them, main analytical 
platform utilized, and recent research studies (2017–present) in this area.

Crop
Agricultural 
waste

Amount of waste 
produced in Asia 

(tons/year) in 2020*
Bioactive compounds Analytical platform References

Almond Skin from seed 648,111 Catechin, kaempferol, isorhamnetin, naringenin, 
quercetin

HPLC Chen et al., 2019

Apple Pomace, seed, 
peel

55,707,264 Anthocyanins, catechin, caffeic acid, phloretin 
glycosides, quercetin glycosides, rutin

HPLC Călinoiu et al., 2017; Gunes 
et al., 2019; Nile et al., 2019

Avocado Peel, seed 943,327 Catechin, chlorogenic acid, cyanidin, epicatechin, 
gallic acid, hydroxybenzoic acid, procyanidins, 
1-caffeoylquinic acid, 3-glucosidecitric acid, 
3-O-p-coumaroylquinic acid, 4-caffeoylquinic acid

LC–MS/MS, HPLC Tremocoldi et al., 2018

Banana Peel, stalk, pulp 64,730,743 Anthocyanins, auroxanthin, catecholamine, 
cyaniding, delphinidin, gallocatechin, 
hydroxycinnamic, flavonoids, isolutein, lutein, 
neoxanthin, α-carotene, β-carotene, 
β-cryptoxanthin

LC–MS/MS Kraithong and Issara, 2021

Barley Husk 25,516,523 Catechins, flavonoids, gallocatechin, cis-ferulate, 
trans-ferulate

HPLC Nigam, 2017

Carrot Peel 26,126,853 Anthocyanidin, carotenoids, α-carotene, 
β-carotene

HPLC Gulsunoglu et al., 2019

Cauliflower Stem, leaves No data Caffeic acid, ferulate, glucoiberin HPLC Xu et al., 2017
Cocoa Skin, husk, shell 777,259 Apigenin, catechin, epicatechin LC–MS/MS, HPLC Campos-Vega et al., 2018
Coffee Cherry pulp No data Anthocyanins, caffeic acid, chlorogenic acid, 

di-caffeoylquinic acid
HPLC Heeger et al., 2017

Corn Bran 365,305,747 Anthocyanins, caffeic acid, ferulate, p-coumaric 
acid

LC–MS/MS, HPLC Luna-Vital et al., 2017

Date Pulp, seed 370,583,855 Phenolic acids, flavonols, fatty acids, 
sphingolipids, steroids

LC–MS, NMR Otify et al., 2019

Durian Peel, pulp, rind, 
seed

1,111,928 (in 
Thailand)

Glutathione, γ-glutamylcysteine, pyridoxamine, 
cysteine, leucine

CE-MS, HPLC, GC–
MS, HPAEC-PAD

Pinsorn et al., 2018; Cui et al., 
2021; Panpetch and 
Sirikantaramas, 2021; Ramli et al., 
2021; Sangpong et al., 2021

Grape Stalk, seed, pulp 29,824,812 Anthocyanins, caffeic acid, catechins, coumarate, 
epicatechin

HPLC–MS/MS, HPLC Mattos et al., 2017

Grapefruit Peel, pulp, seed No data Neohesperidosides, naringenin HPIEC, LC–MS, GC–
MS

Ahmed et al., 2019; Fernandez-
Fernandez et al., 2020; Dorado 
et al., 2021

Lemon Seed, peel, pulp 920,592 Apigenin-6, caffeic acid, coumarate, ferulate LC–MS, HPLC Sharma et al., 2017;  
Long and Mohan, 2021

Mango Skin, pulp, seed 39,742,461 Flavonoids, gallates, hydrolysable tannins, methyl 
gallate, phenolics

LC–MS Baddi et al., 2018;  
Bernal-Mercado et al., 2018; 
Wall-Medrano et al., 2020

Orange Peel, seed, pulp 28,366,264 Caffeic acid, chrologenic acid, cinnamic, ferulate, 
p-Coumaric acid, heperetin, hesperidin, 
hesperetin-7-O-rutinoside, naringenin-7-O-
rutinoside

GC Pacheco et al., 2018

Papaya Seed, peel 7,814,260 Carotene, cryptoxanthin, lutein HPLC Siddique et al., 2018
Pineapple Stem, pulp, peel 12,500,507 Catechin, epicatechin, ferulate, gallic acid, 

phenolics
LC–MS, HPLC Campos et al., 2020

Pomegranate Pulp, seed, peel No data Anthocyanins, flavonoids, gallic acid, punicalagin HPLC Sandhya et al., 2018;  
Meselhy et al., 2020

Potato Peel, tuber, leaf 178,599,864 Anthocyanin, caffeic acid, carotenoid, lutein, 
5-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, 
4-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic 
acid, 3,5-di-O-caffeoylquinic acid, 3,4-di-O-
caffeoylquinic acid, 3,4,5-tri-O-caffeoylquinic acid

HPAEC-PAD Scharf et al., 2020

Rice Husk, straw, 
bran

676,610,485 Anthocyanins, caffeic acid, ferulate, niacin, 
pantothenic, pyridoxine, phytosterols, tricin, 
tocopherols, tocotrienols, thiamine

HPLC, LC–MS Perez-Ternero et al., 2017; 
Bodie et al., 2019; Peanparkdee 
and Iwamoto, 2019

Soybean Husk 33,560,440 chlorogenic acid, ferulate, gallic acid HPLC Carneiro et al., 2020

(Continued)
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CONCLUSION AND FUTURE 
PERSPECTIVE

Owing to population growth and current market demands, modern 
agricultural systems are linear in nature and generate millions of 
tons of OAW. These wastes accumulate in landfills and create 

adverse environmental impacts. Since OAWs are rich in bioactive 
compounds, including secondary metabolites and PCs, which have 
various health benefits, their valorization will provide us with 
numerous exploitable economic, environmental, and social 
opportunities. To develop a circular and sustainable bioeconomy, 
OAW can be  used as an extraction material, and the recovered 

TABLE 1 | Continued

Crop
Agricultural 
waste

Amount of waste 
produced in Asia 

(tons/year) in 2020*
Bioactive compounds Analytical platform References

Sweet potato Peel, tuber, leaf 55,979,599 Anthocyanin, caffeic, lutein, 5-O-caffeoylquinic 
acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic 
acid, 4,5-di-O-caffeoylquinic acid, 3,5-di-O-
caffeoylquinic acid, 3,4-di-O-caffeoylquinic acid, 
3,4,5-tri-O-caffeoylquinic acid

HPLC Akoetey et al., 2017

Tomato Peel, pulp, seed 116,993,632 Caffeic acid, chlorogenic acid, ferulate, 
β-carotene, lycopene

HPLC, LC–MS/MS Szabo et al., 2018; Coelho 
et al., 2019; Lu et al., 2019

Wheat Bran 347,921,349 Caffeic acid, ferulate, gallic acid, p-coumaric acid HPLC, LC–MS/MS Seifdavati et al., 2021; Sisti 
et al., 2021

*retrieved from https://www.fao.org/faostat/en/#home.

FIGURE 1 | A schematic overview of the application of metabolomics in OAW valorization in a circular economy concept. The dotted line represents the multiple 
steps that might be needed to generate the final product.
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bioactive compounds can be reinserted into the production chain. 
In this regard, metabolomics-based approaches have gained 
increasing interest in the agri-food sector for the identification 
and/or rediscovery of these bioactive compounds. Additionally, 
OAW valorization can be used as a powerful and effective approach 
for tackling current global issues, including food shortages, waste 
disposal, and landfill reserves. However, further investigation is 
still vital to optimize extraction techniques to obtain increased 
product yields in an eco-friendly and economical manner. Moreover, 
further developments are required to fully integrate the currently 
evolving valorization system into a sustainable and efficient industrial 
tool. In this context, metabolomics can be  utilized as a powerful 
tool to obtain a complete metabolic profile of OAWs. An important 
risk factor in this process could be  the presence of contamination 
from chemicals in the crop residues owing to excessive use of 
pesticides and synthetic fertilizers, which should be  taken into 
consideration. There is a dilemma among gardeners and/or orchard 
owners whether to use pesticides and chemical fertilizers as much 
as needed to avoid any yield loss and gain profit from higher 
quality products, or to minimize or, if possible, avoid the use of 
pesticides and provide the valorization industry with 
non-contaminated OAWs and gain profit from the OAW valorization 
process. For the latter to occur, we need to increase public awareness 
regarding the importance and need to shift toward a circular 
and sustainable bioeconomy in which OAW is considered a natural 
resource for the valorization process. In addition, more companies 
should dedicate themselves to the valorization of OAW and 

production of value-added products. Taken together, it can 
be  concluded that, although metabolomics can be  used as an 
effective tool to improve the valorization potential of OAWs, the 
question as to which approach to follow remains open-ended.
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