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The non-destructive detection of soluble solids content (SSC) in fruit by near-infrared
(NIR) spectroscopy has a good application prospect. At present, the application
of portable devices is more common. The construction of an accurate and stable
prediction model is the key for the successful application of the device. In this study,
the visible and near-infrared (Vis/NIR) spectra of Korla fragrant pears were collected
by a commercial portable measurement device. Different pretreatment methods were
used to preprocess the raw spectra, and the partial least squares (PLS) model was
constructed to predict the SSC of pears for the determination of the appropriate
pretreatment method. Subsequently, PLS and least squares support vector machine
(LS-SVM) models were constructed based on the preprocessed full spectra. A new
combination (BOSS-SPA) of bootstrapping soft shrinkage (BOSS) and successive
projections algorithm (SPA) was used for variable selection. For comparison, single
BOSS and SPA were also used for variable selection. Finally, three types of models,
namely, PLS, LS-SVM, and multiple linear regression (MLR), were constructed based
on different input variables. Comparing the prediction performance of all models, it
showed that the BOSS-SPA-PLS model based on 17 variables obtained the best SSC
assessment ability with rp of 0.94 and RMSEP of 0.27 ◦Brix. The overall result indicated
that portable measurement with Vis/NIR spectroscopy can be used for the detection of
SSC in Korla fragrant pears.

Keywords: portable spectral measurement, internal attribute evaluation, Korla fragrant pear, variable selection,
quantitative analysis model

INTRODUCTION

Fruit is one of the most important foods in people’s daily life. Fruit industry is a pillar industry
in many countries and regions. The post-harvest quality detection and grading can realize the
graded sales of fruit in the market, which not only greatly increases the profits but also improves the
market competitiveness (Londhe et al., 2013). At present, many grading equipment manufacturers
have successfully developed commercial systems for the quality detection of fruit. Fruit quality
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includes external and internal qualities. Compared with external
quality, such as size, color, and shape, consumers prefer fruits
with good internal quality, because it is directly related to taste.
Soluble solids content (SSC) is an important internal quality
attribute that affects consumers’ acceptance and price of fresh
fruit. It is also an important index for determining fruit maturity
and harvest time, as well as for evaluating and grading fruit post-
harvest quality (Antonucci et al., 2011; Rajkumar et al., 2012).
Non-destructive testing of SSC in fruit by refractometer is a
standard detection way, which is destructive, cumbersome, and
time-consuming (Li and Chen, 2017). This way is only suitable
for detecting a small amount of fruit in specific circumstances,
such as sampling inspection. However, for quality assessment
of a large number of fruit, the rapid and non-destructive
measurement techniques are more attractive.

In the past three decades, many technologies have been
applied to detecting the SSC in fruits (Li et al., 2016; Walsh et al.,
2020). Among them, the visible and near-infrared (Vis/NIR)
spectroscopy is the most widely used technology. The detected
fruits include apple (Ma et al., 2021), orange (Jamshidi et al.,
2012), pear (Li et al., 2013), jujube (Wang et al., 2011),
watermelon (Ali et al., 2017), melon (Zhang et al., 2019), banana
(Zude, 2003), etc. For the detection of SSC in fruits by Vis/NIR
spectroscopy, the way of measurement can be divided into static,
online, and portable detection. In the early stage, the static
detection was the most commonly used way using expensive
testing instrument, which was mainly aimed at verifying the
feasibility of Vis/NIR spectroscopy to detect the SSC of fruit and
constructing appropriate prediction models. On this basis, many
studies have proved that Vis/NIR spectroscopy was an effective
technology for the SSC analysis of fruits (Walsh et al., 2020).
Therefore, this study mainly focuses on the online SSC detection
for developing a suitable prediction model for processing large
quantities of fruit (Xia et al., 2020; Zhang et al., 2021). Different
from the static and online detections, the portable detection is
a rapid detection technique for assessing the internal quality
of fruits based on portable measuring instruments (Neto et al.,
2017). This way of detection has the unique advantages of
convenient carrying and flexible use. This way is more suitable
for the SSC inspection of fruit at anytime and anywhere in the
process of storage and transportation and is also suitable for
the detection of fruit maturity on trees and so on. In terms of
these three ways of detection, no matter which way needs to
build a special prediction model for different varieties of fruits
to accurately predict the SSC, because of still many problems
in the model transfer between different ways of detection
and between prediction models of different varieties of fruits
(Mishra et al., 2021).

The prediction model of SSC based on Vis/NIR spectroscopy
contains linear [such as partial least squares (PLS) and multiple
linear regression (MLR)] and non-linear [least squares-support
vector machine (LS-SVM) and artificial neural network (ANN)]
models, which can achieve the successful prediction of SSC in
fruits (Walsh et al., 2020). Due to the different application objects
and conditions, it is difficult to directly determine which model
is better without actual verification. Generally, compared with
non-linear models, the linear models are easier to explain and

are simpler. However, the non-linear models may be more robust
because they can deal with the linear and non-linear relationship
between spectral data and prediction attributes at the same time
(Li et al., 2013). However, this cannot be the judgment basis for
using linear and non-linear models in actual SSC prediction. To
find the best prediction model, it is necessary to build different
models for analysis.

In the process of development, model optimization is the key
to build a more efficient prediction model. Variable selection is a
common model optimization strategy (Zou et al., 2010; Yun et al.,
2019). By using appropriate variable selection methods, those
uninformative variables and redundant variables are eliminated,
and a small number of variables related to SSC prediction
can be extracted, so as to achieve the purpose of model
optimization. The variable selection can make the model simpler
and improve the interpretation, modeling, and prediction rate
of the model. For model optimization, many variable selection
methods [such as successive projections algorithm (Araújo et al.,
2001), competitive adaptive reweighted sampling (Li et al.,
2009), and Monte Carlo uninformative variable elimination (Cai
et al., 2008)] have been successfully applied. Compared with
the variable selection using single method, some studies in fruit
quality detection indicated that two complementary wavelength
selection strategies may achieve a superimposed effect when
combined together (Li et al., 2014). Therefore, in this study, a new
combination (BOSS-SPA) of bootstrapping soft shrinkage (BOSS)
and successive projections algorithm (SPA) will be applied to
select the effective variables from full spectral data.

Pear is among the economically most important fruit in the
world. The main objective of this study was to determine the
best model for SSC prediction of Korla fragrant pears based
on portable spectral detection technology. The specific purposes
were given as follows: (1) To collect Vis/NIR spectral data
of all pear samples using a commercially available portable
spectroscopic device; (2) To establish the linear PLS and non-
linear LS-SVM calibration models based on full-spectrum data
and compare the performance of models; (3) To extract the
effective variables that were most informative for SSC detection
of Korla fragrant pears by using BOSS-SPA combination variable
selection method; and (4) To determine the optimal predictive
model, combined with prediction accuracy and stability, by
comparing the performance of models established based on full
spectra and effective variables.

MATERIALS AND METHODS

Fruit Samples
Korla fragrant pear, a unique variety in Xinjiang, China, was
used in this study. A total of 120 intact pears were purchased
from a grocery store. All samples were returned to the laboratory
and stored at room temperature (20◦C, relative humidity 60%)
for 24 h, to avoid the influence of sample temperature on the
accuracy of the prediction model (Xia et al., 2020). In this study,
all samples were divided into calibration set and prediction set
on the basis of Kennard-Stone (KS) sampling method (Galvão
et al., 2005). The calibration set contained 80 samples, which were
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mainly used for the construction of models. The prediction set
contained 40 samples, which were mainly used to evaluate the
performance of models. In the whole process of data analysis, the
samples of calibration set and prediction set remain unchanged.

Portable Measurement Device for
Spectral Data Acquisition
A commercial portable spectrometer (K-BA100R; Kubota Co.,
Osaka, Japan) was used to collect Vis/NIR spectral data of
samples. This portable measurement device mainly contains
halogen lamp light source, ring detection probe, optical fiber,
display screen, processor, etc. The detection probe consists of two
groups of ring optical fibers. One is the transmitting optical fiber,
which is mainly used to transmit Vis/NIR light to the sample;
and the other is the receiving optical fiber, which is mainly
used to receive the diffuse reflectance light with fruit component
information. Spectral data were acquired based on interactive
mode. During spectral data collection, each sample was placed
on the detection probe with its stem-calyx axis being horizontal.
The collected spectral range was 500–1,010 nm with an interval
of 2 nm. The integration time of spectrum acquisition was set to
300 ms for each sample. The final spectrum (Rc) was calculated
automatically by using the raw sample spectrum (R), the dark
reference spectrum (D), and the white reference spectrum (W),
according to Rc = [(R – D)/(W – D)]. The dark spectrum and the
white spectrum were obtained by turning off and turning on light
sources (no sample information), respectively. Due to the noise at
both ends of the original spectrum, only spectral data in the range
of 550–1,000 nm were used.

Real Soluble Solids Content
Measurement
After the spectral data of all samples were collected, the actual
SSC was measured immediately. A commercial refractometer
(Model: PR-101α, Atago Co., Ltd., Tokyo, Japan) with a refractive
index accuracy of±0.1 and the range of 0–45% with temperature
correction was used for destructive measurement. For each
sample, the whole fruit was juiced, and the SSC value of
the juice was measured three times. The mean values of
three measurements were recorded as the actual SSC value of
the tested sample.

Wavelength Selection Methods
The original spectrum contains over 200 wavelengths (variables),
not all of which are related to the prediction of SSC in pears,
and moreover, too many wavelengths are not conducive to
the construction of robust model. This study used the BOSS-
SPA combination to extract the effective wavelengths from full
spectral data. In terms of the BOSS-SPA combination, BOSS was
first used to extract a set of effective wavelengths, and SPA was
then used to optimize the extracted wavelengths. BOSS method,
originally proposed by Deng et al. (2016), takes advantage
of bootstrap sampling (BSS) and weighted bootstrap sampling
(WBS) to generate random variable subsets for the construction
of partial least squares regression (PLSR) sub-models. The
regression coefficients of sub-models were analyzed, and the

weights of variables were determined according to the absolute
values of the regression coefficients. The informative variables
with higher weights have a higher selection probability. Model
population analysis (MPA), proposed by Deng et al. (2015),
was used to analyze the sub-models to update the weight of
variables. Variables were optimized according to the principle of
soft shrinkage; in other words, less important variables were not
eliminated directly, but assigned smaller weights. The algorithm
iterates until the number of variables reaches 1. The subset with
the lowest root mean square error of cross validation (RMSECV)
was finally selected as the optimal variable set. SPA proposed by
Araújo et al. (2001) is a forward wavelength selection algorithm,
which aims to minimize the collinearity problem in variables.
SPA uses a simple projection operation in a vector space to
obtain a subset of wavelengths with minimal collinearity. The
final selected variable set corresponds to the smallest root mean
square error of prediction (RMSEP) in MLR analysis.

Modeling Algorithms
The PLS has become the most commonly used multivariate
linear analysis method in spectral modeling and analysis. In the
process of modeling, PLS can consider the target value matrix
Y (SSC value in this study) and spectral matrix X at the same
time and establish the basic relationship between X and Y. For
the development of a PLS model, the spectral matrix X and
the concentration matrix Y were first decomposed to obtain the
corresponding score matrices T and U:

X = TP + E, Y = UQ + F (1)

where P and Q are the loading matrices of X matrix and Y matrix,
and E and F are the errors that come from the process of PLS.
Then, MLR based on score matrix T and U was performed as
follows:

U = BT + E (2)

where B is the regression coefficient matrix of PLS. In linear
regression, it is necessary to consider how many columns of
data in the T matrix, i.e., the best factor or later variables (LVs),
were used for modeling. In this study, the leave-one-out cross
validation was used to determine the number of optimal LV.

The LS-SVM is an advanced statistical learning method, which
can deal with linear and non-linear multivariate analysis and
solve these problems in a relatively fast way. The LS-SVM
regression model can be expressed as follows:

y (x) =
N∑
k=1

αkK (x, xk)+ b (3)

where K(x, xk), xk, αk, and b are the kernel function, input vector,
support value, and bias, respectively. The radial basis function
(RBF) was used as kernel function K(x, xk) in this study and
defined as follows:

K(x, xk) = exp(−||xk − x||2/(2σ2)) (4)
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where ||xk-x|| represents the distance between the input vector
and the threshold vector, and σ is a width vector.

The MLR is also a common calibration method for spectral
quantitative analysis, which is easy to calculate and explain
compared with PLS. The general form of the model is:

y = βx + b (5)

where y represents an unknown concentration value (here, it
was the SSC value), β represents a set of regression coefficients,
x represents the spectral vector of a sample, and b is a
constant. MLR is suitable for a simple system with good linear
relationship. However, MLR also has the limitation. This method
requires more samples than variables for modeling. In practical
applications, the raw spectral variables obtained by spectrometers
are often numerous. Therefore, before constructing MLR models,
it is usually necessary to use the wavelength selection method
to optimize the variables to meet the prerequisite condition
of MLR modeling.

Model Evaluation
Four parameters, including calibration correlation coefficient
(rc) and root mean square error of calibration (RMSEC), and
prediction correlation coefficient (rp) and root mean square error
of prediction (RMSEP), were used to assess the performance
of models. The first two parameters were used to evaluate
the prediction performance of models on the samples in the
calibration set, and the last two parameters were used to evaluate
the prediction performance of models on the samples in the
prediction set. A good model usually has high rc and rp, low
RMSEC and RMSEP, and a small difference between RMSEC and
RMSEP. All parameters were calculated as follows:

r =

√√√√1−
∑n

i=1
(
yi,actual − yi,predicted

)2∑n
i=1
(
yi,actual − ȳi,actual

)2 (6)

RMSEC =

√√√√ 1
nc

nc∑
i=1

(
yi,predicted − yi,actual

)2 (7)

RMSEP =

√√√√ 1
np

np∑
i=1

(
yi,predicted − yi,actual

)2 (8)

where yi,predicted and yi,actual are the predictive SSC value and the
real SSC value of the ith sample in the calibration set or prediction
set, respectively. ȳi,actual is the average SSC value of samples in
the calibration or prediction set. nc, np, and n correspond to
the number of calibration samples, prediction samples, and all
samples, respectively.

RESULTS AND DISCUSSION

Analysis of Soluble Solids Content
Values of All Samples
Table 1 shows the statistical results of SSC values (◦Brix) of all
samples. It can be seen that the maximum, minimum, mean,

TABLE 1 | The statistics of SSC (◦Brix) of all samples.

Data set No. of samples Min. Max. Mean S.D.

Total 120 11.0 14.5 12.6 0.8

Calibration set 90 11.0 14.5 12.6 0.8

Prediction set 30 11.2 14.3 12.5 0.6

TABLE 2 | Prediction results of SSC by PLS models combined with different
preprocessing methods.

Preprocessing methods LVs Calibration set Prediction set

rc RMSEC rp RMSEP

None 7 0.97 0.19 0.86 0.32

SG 10 0.97 0.20 0.91 0.27

SG-MSC 11 0.97 0.20 0.92 0.25

SG-SNV 10 0.96 0.22 0.89 0.29

First derivative-SG-MSC 11 0.96 0.21 0.92 0.25

Second derivative-SG-MSC 12 0.93 0.25 0.90 0.27

and standard deviation (S.D.) of SSC values for 90 samples of
calibration set were 14.5, 11.0, 12.6, and 0.6 ◦Brix, respectively,
and for 30 samples of prediction set, these four values were 14.3,
11.2, 12.5, and 0.8 ◦Brix, respectively. The SSC range of the
calibration set covers that of the prediction set, which is helpful
to build a more robust prediction model.

Spectral Pretreatment and Spectral
Features
The difference of sample size leads to large scattering in the
original spectra, and the original spectra can also contain random
noise, which negatively affects the prediction performance of the
model. Therefore, the original spectrum was preprocessed before
model construction. The pretreatments, including Savitzky-
Golay smoothing (SG), first derivative and second derivative,
combination of SG and standard normal variables (SG-SNV),
combination of SG and multivariate scattering correction (SG-
MSC), and combination of derivative and SG-MSC, were used
for spectral pretreatment. Table 2 shows the prediction results
of SSC by PLS models combined with preprocessing and raw
spectra. It can be seen that the prediction accuracy of all PLS
models based on the preprocessed spectra was better than that
of the PLS model based on the original spectra, indicating
that the spectrum preprocessing can improve the prediction
performance of the model. PLS models combined with SG-MSC
and the first derivative-SG-MSC preprocessing achieved the best
prediction results. Compared with the second derivative-SG-
MSC preprocessing, the performance of the first derivative-SG-
MSC is better, probably because the second derivative processing
amplifies the noise in the original spectrum. For samples of the
prediction set, the optimal rp and RMSEP were 0.92 and 0.25,
respectively. Considering that SG-MSC pretreatment is simpler
than the first derivative-SG-MSC, the pretreatment spectra by
SG-MSC were used for the subsequent analysis.

The preprocessed spectral curves of samples by SG-MSC are
shown in Figure 1. It can be seen that all samples have a similar
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FIGURE 1 | Preprocessed spectral curves by SG-MSC.

TABLE 3 | Prediction results of SSC by PLS and LS-SVM with full spectral
data, respectively.

Modeling
methods

LVs/(γ/σ2) Calibration
set

Prediction
set

rc RMSEC rp RMSEP

PLS 11 0.97 0.20 0.92 0.25

LS-SVM γ = 2.1 × 105; σ2 = 2.5 × 104 0.95 0.24 0.88 0.32

spectral trend in the Vis-NIR spectral region of 550–1,000 nm,
and there are no abnormal samples. The spectral curve shows
some obvious absorption and reflection peaks, which may be
related to the internal chemical components of Korla fragrant
pears. The first obvious absorption peak is about 680 nm, which
is a typical chlorophyll absorption band. The central band of the
second absorption peak is about 750 nm, which is a relatively
wide absorption band associated with the fourth overtone of band
C–H. The small absorption band around at 950 nm might be
associated with the second overtone of band O–H. These results
were similar to those of Li et al. (2018). In addition to the typical
absorption characteristics, the spectral intensities of different
samples were different, indicating that there were differences
between chemical components, which was conducive to construct
the SSC quantitative analysis model.

Full Spectra Models for Soluble Solids
Content Prediction
In this study, two kinds of full-spectrum models, namely, linear
PLS and non-linear LS-SVM were constructed to predict the SSC
of pears. Prediction results are shown in Table 3. It can be seen
that the prediction accuracy of PLS model was obviously better
than that of LS-SVM model. For samples in the prediction set, the
rp and RMSEP of the latter were 0.92 and 0.25, respectively. The
relatively high prediction accuracy indicated that the PLS model
seems to be more suitable for the non-destructive evaluation
of SSC of Korla fragrant pears, which may be due to the main
linear relationship between the original spectral data and SSC
of fragrant pears. For the PLS model, the optimal number

of potential variables (LVs) was 11. Nevertheless, full variable
modeling negatively influences the fast construction of the model
and also reduces the prediction efficiency of the model.

Wavelength Selection by Bootstrapping
Soft Shrinkage and Successive
Projections Algorithm
The BOSS-SPA combination algorithm was used to select the
most important wavelengths from all 450 spectral variables to
build a more efficient SSC prediction model. The process of
wavelength selection by the BOSS algorithm is shown in Figure 2.
The evolution of wavelength number (nVAR), RMSECV, and
weights in sub-models in each iteration of BOSS are shown
in Figures 2A–C, respectively. As shown in Figure 2A, the
number of variables shows a downward trend from fast to slow
with the increase in the number of iterations. However, it is
impossible to know how many variables are finally selected.
It can be seen from Figure 2B that the number of the
selected variables is directly related to the RMSECV value of
the models. Observing the RMSECV curve, combined with
Figure 2A, indicates that the prediction performance of the
model gradually improves with the decrease in the number of
selected variables. When the number of selected variables reaches
40 (the corresponding number of iterations is 13), the lowest
RMSECV value was obtained. Afterward, the RMSECV value of
the model begins to increase rapidly with the increase in the
number of selected variables, indicating that the performance
of the model gradually deteriorates. Therefore, the 40 variables
corresponding to the lowest RMSECV value were considered
as the most important wavelengths, which were selected by the
BOSS algorithm. Figure 2C shows the change of each wavelength
weight in different iterations. It can be seen that the extracted
40 wavelengths were distributed in the Vis/NIR spectrum region.
This showed that the tissue color of Korla fragrant pears,
especially the skin color, may have a certain correlation with SSC.

Although the selected 40 wavelengths account for only 8.9%
of the full spectrum variable information, it can be seen from
the weight figure that there is obvious collinearity between
wavelengths, that is, there are more redundant variables in the
selected variables. Thus, based on the selected 40 wavelengths,
SPA was further used to optimize variables. During variable
selection by SPA, the variation of RMSEP of the MLR model
with the used variable number is shown in Figure 3A. The red
solid block in the figure indicates the optimal number of the
selected variables by SPA. It indicates that only 17 wavelengths
are selected from 40 spectral variables. The number of variables
is further reduced. The selected 17 wavelengths include 550,
565, 577, 636, 653, 664, 730, 739, 744, 765, 819, 854, 880, 902,
932, 966, and 997 nm, as shown in Figure 3B. In Figure 3B,
the vertical line represents the positions of the corresponding
17 wavelengths. For these selected wavelengths, the first nine
wavelengths are located in the visible spectrum region, which are
mainly related to the color characteristics of the pear surface. The
other eight wavelengths are located in the NIR spectral region of
750–1,000 nm. The absorbance of this region was related to the
second and third overtones of oxygen–hydrogen (O–H) stretches
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FIGURE 2 | The change of nVAR (A), RMSECV (B), and weights for variables (C) in each iteration of the BOSS algorithm.

FIGURE 3 | The change of RMSEP with the selected variables by SPA (A) and distribution of 17 variables (B).

and the third and fourth overtones of carbon–hydrogen (C—H)
stretches of the organic molecules such as SSC (Liu et al., 2010; Jie
et al., 2013; Li and Chen, 2017).

Effective Variable Models for Soluble
Solids Content Prediction
Three kinds of models, namely, PLS, LS-SVM, and MLR, were
established based on selected variables by BOSS-SPA for SSC

prediction of Korla fragrant pears. For comparison, three types
of models were also constructed based on those variables selected
by only using BOSS or SPA method. Note that because the SPA
variable selection process based on full spectrum is similar to
SPA in the BOSS-SPA combination variable selection method,
it is further introduced in this study; 24 variables were selected
by only using SPA. Prediction results of all models are shown
in Table 4. It can be seen that all models can effectively predict
the SSC of pears, and the rp and RMSEP ranges of models
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TABLE 4 | Prediction results of SSC by PLS, LS-SVM, and MLR models with different effective wavelengths.

Models Variable selection methods LVs/(γ/σ2) No. of variables Calibration set Prediction set

rc RMSEC rp RMSEP

PLS BOSS-SPA 8 17 0.94 0.27 0.92 0.25

BOSS 9 40 0.96 0.23 0.93 0.23

SPA 14 24 0.92 0.28 0.90 0.27

LS-SVM BOSS-SPA γ = 2.6 × 104; σ2 = 4.6 × 103 17 0.96 0.21 0.91 0.28

BOSS γ = 5.3 × 104; σ2 = 5.1 × 103 40 0.98 0.17 0.92 0.26

SPA γ = 7.3 × 105; σ2 = 8.6 × 104 24 0.90 0.35 0.89 0.29

MLR BOSS-SPA — 17 0.94 0.25 0.92 0.25

BOSS — 40 0.94 0.25 0.92 0.23

SPA — 24 0.92 0.24 0.89 0.32

FIGURE 4 | Results of 20 predictions for BOSS-SPA-PLS,
BOSS-SPA-LS-SVM, and BOSS-SPA-MLR models.

were 0.89–0.93 and 0.23–0.32 ◦Brix, respectively. Compared with
full-spectrum PLS and LS-SVM models in Table 3, the models
based on effective variables obtained similar or even better

prediction performance. The results showed that the appropriate
variable selection method can optimize the model. Comparing
the three types of models (PLS, LS-SVM, and MLR) in Table 4,
it can be found that the prediction accuracy of the two types
of linear models for SSC was slightly better than that of the
LS-SVM model based on the same inputs, indicating that the
linear model was a better choice when a portable instrument
was used to measure SSC of Korla fragrant pears. In terms of
PLS and MLR models, the prediction accuracy of the two models
was similar. For each type of model in PLS, MLR, and LS-SVM
shown in Table 4, the models (i.e., BOSS-PLS, BOSS-LS-SVM,
and BOSS-MLR) developed based on the variables selected by
BOSS were the best, followed by the models (i.e., BOSS-SPA-PLS,
BOSS-SPA-LS-SVM, and BOSS-SPA-MLR) developed based on
the variables selected by BOSS-SPA. The prediction ability of the
models (i.e., SPA-PLS, SPA-LS-SVM, and SPA-MLR) developed
based on the variables extracted by the SPA algorithm was the
worst, which may be because SPA can effectively reduce the
collinearity between variables, but it is weak in the elimination of
uninformative variables. Therefore, there may be uninformative
variables in those variables selected by SPA. In contrast, the BOSS
algorithm can effectively eliminate those uninformative variables.

FIGURE 5 | Measured vs. predicted values for SSC prediction of Korla fragrant pears by BOSS-SPA-PLS models. (A) Samples in the calibration set and (B) samples
in the prediction set.
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The BOSS-SPA combination variable selection method takes into
account the advantages of both BOSS and SPA. Based on BOSS-
SPA, only 17 variables were selected, and the models based on
these selected variables achieved high prediction accuracy for
the SSC prediction of Korla fragrant pears. For samples in the
calibration set, the rc and RMSEC of BOSS-SPA-PLS, BOSS-
SPA-LS-SVM, and BOSS-SPA-MLR models were 0.94 and 0.27
◦Brix, 0.96 and 0.21 ◦Brix, and 0.94 and 0.25 ◦Brix, respectively.
For samples in the prediction set, the rp and RMSEP were 0.92
and 0.25 ◦Brix, 0.91 and 0.28 ◦Brix, and 0.92 and 0.25 ◦Brix,
respectively, for the three models.

Determination of the Optimal Model
The analysis in the Section “Effective Variable Models for Soluble
Solids Content Prediction” shows that BOSS-SPA-PLS, BOSS-
SPA-LS-SVM, and BOSS-SPA-MLR models have high prediction
accuracy and few input variables, which can be used for the
SSC evaluation of Korla fragrant pears. To further compare the
prediction performance of the three models, the stability of the
models was analyzed. Specifically, all 120 samples were randomly
divided into calibration set and prediction set according to the
ratio of 3:1, and then, BOSS-SPA-PLS, BOSS-SPA-LS-SVM, and
BOSS-SPA-MLR models were constructed, respectively, based on
the new sample set to predict SSC. The sample set was divided 20
times, and accordingly, each type of model was also constructed
20 times. Figure 4 shows the prediction results of 20 model
calculations for the three types of models. For each type of model,
the bar graph represents the average of the 20 predictions, and
error bars from the 20 calculations were also shown on the bar
graph. It can be observed from the figure that the BOSS-SPA-
PLS model was optimal with the highest rc/rp average and the
lowest RMSEC/RMSEP. Moreover, the correlation coefficient and
root mean square error (RMSE) of the BOSS-SPA-PLS model
have the smallest change of error bar, indicating that this model
has the highest stability for the SSC prediction. Therefore, the
BOSS-SPA-PLS model was finally confirmed as the optimal model
for predicting the SSC of Korla fragrant pears based on portable
Vis/NIR spectroscopy.

Figure 5 shows the scatterplots of the predicted vs. measured
SSC values for calibration samples (Figure 5A) and prediction
samples (Figure 5B) by the BOSS-SPA-PLS model. The red
solid line is the regression line corresponding to the ideal
prediction result. It can be observed that the samples were closely
distributed around the regression line. The prediction accuracy
of the model was 0.95 for rc and 0.23 for RMSEC for samples
in the calibration set and 0.94 for rp and 0.27 for RMSEP for
samples in the prediction set. Both RMSEC and RMSEP were
low, and the difference between them was small, indicating that
the BOSS-SPA-PLS model has a good prediction accuracy and
stability, and it can be used to effectively predict the SSC of
Korla fragrant pears.

Some similar studies have been carried out using portable
Vis-NIR or NIR instruments. Sun et al. (2009) developed a
portable NIR system to detect SSC of Nanfeng mandarin. The best
results were obtained by the support vector machine model. The
correlation coefficient (R) and RMSEP were 0.93 and 0.65 ◦Brix,
respectively. Wang et al. (2017) achieved a prediction accuracy of

0.46 ◦Brix (RMSEP) for SSC analysis of the European pear based
on the MLR model with 9 wavelengths. Fan et al. (2017) used
Vis-NIR portable instrument to measure the SSC of apple and
constructed a PLS model based on 50 wavelengths to obtain the
best prediction performance, with rp and RMSEP being 0.96 and
0.40 ◦Brix, respectively. Compared with these studies, satisfactory
results were obtained in this study.

CONCLUSION

In this study, the portable Vis/NIR device was successfully
used to evaluate the SSC of Korla fragrant pears. It was found
that SGS-SNV spectral preprocessing can obviously improve
the prediction performance of models developed using the raw
spectra. The PLS and LS-SVM models with full spectra were
constructed. For samples in the prediction set, the rp and
RMSEP of the two models were 0.92, 0.25 ◦Brix and 0.88,
0.32 ◦Brix, respectively. Furthermore, to reduce the number
of variables involved in modeling, the BOSS-SPA combination
method selected 17 optimal variables, which were used to
develop BOSS-SPA-PLS, BOSS-SPA-LS-SVM, and BOSS-SPA-
MLR models. Moreover, PLS, LS-SVM and MLR models were
also constructed based on the variables selected by the only BOSS
and SPA. The results showed that the prediction accuracy of
models with effective variables was similar or better than that of
the full-spectrum models, and the ranges of rp and RMSEP of
models were 0.89–0.93 and 0.23–0.32 ◦Brix, respectively, for SSC
prediction. For each model of PLS, LS-SVM, and MLR established
based on the selected variables, BOSS-SPA-PLS, BOSS-SPA-LS-
SVM, and BOSS-SPA-MLR were optimal by considering the
complexity and accuracy of the models. The RMSEP values of the
three models for SSC prediction of Korla fragrant pears were 0.25,
0.28, and 0.25 ◦Brix, respectively. The stability of the three models
was further compared based on 20 modeling calculations, which
showed that BOSS-SPA-PLS was superior to BOSS-SPA-LS-SVM
and BOSS-SPA-MLR models. Finally, the BOSS-SPA-PLS was
determined to be the best model, and the BOSS-SPA combination
method was proved to be an effective variable selection method.
The model developed in this study, combined with portable
measurement technology, has the potential to be used for the
non-destructive evaluation of SSC in Korla fragrant pears.

DATA AVAILABILITY STATEMENT

The original contributions presented in this study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

XY: methodology, original manuscript writing, and funding.
LZ and SL: modeling. XH: spectrum processing. QZ: funding,
supervision, revision, and editing. QC: spectral pretreatment.
ZW: editing. JL: revision, editing, and supervision. All authors
contributed to the article and approved the submitted version.

Frontiers in Plant Science | www.frontiersin.org 8 July 2022 | Volume 13 | Article 938162

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-938162 June 30, 2022 Time: 15:6 # 9

Yang et al. Determination of Soluble Solids Content

FUNDING

The authors were grateful for the Xinjiang Production and
Construction Corps Financial Technology Plan Project under
Grant (2021CB042); Xinjiang Production & Construction

Crop Key Laboratory of Korla Fragrant Pear Germplasm
Innovation and Quality Improvement and Efficiency
Increment under Grant (2020DA004-202102); and Shihezi
University Innovation and Development Special Project under
Grant (CXFZ202107).

REFERENCES
Ali, M. M., Hashim, N., Bejo, S. K., and Shamsudin, R. (2017). Rapid and

nondestructive techniques for internal and external quality evaluation of
watermelons: a review. Sci. Hortic. 225, 689–699. doi: 10.1016/j.scienta.2017.
08.012

Antonucci, F., Pallottino, F., Paglia, G., Palma, A., D’Aquino, S., and Menesatti,
P. (2011). Nondestructive estimation of mandarin maturity status through
portable VIS-NIR spectrophotometer. Food Bioprocess Technol. 4, 809–813.
doi: 10.1007/s11947-010-0414-5

Araújo, M. C. U., Saldanha, T. C. B., Galvã, R. K. H., Yoneyama, T.,
Chame, H. C., and Visani, V. (2001). The successive projections
algorithm for variable selection in spectroscopic multicomponent analysis.
Chemom. Intell. Lab. Syst. 57, 65–73. doi: 10.1016/S0169-7439(01)0
0119-8

Cai, W. S., Li, Y. K., and Shao, X. G. (2008). A variable selection method based on
uninformative variable elimination for multivariate calibration of near-infrared
spectra. Chemom. Intell. Lab. Syst. 90, 188–194. doi: 10.1016/j.chemolab.2007.
10.001

Deng, B. C., Yun, Y. H., and Liang, Y. Z. (2015). Model population analysis
in chemometrics. Chemom. Intell. Lab. Syst. 149, 166–176. doi: 10.1016/j.
chemolab.2015.08.018

Deng, B. C., Yun, Y. H., Cao, D. S., Yin, Y. L., Wang, W. T., Lu, H. M.,
et al. (2016). A bootstrapping soft shrinkage approach for variable selection
in chemical modeling. Anal. Chim. Acta 908, 63–74. doi: 10.1016/j.aca.2016.
01.001

Fan, S. X., Huang, W. Q., Li, J. B., Guo, Z. M., and Zhao, C. J. (2017). Application
of characteristic NIR variables selection in portable detection of soluble solids
content of apple by near infrared spectroscopy. Spectrosc. Spectral Anal. 34,
2707–2712.

Galvão, R. K. H., Araujo, M. C. U., José, G. E., Pontes, M. J. C., Silva, E. C.,
and Saldanha, T. C. B. (2005). A method for calibration and validation
subset partitioning. Talanta 67, 736–740. doi: 10.1016/j.talanta.2005.0
3.025

Jamshidi, B., Minaei, S., Mohajerani, E., and Ghassemian, H. (2012). Reflectance
Vis/NIR spectroscopy for nondestructive taste characterization of Valencia
oranges. Comput. Electron. Agric. 85, 64–69. doi: 10.1016/j.compag.2012.
03.008

Jie, D. F., Xie, L. J., Fu, X. P., Rao, X. Q., and Ying, Y. B. (2013). Variable selection
for partial least squares analysis of soluble solids content in watermelon using
near-infrared diffuse transmission technique. J. Food Eng. 118, 387–392. doi:
10.1016/j.jfoodeng.2013.04.027

Li, H. D., Liang, Y. Z., Xu, Q. S., and Cao, D. S. (2009). Key wavelengths
screening using competitive adaptive reweighted sampling method for
multivariate calibration. Anal. Chim. Acta 648, 77–84. doi: 10.1016/j.aca.2009.
06.046

Li, J. B., and Chen, L. P. (2017). Comparative analysis of models for robust
and accurate evaluation of soluble solids content in ‘Pinggu’ peaches by
hyperspectral imaging. Comput. Electron. Agric. 142, 524–535. doi: 10.1016/j.
compag.2017.11.019

Li, J. B., Huang, W. Q., Chen, L. P., Fan, S. X., Zhang, B. H., Guo,
Z. M., et al. (2014). Variable selection in visible and near-infrared
spectral analysis for noninvasive determination of soluble solids content
of ‘Ya’ pear. Food Anal. Methods 7, 1891–1902. doi: 10.1007/s12161-014-9
832-8

Li, J. B., Huang, W. Q., Zhao, C. J., and Zhang, B. H. (2013). A comparative study
for the quantitative determination of soluble solids content, pH and firmness
of pears by Vis/NIR spectroscopy. J. Food Eng. 116, 324–332. doi: 10.1016/j.
jfoodeng.2012.11.007

Li, J. B., Wang, Q. Y., Xu, L., Tian, X., Xia, Y., and Fan, S. X. (2018).
Comparison and optimization of models for determination of sugar
content in pear by portable Vis-NIR spectroscopy coupled with wavelength
selection algorithm. Food Anal. Methods 12, 12–22. doi: 10.1007/s12161-018-
1326-7

Li, J. L., Sun, D. W., and Cheng, J. H. (2016). Recent advances in nondestructive
analytical techniques for determining the total soluble solids in fruits: a
review. Compr. Rev. Food Sci. Food Saf. 15, 897–911. doi: 10.1111/1541-4337.1
2217

Liu, Y. D., Sun, X. D., Zhang, H. L., and Ouyang, A. G. (2010). Nondestructive
measurement of internal quality of Nanfeng mandarin fruit by charge coupled
device near infrared spectroscopy. Comput. Electron. Agric. 71S, S10–S14. doi:
10.1016/j.compag.2009.09.005

Londhe, D., Nalawade, S., Pawar, G., Atkari, V., and Wandkar, S. (2013). Grader: A
review of different methods of grading for fruits and vegetables. Agric. Eng. Int.
15, 217–230.

Ma, T., Xia, Y., Inagaki, T., and Tsuchikawa, S. (2021). Rapid and nondestructive
evaluation of soluble solids content (SSC) and firmness in apple using Vis-
NIR spatially resolved spectroscopy. Postharvest Biol. Technol. 173:111417. doi:
10.1016/j.postharvbio.2020.111417

Mishra, P., Klont, R., Verkleij, T., and Wisse, S. (2021). Translating near-
infrared spectroscopy from laboratory to commercial slaughterhouse: existing
challenges and solutions. Infrared Phys. Technol. 119:103918. doi: 10.1016/j.
infrared.2021.103918

Neto, J. P. D. S., Assis, M. W. D. D., Casagrande, I. P., Júnior, L. C. C.,
and Teixeira, G. H. D. A. (2017). Determination of ’palmer’ mango
maturity indices using portable near infrared (vis-nir) spectrometer.
Postharvest Biol. Technol. 130, 75–80. doi: 10.1016/j.postharvbio.2017.
03.009

Rajkumar, P., Wang, N., EImasry, G., Raghavan, G. S. V., and Gariepy,
Y. (2012). Studies on banana fruit quality and maturity stages using
hyperspectral imaging. J. Food Eng. 108, 194–200. doi: 10.1016/j.jfoodeng.2011.
05.002

Sun, X. D., Zhang, H. L., and Liu, Y. D. (2009). Nondestructive assessment of
quality of Nanfeng mandarin fruit by a portable near infrared spectroscopy. Int.
J. Agric. Biol. Eng. 2, 65–71.

Walsh, K. B., Blasco, J., Zude-Sasse, M., and Sun, X. D. (2020). Visible-NIR ‘point’
spectroscopy in postharvest fruit and vegetable assessment: the science behind
three decades of commercial use. Postharvest Biol. Technol. 168:111246. doi:
10.1016/j.postharvbio.2020.111246

Wang, J. H., Wang, J., Chen, Z., and Han, D. H. (2017). Development of
multi-cultivar models for predicting the soluble solid content and firmness
of European pear (Pyrus communis L.) using portable vis-NIR spectroscopy.
Postharvest Biol. Technol. 129, 143–151. doi: 10.1016/j.postharvbio.2017.
03.012

Wang, J., Nakano, K., and Ohashi, S. (2011). Nondestructive evaluation of jujube
quality by visible and near-infrared spectroscopy. LWT Food Sci. Technol. 44,
1119–1125. doi: 10.1016/j.lwt.2010.11.012

Xia, Y., Fan, S. X., Huang, W. Q., Tian, X., and Li, J. B. (2020). Multi-factor
fusion models for soluble solid content detection in pear (Pyrus bretschneideri
‘Ya’) using Vis/NIR online half-transmittance technique. Infrared Phys. Technol.
100:103443. doi: 10.1016/j.infrared.2020.103443

Yun, Y. H., Li, H. D., Deng, B. C., and Cao, D. S. (2019). An overview of
variable selection methods in multivariate analysis of near-infrared spectra.
TrAC Trends Anal. Chem. 113, 105–115. doi: 10.1016/j.trac.2019.01.018

Zhang, D., Xu, L., Wang, Q., Tian, X., and Li, J. (2019). The optimal local model
selection for robust and fast evaluation of soluble solid content in melon with
thick peel and large size by Vis-NIR spectroscopy. Food Anal. Methods 12,
136–147. doi: 10.1007/s12161-018-1346-3

Frontiers in Plant Science | www.frontiersin.org 9 July 2022 | Volume 13 | Article 938162

https://doi.org/10.1016/j.scienta.2017.08.012
https://doi.org/10.1016/j.scienta.2017.08.012
https://doi.org/10.1007/s11947-010-0414-5
https://doi.org/10.1016/S0169-7439(01)00119-8
https://doi.org/10.1016/S0169-7439(01)00119-8
https://doi.org/10.1016/j.chemolab.2007.10.001
https://doi.org/10.1016/j.chemolab.2007.10.001
https://doi.org/10.1016/j.chemolab.2015.08.018
https://doi.org/10.1016/j.chemolab.2015.08.018
https://doi.org/10.1016/j.aca.2016.01.001
https://doi.org/10.1016/j.aca.2016.01.001
https://doi.org/10.1016/j.talanta.2005.03.025
https://doi.org/10.1016/j.talanta.2005.03.025
https://doi.org/10.1016/j.compag.2012.03.008
https://doi.org/10.1016/j.compag.2012.03.008
https://doi.org/10.1016/j.jfoodeng.2013.04.027
https://doi.org/10.1016/j.jfoodeng.2013.04.027
https://doi.org/10.1016/j.aca.2009.06.046
https://doi.org/10.1016/j.aca.2009.06.046
https://doi.org/10.1016/j.compag.2017.11.019
https://doi.org/10.1016/j.compag.2017.11.019
https://doi.org/10.1007/s12161-014-9832-8
https://doi.org/10.1007/s12161-014-9832-8
https://doi.org/10.1016/j.jfoodeng.2012.11.007
https://doi.org/10.1016/j.jfoodeng.2012.11.007
https://doi.org/10.1007/s12161-018-1326-7
https://doi.org/10.1007/s12161-018-1326-7
https://doi.org/10.1111/1541-4337.12217
https://doi.org/10.1111/1541-4337.12217
https://doi.org/10.1016/j.compag.2009.09.005
https://doi.org/10.1016/j.compag.2009.09.005
https://doi.org/10.1016/j.postharvbio.2020.111417
https://doi.org/10.1016/j.postharvbio.2020.111417
https://doi.org/10.1016/j.infrared.2021.103918
https://doi.org/10.1016/j.infrared.2021.103918
https://doi.org/10.1016/j.postharvbio.2017.03.009
https://doi.org/10.1016/j.postharvbio.2017.03.009
https://doi.org/10.1016/j.jfoodeng.2011.05.002
https://doi.org/10.1016/j.jfoodeng.2011.05.002
https://doi.org/10.1016/j.postharvbio.2020.111246
https://doi.org/10.1016/j.postharvbio.2020.111246
https://doi.org/10.1016/j.postharvbio.2017.03.012
https://doi.org/10.1016/j.postharvbio.2017.03.012
https://doi.org/10.1016/j.lwt.2010.11.012
https://doi.org/10.1016/j.infrared.2020.103443
https://doi.org/10.1016/j.trac.2019.01.018
https://doi.org/10.1007/s12161-018-1346-3
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-938162 June 30, 2022 Time: 15:6 # 10

Yang et al. Determination of Soluble Solids Content

Zhang, Y., Yang, X., Cai, Z., Fan, S., Zhang, H., Zhang, Q., et al. (2021). Online
detection of watercore apples by Vis/NIR full-transmittance spectroscopy
coupled with ANOVA method. Foods 10:2983. doi: 10.3390/foods101
22983

Zou, X. B., Zhao, J. W., Povey, M. J. W., Holmes, M., and Mao, H. P. (2010).
Variables selection methods in near-infrared spectroscopy. Anal. Chim. Acta
667, 14–32. doi: 10.1016/j.aca.2010.03.048

Zude, M. (2003). Non-destructive prediction of banana fruit quality using VIS/NIR
spectroscopy. Fruits 58, 135–142. doi: 10.1051/fruits:2003001

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yang, Zhu, Huang, Zhang, Li, Chen, Wang and Li. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Plant Science | www.frontiersin.org 10 July 2022 | Volume 13 | Article 938162

https://doi.org/10.3390/foods10122983
https://doi.org/10.3390/foods10122983
https://doi.org/10.1016/j.aca.2010.03.048
https://doi.org/10.1051/fruits:2003001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Determination of the Soluble Solids Content in Korla Fragrant Pears Based on Visible and Near-Infrared Spectroscopy Combined With Model Analysis and Variable Selection
	Introduction
	Materials and Methods
	Fruit Samples
	Portable Measurement Device for Spectral Data Acquisition
	Real Soluble Solids Content Measurement
	Wavelength Selection Methods
	Modeling Algorithms
	Model Evaluation

	Results and Discussion
	Analysis of Soluble Solids Content Values of All Samples
	Spectral Pretreatment and Spectral Features
	Full Spectra Models for Soluble Solids Content Prediction
	Wavelength Selection by Bootstrapping Soft Shrinkage and Successive Projections Algorithm
	Effective Variable Models for Soluble Solids Content Prediction
	Determination of the Optimal Model

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


