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The present study aimed to explore the antibacterial activity of various

organic root extracts of Skimmia anquetilia N.P. Taylor and Airy Shaw and

the identification of major functional groups and phytoconstituents through

fourier transform infrared spectrometer (FTIR) and gas chromatography-mass

spectrometer (GC-MS). The extracts were evaluated for antibacterial activity

against multidrug-resistant (MDR) strains viz., Pseudomonas aeruginosa

(MTCC424), Escherichia coli (MTCC739), Klebsiella pneumoniae (MTCC139),

Salmonella typhi (MTCC3224), and Staphylococcus aureus (MTCC96). ESKAPE

pathogens such as S. aureus, K. pneumoniae, and P. aeruginosa are

responsible for a majority of all healthcare acquired infections. The

ethyl acetate extract showed the highest zone of inhibition against

P. aeruginosa (18 mm) followed by S. aureus (17 mm). The minimum

inhibitory concentration (MIC) of ethyl acetate extract against strain

of S. aureus (4 mg mL−1) demonstrated therapeutically significant

antibacterial activity. The FTIR spectra of root extracts revealed the

occurrence of functional characteristic peaks of alcohols, carboxylic acids,

aromatic compounds, alkanes, alkenes, and amines that indicates the

presence of various metabolites in the extracts. The GC-MS investigation

led to the identification of diverse phytoconstituents in each of the

extracts with varying concentrations and molecular masses. The highest

number of compounds were identified from the methanol extract

(112), followed by n-hexane extract (88) and ethyl acetate extract

(74). The most predominant compounds were 5, 10-pentadecadien-

1-ol, (Z,Z)-(33.94%), n-hexadecanoic acid (13.41%) in n-hexane extract,

5,10-pentadecadien-1-ol, (Z,Z)-(10.48%), 1-hexyl-2-nitrocyclohexane (7.94%)
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GRAPHICAL ABSTRACT

Phytochemical analysis and antibacterial activity of Skimmia anquetilia root extracts.

in ethyl acetate extract, and 1-hexyl-2-nitrocyclohexane (15.43%), cis,cis,cis-

7,10,13-hexadecatrienal (13.29%) in methanol extract. The results of the

present study will create a way for the invention of plant-based medicines

for various life-threatening microbial infections using S. anquetilia, which

may lead to the development of novel drugs against drug-resistant

microbial infections.

KEYWORDS

antibacterial activity, FTIR, GC-MS, Kashmir Himalaya, multiresistant, plant extracts,
Skimmia anquetilia

Introduction

Multidrug-resistant strains of pathogens including
Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacteriaceae (commonly known as
ESKAPE pathogens) cause many life-threatening infections.
These infections are not treatable with currently available
antibiotics if left unaddressed, this will surpass cancer as a cause
of death by 2050 (O’Neil, 2014). Even in developed countries
like the United States, 23,000 people die each year due to
drug-resistant microbial infections. The scenario is similar in
Europe and much worse in the developing countries of Asia
including India, Latin America, and Africa (Reardon, 2014).

Abbreviations: MDR, multidrug-resistant; FTIR, fourier transform infrared
spectrometer; GC-MS, gas chromatography-mass spectrometer; MIC,
minimum inhibitory concentration; WHO, world health organization;
NIST, national institute of standards and technology; MTCC, microbial

type culture collection; MHB, mueller hinton broth; DMSO, dimethyl
sulfoxide; ANOVA, analysis of variance.

Unfortunately, the pipeline for developing novel antibiotics has
drained, and clinical approval of new antibiotics is declining.
Therefore, it is a need of an hour to discover new lead molecules
with a novel mechanism of action and can combat antimicrobial

resistance. Further, the use of plant sources and natural products
can be used for the rational development of new lead molecules
with better efficacy against ESKAPE pathogens. Medicinal
plants and natural products have been considered as a great

source of medicines to benefit mankind from time immemorial
(Benarba and Pandiella, 2020; Javed et al., 2021).

They perform an important role in the prevention
of disease and treatment of various ailments across the
globe (Banaras et al., 2021). They are a source of many
active principles that are both biologically as well as
pharmaceutically significant including alkaloids, flavonoids,
glycosides, lignans, monoterpenes, lipids (phyto-sterols,
toco-pherols, saturated and un-saturated fatty acids), and
vitamins (Mazurek et al., 2017; Javaid et al., 2021). Therefore,
medicinal plants are a vital source of many drugs, almost
a quarter of prescribed medicines (Pan et al., 2013). As
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FIGURE 1

Color variation of different root extracts of Skimmia anquetilia (A) n-hexane extract, (B) ethyl acetate extract, and (C) methanol extract.

FIGURE 2

Fourier transform infrared spectrometer (FTIR) spectrum from n-hexane root extract of Skimmia anquetilia.
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per World Health Organization (WHO), nearly three-
quarters (80%) of people of developing nations depend
upon conventional homeopathic treatments for their
basic therapeutic requirements (Ward, 2008). Due to the
contribution of various useful phyto-compounds found in
various plant components, most medicinal plants are unique
in their ability to treat and cure different human diseases
(Naqvi et al., 2020). Various medicinal plants (∼80,000
species) have been used as conventional remedies in various
indigenous medicine systems in India since ancient times
for the treatment of different ailments (Konappa et al.,
2020). Currently, almost 25% of active principles have been
detected from medicinal plants which are being employed as
prescription medicinal products (Konappa et al., 2020; Süntar,
2020). Some studies suggest that around 25,000 of the original
plant-specific preparations are available in indigenous folk
and conventional medicine systems that are recommended by
approximately 15 lakh folk healers for preventive, convincing,
and curative purposes (Sen and Chakraborty, 2015). Essential
oils and crude extracts of medicinal plants possess numerous
kinds of bioactive compounds that have revealed an array
of bioefficacies, namely antibacterial (Zeb et al., 2016;
Umaru et al., 2019; Nabi et al., 2022a), antifungal (Banaras
et al., 2020), antianalgesic (Lisa et al., 2020), antioxidant

TABLE 1 Fourier transform infrared spectrometer (FTIR) peaks and
their assigned functional groups of n-hexane root extract of
Skimmia anquetilia.

S. No. Wavenumber
(cm−1)

Compound
class

Functional
group

1. 2922.74 Alcohol O-H stretching

Alkane C-H stretching

Amine salt N-H stretching

Carboxylic acid O-H stretching

2. 2854.72 Alcohol O-H stretching

Alkane C-H stretching

Amine salt N-H stretching

Carboxylic acid O-H stretching

3. 1731.38 Aromatic
compound

C-H bending

Aldehyde C=O stretching

4. 1455.18 Aromatic
compound

C=C stretching

5. 1369.16 Alcohol O-H bending

Phenol O-H bending

6. 1160.44 Amine C-N stretching

Tertiary alcohol C-O stretching

7. 1077.29 Amine C-N stretching

Primary alcohol C-O stretching

8. 865.39 Alkene C-H bending

9. 835.80 Alkene C=C bending

10. 721.41 Alkene C=C bending

(Gondwal et al., 2012a; Umaru et al., 2019), anticancerous
(Liu Y. T. et al., 2020; Oh et al., 2020), antidiabetic (Tran et al.,
2020), etc.

S. anquetilia (Rutaceae) is an erect, perennial, glabrous,
scented, creeping gregarious, ornamental shrub, 1.5 m in
height, found in association with conifers between 1,800
and 2,715 m above msl in Western Himalaya. Traditionally
the leaf of the plant has been used in the treatment of
headache, smallpox, fever, and also as an anti-inflammatory
and antidiabetic agent, etc. S. anquetilia is used to treat
paralysis, pneumonia, lung cancer, as an insect and pest
repellent and as alexipharmic against snake and scorpion
poisons (Nabi et al., 2022b). The powdered bark of the
plant is used to cure wounds and burn injuries. Apart
from its use in conventional medicine, various extracts and
bioconstituents of S. anquetilia have been broadly used
in several treatments such as antioxidants (Prakash et al.,
2011; Gondwal et al., 2012a; John et al., 2014), antifeedant
(Gondwal et al., 2012b), anti-inflammatory (Kumar et al.,
2012), and anticancerous activity (Wani et al., 2016). Although
undocumented, the plant is being used to treat diabetes
in some areas of Kashmir valley. In recent years, various
modern techniques such as FTIR, GC-MS, high-performance
liquid chromatography (HPLC), etc., have been widely used
to detect functional groups and identify various biologically
active curative constituents existing in medicinal plants
(Koparde et al., 2019). GC-MS displays molecules extracted
at different retention rates with spectral data correlating
to secondary metabolites, suggesting fatty acid constituents,
whereas, FTIR spectrum indicates absorption peaks with a
specific wavelength associated with various functional groups
(Sim et al., 2014). To date, no such study has been carried out
on the identification of bioactive constituents and antibacterial
potential of various root extracts of S. anquetilia. Hence,
the present study aimed to perform the phytochemical
screening for the identification of various functional groups
and bioactive constituents through the FTIR and GC-MS
techniques and to assess antibacterial activity of S. anquetilia
root extracts against both the gram-positive and gram-negative
bacterial strains.

Materials and methods

Chemicals and reagents

All chemicals and reagents used were of analytical
grade. n-hexane, ethyl acetate, methanol, nutrient
agar, mueller hinton broth (MHB), dimethyl sulfoxide
(DMSO), and gentamycin were purchased from Merck
(Mumbai, India) and Sigma-Aldrich (St. Louis, MO,
United States).
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FIGURE 3

Fourier transform infrared spectrometer (FTIR) spectrum from ethyl acetate root extract of Skimmia anquetilia.

Collection and identification of plant
material

S. anquetilia used for the investigation was obtained from
the Gulmarg area of Baramulla District, Kashmir, India. The
plant specimen was authenticated by a leading Taxonomist
Dr. Akhter Hussain Malik, Professor, Centre for Biodiversity
and Taxonomy (CBT), University of Kashmir. The voucher
number is 2697-(KASH).

Sample extraction

Fresh plant material of S. anquetilia was rinsed
with running water, dried under shade, and powdered
in an electric blender. Dried root powder (50 g) was
successively extracted using solvents (each 500 mL) with
escalating polarity, namely n-hexane, ethyl acetate, and
methanol in a Soxhlet extractor. Repetitive extraction
of the plant material was carried out before the
attainment of colorless solvent. The acquired extracts
were then evaporated to dryness using a rotary evaporator
and stored at 4◦C in airtight glass containers for
further analysis.

Determination of plant extract yield (%)

Yield percentage (w/w) of the dried extracts was calculated
as:

Yield (%) = W1× 100/W2

where W1 is the dry weight of extract after solvent evaporation
and W2 is the weight of the dried root powder.

Fourier transform infrared
spectrometer

FTIR spectrometer (Alpha FTIR spectrometer from Bruker
optic), fitted with deuterized triglycine sulfate (DTGS) and
germanium as a detector and beam splitter, configured to
a Windows-based device and coupled to OPUS operating
system software (Version 7.0 Bruker optic), was employed
throughout the attainment of FTIR spectra. Each sample was
placed in direct contact with the attenuated total reflectance
(ATR) plate. In spectral regions of 4,000–400 cm−1, the
FTIR spectra were obtained to determine potential functional
groups. The ATR plate was gently wiped with 70% ethanol
twice, preceded by drying using soft tissue until filling
with the succeeding sample, allowing the ATR plate to dry
(Wulandari et al., 2016).

Gas chromatography-mass
spectrometer analysis

GC-MS investigation of S. anquetilia root extracts was
conducted via the Thermo scientific “Chromeleon” (c) Dionex
Version: 7.2.8.10783 (Agilent technologies) instrument. GC-
MS investigation was performed by employing the following
conditions: high electron ionization energy (70 eV) was used.
Helium gas (99.99%) was used as the carrier gas with a 1 mL
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TABLE 2 Fourier transform infrared spectrometer (FTIR) peaks and
their assigned functional groups of ethyl acetate root extract of
Skimmia anquetilia.

S. No. Wavenumber
(cm−1)

Compound
class

Functional
group

1. 2929.80 Alcohol O-H stretching

Carboxylic acid O-H stretching

Alkane C-H stretching

Amine salt N-H stretching

2. 2856.78 Alcohol O-H stretching

Carboxylic acid O-H stretching

Alkane C-H stretching

Amine salt N-H stretching

3. 1712.83 Aromatic
compound

C-H bending

Aliphatic ketone C=O stretching

Carboxylic acid C=O stretching

4. 1621.05 Conjugated alkene C=C stretching

Amine N-H bending

Cyclic alkene C=C stretching

5. 1520.30 Aromatics C=C stretching

6. 1455.18 Aromatics C=C stretching

7. 1376.36 Alcohol O-H bending

Phenol O-H bending

8. 1238.76 Alkyl aryl ether C-O stretching

Amine C-N stretching

9. 1158.06 Amine C-N stretching

Tertiary alcohol C-O stretching

10. 1030.58 Amine C-N stretching

11. 815.01 Alkene C=C bending

12. 714. 26 Alkene C=C bending

min−1 flow rate. Initially furnace temperature was maintained
at 50 ◦C and then increased to 150 ◦C with a 3 ◦C min−1

increasing rate and retention time of approximately 10 min.
The temperature was eventually raised at 10 ◦C min−1 to 300
◦C. Then, 1 mL of the sample was kept in a 2 mL screw-top
vial in an autoinjector, and 1 µL of the sample was injected
in split-mode (1:40). The overall run time of the GC was
33 min. The phytocompounds present in the extracts have
been identified based on comparison of their mass spectral
patterns with those spectral database of compounds stored in
the National Institute of Standards and Technology (NIST)
electronic library coupled with the GC-MS system and the data
collected has been tabled.

Antibacterial activity

Bacterial strains, media, and controls
Five bacterial strains viz., P. aeruginosa (MTCC424),

E. coli (MTCC739), K. pneumoniae (MTCC139), S. typhi
(MTCC3224), and S. aureus (MTCC96) were procured from
the Microbial Type Culture Collection (MTCC), Chandigarh
(India). The strains included both gram-negative as well
as gram-positive strains; for agar well diffusion assay, all
strains were initially sub-cultured in nutrient agar media and
incubated at 37 ◦C for 18 ± 2 h. The MIC for all strains

was determined by the broth dilution method for which
they were grown at 37 ◦C for 18 ± 2 h in MHB. For
antibacterial assay, gentamycin (10 µg mL−1) and DMSO
were used as positive and negative controls whereas for MIC,
plant extract and inoculated broth were used as positive and
negative controls.

Antibacterial screening
Antibacterial efficacy of n-hexane, ethyl acetate, and

methanol root extracts of S. anquetilia was evaluated through
the agar well diffusion technique (Clinical and Laboratory
Standards Institute, 2008). The nutrient agar media tubes
(20 mL) were inoculated with freshly prepared bacterial
inoculums using a sterile loop in a back-and-forth motion to
ensure an even distribution of inoculums. Petri plates were
prepared by pouring pre-inoculated media and allowing it
to solidify, and then 8 mm wells were made using a sterile
cork borer. A total of 100 µL of different concentrations
of each extract and an equal volume of negative control
(DMSO) were poured into the wells. The plates were
set aside to rest for 30 min to enable the extract to
be pre-diffused into the media and were incubated at
37 ◦C for 17 h. Thereafter, the plates were examined
for inhibition zones, and the findings were compared to
gentamycin (10 µg mL−1).

Determination of minimum inhibitory
concentration

The technique of macro-broth dilution (Clinical and
Laboratory Standards Institute, 2008) was used to evaluate
the antibacterial potential of ethyl acetate extract by
measuring the noticeable bacterial growth in MHB. For
MIC estimation in MHB, two-fold serial dilutions of
the extract at varying concentrations from 64 to 4 mg
mL−1 with an optimized concentration of bacterial strains
(108 CFU mL−1) using 0.5 McFarland standard. The positive
control included inoculated broth whereas the negative
control included only plant extract and was incubated at
37 ◦C for 18 h. The MIC is the least concentration of
extracts at which the tubes do not show any noticeable
growth. To determine the value of MIC, the test tubes
were observed for their visible turbidity both pre as well as
post-incubation.

Statistical analysis

All experiments were carried out in three replicates. Data
were expressed as mean ± standard deviation and evaluated by
analysis of variance (ANOVA). Differences with p < 0.05 were
considered significant.
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FIGURE 4

Fourier transform infrared spectrometer (FTIR) spectrum from methanolic root extract of Skimmia anquetilia.

Results

Physical properties and percent yield

The various extracts possessed varied colors. The
extract of n-hexane appeared dark brown, the ethyl
acetate extract was brown and the methanolic extract
was reddish-brown (Figure 1). The methanol extract of
S. anquetilia had the highest yield (15%), followed by
ethyl acetate extract (8.6%), while n-hexane extract had
the lowest yield (3.3%).

Fourier transform infrared
spectrometer analysis

The FTIR spectrum indicated the existence of functional
groups in the n-hexane root extract of S. anquetilia with
peak positions at 2922.74 cm−1, 2854.72 cm−1 (alcohols,
carboxylic acids, alkanes, and amine salts), 1731.38 cm−1

(aromatic compounds, aldehydes), 1455.18 cm−1 (aromatics),
1369.16 cm−1 (alcohols, phenols), 1160.44 cm−1 (amines,
tertiary alcohols), 1077.29 cm−1 (amines, primary
alcohols), 865.39 cm−1 (alkenes, aromatics), 835.80 cm−1

(alkenes), and 721.41 cm−1 (alkenes) (Figure 2 and
Table 1).

The peaks at 2929.80 cm−1, 2856.78 cm−1 (alcohols,
carboxylic acids, alkanes, and amine salts), 1712.83 cm−1

(aromatic compounds, aliphatic ketones, and carboxylic
acids), 1621.05 cm−1 (conjugated alkenes, amines, and cyclic
alkenes), 1520.30 cm−1 (aromatics), 1455.18 cm−1 (aromatics),
1376.36 cm−1 (alcohols, phenols), 1238.76 cm−1 (amines,
alkyl aryl ether), 1158.06 cm−1 (amines, tertiary alcohols),
1030.58 cm−1 (amines), 815.01 cm−1 (alkenes), and 714.
26 cm−1 (alkenes) confirmed the presence of functional groups
in ethyl acetate root extract (Figure 3 and Table 2).

Similarly, the FTIR spectra of the methanol root extract
of S. anquetilia revealed the presence of functional groups
with peak ranges at 3293.11 cm−1 (alcohols, carboxylic acids,
and alkynes), 2928.92 cm−1 (alcohols, amine salts, carboxylic
acids, and alkanes), 1706.65 cm−1 (aromatic compounds,
aliphatic ketones, carboxylic acids, conjugated acids, and
conjugated aldehydes), 1621.05 cm−1 (cyclic alkenes, amines,
and conjugated alkenes), 1510.84 cm−1 (aromatic compounds),
1419.54 cm−1 (carboxylic acids, alcohols, and aromatics),
1249.07 cm−1 (acid, alkyl aryl ether, and amines), 1026.46 cm−1

(amines, phosphate ion), 926.16 cm−1 (alkenes), 824.47 cm−1

(alkenes), 764.63 cm−1 (-), and 704.66 cm−1 (alkenes) (Figure 4
and Table 3).
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TABLE 3 Fourier transform infrared spectrometer (FTIR) peaks and
their assigned functional groups of methanol root extract of
Skimmia anquetilia.

S. No. Wavenumber
(cm−1)

Compound
class

Functional
group

1. 3293.11 Alcohol O-H stretching

Carboxylic acid O-H stretching

Alkyne C-H stretching

2. 2928.92 Alcohol O-H stretching

Amine salt N-H stretching

Alkane C-H stretching

Carboxylic acid O-H stretching

3. 1706.65 Aromatic
compound

C-H bending

Aliphatic ketone C=O stretching

Carboxylic acid C=O stretching

Conjugated acid C=O stretching

Conjugated
aldehyde

C=O stretching

4. 1621.05 Cyclic alkene C=C stretching

Amine N-H bending

Conjugated
alkene

C=C stretching

5. 1510.84 Aromatic
compound

C=C stretching

6. 1419.54 Carboxylic acid O-H bending

Alcohol O-H bending

7. 1249.07 Acid C-O stretching

Alkyl aryl ether C-O stretching

Amine C-N stretching

8. 1026.46 Phosphate ion PO3 stretching

Amine C-N stretching

9. 926.16 Alkene C=H bending

10. 824.47 Alkene C=C bending

11. 764.63 Alkene C=H bending

12. 704.66 Alkene C=C bending

Gas chromatography-mass
spectrometer analysis

The GC-MS chromatogram of n-hexane, ethyl acetate,
and methanol root extracts of S. anquetilia recorded a total
of 88, 74, and 112 peaks respectively corresponding to the
bioactive compounds that were recognized by relating their
mass spectral fragmentation patterns to that of the known
compounds described by the NIST library. The analysis of
n-hexane extract via GC-MS resulted in the identification
of 88 distinct phytoconstituents. The identified chemical
constituents according to their retention time, peak area (%),
and molecular weight are listed in Supplementary Table 1.
The predominant organic constituents that were present in
n-hexane extract (Figure 5) are 5, 10-pentadecadien-1-ol,

(Z,Z)-(33.94%), n-hexadecanoic acid (13.41%), 8a(2H)-
phenanthrenol, 7-ethenyldodecahydro-1,1,4a,7- tetramethyl-,
acetate, [4as-(4a.alpha.,4b.beta.,7.beta.,8a.alpha.,10a.beta.)]-
(7.30%), 1-hexyl-2-nitrocyclohexane (4.35%), l-alanine, N-(3-
trifluoromethylbenzoyl)-, heptyl ester (4.02%), cyclopropane,
1-ethyl-2- methyl-, cis-(3.91%), squalene (3.59%), 7H-
furo(3,2-g)(1)benzopyran-7-one,4,9-dimethoxy- (2.56%),
7H-furo[3,2-g][1]benzopyran-7-one, 4-methoxy-(1.82%),
dihydro-cis-α-copaene-8-ol (1.78%), and cyclohexane (1.57%).

The GC-MS investigation of ethyl acetate extract
led to the detection of 74 different organic constituents
(Supplementary Table 2). The most abundant organic
compounds found in the extract of ethyl acetate (Figure 6)
are 5,10-pentadecadien-1-ol, (Z,Z)-(10.48%), 1-hexyl-2-
nitrocyclohexane (7.94%), phthalic acid, di(2-propylpentyl)
ester (7.41%), 1-methylene-2b-hydroxymethyl-3,3-dimethyl-
4b-(3-methylbut-2-enyl)-cyclohexane (5.59%), n-hexadecanoic
acid (5.54%), 1,3,3-trimethyl-2-hydroxymethyl-3,3-dimethyl-4-
(3-methylbut-2-enyl)-cyclohexene (4.65%), 2-cyclopropen-1-ol,
1,2-dicyclopentyl-3-(1-methylethyl)-, acetate (4.25%), squalene
(3.79%), l-alanine, N-(3-trifluoromethylbenzoyl)-, isohexyl
ester (3.49%), 2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-
2-buten-1-yl)-1t-cyclohexanol (2.87%).

The methanol extract via GC-MS investigation had
resulted in the detection of 112 different bioactive constituents
(Supplementary Table 3). The main organic constituents found
in methanol extract (Figure 7) are 1-hexyl-2-nitrocyclohexane
(15.43%), cis,cis,cis-7,10,13-hexadecatrienal (13.29%), methyl
9-cis, 11-trans-octadecadienoate (9.62%), hexadecanoic acid,
methyl ester (7.24%), 5, 10-pentadecadien-1-ol, (Z,Z)-(6.28%),
tetradecanoic acid, 12 methyl-, methyl ester, (S)-(4.54%),
farnesyl butanoate (1.41%), and 7H-furo[3,2-g][1]benzopyran-
7-one,4,9-dimethoxy- (2.62%). The bioactive compounds
with significant antibacterial activities are presented in
Table 4.

Antibacterial activity

The findings of the agar well diffusion assay (Table 5)
showed that all the extracts are active against the bacterial strains
tested. The most effective extract was ethyl acetate extract,
which has exhibited the greatest effect against P. aeruginosa
with an inhibition zone of 18 mm, followed by S. aureus
and K. pneumoniae each having an inhibition zone of
17 mm. The methanol extract displayed a similar trend of
bacterial inhibition, with the maximum zone of inhibition
against S. aureus (17 mm), followed by K. pneumoniae
(16 mm), and E. coli (15 mm). Similarly, the n-hexane
extract exhibited strong inhibition against K. Pneumoniae
(17 mm) and S. typhi (17 mm) followed by E. coli
(16 mm). Owing to the increased antibacterial activity in
agar well diffusion analysis against the tested bacterial strains,
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FIGURE 5

Gas chromatography-mass spectrometer (GC-MS) chromatogram for major compounds of n-hexane root extract of Skimmia anquetilia.

FIGURE 6

Gas chromatography-mass spectrometer (GC-MS) chromatogram for major compounds of ethyl acetate root extract of Skimmia anquetilia.
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FIGURE 7

Gas chromatography-mass spectrometer (GC-MS) chromatogram for major compounds of methanol root extract of Skimmia anquetilia.

the MIC was evaluated in the ethyl acetate extract of
S. anquetilia. The ethyl acetate extract showed the MIC
of 4 mg mL−1 against S. aureus (Table 6). Analysis of
variance (P < 0.05) showed that there is significant difference
between the strains with respect to the concentration of plant
extracts used. Dissimilar letters show significant difference
and similar letters show insignificant difference (Tukey’s
HSD test) (Figure 8). The highest antibacterial activity
could be attributed to the presence of bioactive constituents
in the extracts.

Discussion

In the present study, the analysis of n-hexane, ethyl
acetate, and methanol root extracts of S. anquetilia revealed
the existence of different bioactive principles, namely flavones,
coumarins, glycosides, alkenes, carboxylic acids, tannins,
phenols, amines, alkaloids, steroids, ketones, terpenoids,
sesquiterpenes, fatty acid esters and alcohols, phyto-sterols,
diterpenes, triterpene, etc. The therapeutic potential of
different extracts of S. anquetilia may be attributed to
the presence of these bioactive phytoconstituents. The

FTIR analysis of S. anquetilia root extracts have shown
several peaks signifying the presence of different functional
groups in the extracts. The absence of absorption peak at
3,000–3,500 cm−1 in the IR spectrum of n-hexane and
ethyl acetate extracts predicted the presence of a hydroxyl
group (OH−). The major peaks that appeared in the
extracts indicated the existence of functional groups such
as alcohols, carboxylic acids, alkanes, aldehydes, amines, tertiary
alcohols, aromatic compounds, aliphatic ketones, alkynes,
etc. The FTIR analysis of petroleum ether seed oil extract
of Ziziphus spina-christi revealed the presence of alcohols,
phenols, alkanes, alkenes, carbonyls, carboxylic acids, and
aromatic compounds as major functional groups (Abubaker
et al., 2021). Visveshwari et al. (2017) while analyzing the
methanol extract of Ceropegia juncea revealed the presence
of alcohols, aldehydes, alkynes, alkenes, esters, and amines
groups. These functional groups confirmed that S. anquetilia
comprises a range of pharmaceutically significant bioactive
constituents. The GC-MS investigation of root extracts of
S. anquetilia showed the existence of 88 phyto-compounds
in n-hexane, 74 phyto-compounds in ethyl acetate, and 112
phyto-compounds in methanol extracts, which add to the
therapeutic values of this plant species. Some of the various
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TABLE 4 Bioactive compounds with significant antimicrobial activity.

S. No. Compounds Root extracts Biological activity References

n-hexane Ethyl acetate Methanol

1. 1-hexyl-2-
nitrocyclohexane

+ + + Antimicrobial activity against Salmonella suis
(ATCC 13076), Pseudomonas aeruginosa (ATCC
27583), Escherichia coli (ATCC 25922),
Staphyllococcus aureus (ATCC 25923), Bacillus
subtilis (ATCC 6633), Shigella sonnei (ATCC
11060), and Candida albicans (ATCC 10231).

Al-Wathnani et al.,
2012

2. 2R-acetoxymethyl-
1,3,3-trimethyl-4t-
(3-methyl-2-buten-

1-yl)-1t-
cyclohexanol

+ + + Antibacterial activity against Pseudomonas
aeruginosa, Escherichia coli, Klebsiella
pneumoniae, Salmonella typhi, and
Staphylococcus aureus.

Nabi et al., 2022a

3. 5, 10-
pentadecadien-1-ol,

(Z,Z)-

+ + + Antibacterial activity against Staphylococcus
aureus and Pseudomonas aeruginosa.

Majeed et al., 2021

4. 7H-furo[3,2-
g][1]benzopyran-7-
one,4,9-dimethoxy-

+ – + Antimicrobial activity against Bacillus subtilis,
Klebsiella pneumoniae, Aspergillus niger, and
Candida albicans.

AlMalki, 2016

5. n-hexadecanoic
acid

+ + + Antibacterial activity against Bacillus subtilus
(NCIM 2718), Staphylococcus aureus (ATCC
25923), Pseudomonas aurginosa (ATCC 27853),
Klebseilla pneumoniae (ATCC 70063), and
Escherichia coli (ATCC 25922).

Mickymaray et al.,
2016

6. Squalene + + + Antibacterial activity against Escherichia coli,
Klebsiella pneumoniae, Vibrio harveyi
Micrococcus roseus, and Staphylococcus aureus.

Dordab et al., 2021

7. Hexadecanoic acid,
methyl ester

– – + Antibacterial activity against Staphylococcus
aureus (W35), Pseudomonas aeruginosa (D31),
Klebsiella pneumoniae (DF30), Klebsiella
pneumoniae (B45), and Bacillus subtilis.

Lalthanpuii and
Lalchhandama,

2019; Shaaban et al.,
2021

8. 7-hydroxycoumarin – – + Antibacterial activity against Bacillus subtilis,
Staphylococcus aureus, Streptococcus pyogene,
Pseudomonas aeruginosa, Salmonella
typhimurium, Escherichia coli, and antifungal
activity against strains of Candida albicans,
Candida krusei, Candida parapsilosis, and
Cryptococcus neoformans.

Farshori et al., 2011

9. Linalool – – + Antibacterial activity against Pseudomonas
aeruginosa, and Shewanella putrefaciens.

Liu X. et al., 2020;
Guo et al., 2021

10. Geraniol – – + Antimicrobial activity against Candida and
Staphylococcus genera.

Lira et al., 2020

11. cis,cis,cis-7,10,13-
hexadecatrienal

– – + Antibacterial activity against Escherichia coli. Li et al., 2014

12. Cyclohexane + – – Antibacterial activity against Staphylococcus
aureus, Staphylococcus epidermidis,
Pseudomonas aeruginosa, and Escherichia coli.

Shoaib et al., 2019

13. Phthalic acid, di(2-
propylpentyl)ester

– – + Antimicrobial activity against bacteria and
yeasts, such as Shigella flexneri, Escherichia coli,
Klebsiella pneumoniae, Bacillus cereus,
Staphylococcus aureus, Enterococcus faecalis,
Bacillus subtilis, Candida albicans, and Candida
glabrata.

Chakraborty et al.,
2022

14. Methyl 9-cis,
11-trans-

octadecadienoate

– – + Antifungal activity against Microsporum canis
and Trichophyton mentagrophytes.

Ouf et al., 2022

15. Hexadecanoic acid,
ethyl ester

– + – Antibacterial activity against Aeromonas
hydrophila, Edwardsiella tarda, and Vibrio
ordalli.

Gohar et al., 2010

16. Campesterol + – – Antibacterial activity against the rate limiting
enzyme involved in cell wall synthesis of bacteria
i.e., glucosamine 6 phosphate synthase (PDB
ID – 4VF5) as protein target.

Ranjith, 2019

“+” indicate presence and “–” absence of phytocontituents.
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TABLE 5 In-vitro antibacterial activity of Skimmia anquetilia root extracts against tested bacterial strains.

Organic extract Concentration
(mg mL−1)

Zone of inhibition (mm) (Mean ± SD)

Gram-negative bacteria Gram-positive
bacteria

Escherichia coli Pseudomonas
aeruginosa

Klebsiella
pneumoniae

Salmonella
typhi

Staphylococcus
aureus

n-hexane 10 14.0± 2.64 14.0± 2.0 11.0± 9.84 14.0± 3.0 12.0± 1.73

20 14.0± 2.0 13.0± 1.0 15.0± 3.0 12.0± 1.0 13.0± 1.0

40 14.0± 3.0 13.0± 2.0 17.0± 1.0 13.0± 2.0 13.0± 1.73

80 16.0± 2.64 15.0± 3.0 17.0± 2.0 17.0± 2.64 15.0± 2.3

160 15.0± 3.6 15.0± 1.0 17.0± 1.73 17.0± 1.0 16.0± 3.0

Ethyl acetate 10 12.0± 1.73 11.0± 1.73 13.0± 1.73 11.0± 1.0 15.0± 3.6

20 12.0± 1.0 11.0± 1.0 12.0± 1.0 11.0± 1.0 9.0± 7.80

40 13.0± 1.0 12.0± 2.0 14.0± 1.0 13.0± 1.0 14.0± 1.0

80 14.0± 1.0 15.0± 1.73 15.0± 1.73 15.0± 1.73 15.0± 0

160 16.0± 1.0 18.0± 1.0 17.0± 1.0 16.0± 2.0 17.0± 1.0

Methanol 10 10.0± 1.73 11.0± 1.0 12.0± 1.0 – 7.0± 6.08

20 8.0± 7.0 11.0± 1.0 13.0± 3.0 – 14.0± 2.64

40 12.0± 0 12.0± 1.0 13.0± 1.73 – 13.0± 1.0

80 13.0± 1.0 13.0± 1.73 13.0± 1.0 – 14.0± 1.0

160 14.0± 1.0 14.0± 1.0 16.0± 1.0 – 17.0± 3.6

Positive control 10 µg disc 29.6± 1.52 31.0± 1.0 30.3± 1.52 30.6± 0.57 30.3± 1.52

Data are means of three replicates (n = 3)± standard deviation.

bioactive compounds identified from the root extracts of S.
anquetilia are known to possess significant biological activities.
For instance, squalene is a triterpene and has been revealed
to exhibit antitumor and antioxidant activities (Katerere
et al., 2003; Amarowicz, 2009; Ganesh and Mohankumar,
2017), antimicrobial, and anticancer activity towards lung,
skin, and colon oncogenesis (Rao et al., 1998; Smith, 2000).
It also possesses anticancerous, gastro-preventive, hepato-
protective, and pesticidal properties (Ukiva et al., 2002;
Ganesh and Mohankumar, 2017), and as an anti-inflammatory,
immune-stimulant, and lipogenase inhibitor (Yamuna et al.,
2017). The n-hexadecanoic acid is a fatty acid, possesses
antimicrobial, antioxidant, antiatherosclerotic (Cho et al.,
2010), antiandrogenic (Komansilan et al., 2012), anticancer
(Sabithira and Udayakumar, 2017), and antitumor activities.
The n-hexadecanoic acid identified in plant extracts of
Benincasa hispida, Carissa congesta, Allium nigrum, Kielmeyera
coriacea, Cyrtocarpa procera, Labisia pumila, and Rosa
indica and has been reported to possess antibacterial activity
(Mickymaray et al., 2016). Also, using the in-silico method,
the n-hexadecanoic acid has been used to design inhibitors
specific to phospholipase A (2) by comparing with other
known inhibitors as anti-inflammatory agents (Aparna et al.,
2012; Qureshi et al., 2016). Furthermore, hexadecanoic
acid, methyl ester is suggested to be a fatty acid and is
reported to have antibacterial, antioxidant, nematicide,
insecticide properties and also helps in lowering cholesterol.
Further, it possesses anticoronary, hepato-protective, antiacne,
anti-inflammatory, antiarthritic, anticancer, antihistaminic,

antieczemic, α-reductase inhibitor, and antiandrogenic activities
(Krishnamoorthy and Subramaniam, 2014). Hexadecanoic acid,
methyl ester has been shown to be a potent antibacterial agent
against S. aureus W35, P. aeruginosa D31, K. pneumoniae
DF30, and K. pneumoniae B45 strains (Shaaban et al., 2021).
Lalthanpuii and Lalchhandama (2019) identified hexadecanoic
acid, methyl ester as a major compound in Imperata cylindrica
and reported its antibacterial properties against bacterial strains
including P. aeruginosa, Bacillus subtilis, and K. pneumoniae.
Various species use the antibacterial actions of fatty acid methyl
ester to defend themselves against bacterial infections. Its
principal focus of action is on bacterial cell membranes. It also
disrupts cellular energy generation, impairs enzyme activity,
and finally results in direct bacterial cell lysis. Owing to its
safety and efficacy, it is a promising antibacterial therapeutic
agent (Shaaban et al., 2021). (Z) 6, (Z) 9-pentadecadien-1-ol is
fatty acid alcohol and possesses antibacterial activity (Sabithira
and Udayakumar, 2017). 2R-acetoxymethyl-1,3,3-trimethyl-4t-
(3-methyl-2-buten-1-yl)-1t-cyclohexanol is known to exhibit

TABLE 6 Minimum inhibitory concentration (MIC) of the most
effective plant extract against test organisms.

S. No. Bacterial strain MIC (mg mL−1)

1. Escherichia coli* 64

2. Pseudomonas aeruginosa* 8

3. Klebsiella pneumoniae* 8

4. Salmonella typhi* 32

5. Staphylococcus aureus** 4

*Gram-negative bacteria. **Gram-positive bacteria.
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FIGURE 8

Minimum inhibitory concentration (MIC) of the most effective plant extract against test organisms. Dissimilar letters (b and c) show significant
difference and similar letters (a) show insignificant difference.

anticancer potential (Naine et al., 2016), anti-inflammatory,
and antibacterial activities (Saravanan and Kasisankar, 2013). 1-
hexyl-2-nitrocyclohexane is a ketone and exhibits antimicrobial
(Al-Wathnani et al., 2012), and anti-inflammatory actions
(Sivakumar and Gayathri, 2011; Ravisankar and Ester, 2017). 1-
methylene-2b-hydroxymethyl-3,3-dimethyl-4b-(3-methyl but-
2-enyl)-cyclohexane is sesquiterpene alcohol and it may act as
an antimicrobial, anti-inflammatory, and anti-hyperlipidemic
agent. 7H-furo[3,2-g][1]benzopyran-7-one,4,9-dimethoxy- also
known as isopimpinellin is a furano-coumarin and it possesses
antibacterial, antifungal, antibiofilm, and antioxidant potential
(AlMalki, 2016).

Isopimpinellin, isolated from the hexane extract of
Peucedanum zenkeri seeds, exhibited antibacterial property
against Cryptococcus neoformans and Mycobacterium
intracellulare (Ngunde Ngwendson et al., 2003; Mbah
et al., 2010). In addition, it has shown significant insulin-
stimulated lipogenesis inhibition, suggesting that it may
trigger the lipolytic hormonal behavior and specifically
reduces the antilipolytic hormonal effects (Kimura et al.,
1982). Furthermore, it demonstrated mild cytotoxicity
39.2 µg mL−1 (IC50 value) to Colo-205 (Yang et al.,
2003). 7-hydroxycoumarin also known as umbelliferone
is a hydroxy-coumarin and it has been found to have

several bioactivities viz., antibacterial (Farshori et al.,
2011), anticancer, and antidiabetic particularly type-2
diabetes mellitus (Ofentse, 2017). 7-hydroxyl-coumarin
derivatives demonstrated effective antifungal and antibacterial
activity against bacterial strains such as B. subtilis, S. aureus,
Streptococcus pyogene, P. aeruginosa, Salmonella typhimurium,
E. coli, and fungal strains of Candida albicans, Candida
krusei, Candida parapsilosis, and C. neoformans (Farshori
et al., 2011). 1,3,3-trimethyl-2-hydroxymethyl-3,3-dimethyl-
4-(3-methyl but-2-enyl)-cyclohexene exhibits antibacterial
and antioxidant activities (Sen et al., 2015). In this study,
the root extracts of S. anquetilia exhibited remarkable in-
vitro antibacterial potential towards the gram-positive and
gram-negative bacterial strains by inhibiting their colony
and growth rate, which is the first report from this study.
Recently, Nabi et al. (2022a) reported the antibacterial
potential of methanol leaf extract of S. anquetilia against
P. aeruginosa, E. coli, K. pneumoniae, S. typhi, and S. aureus.
Previously, the antimicrobial activity using the essential
oil extracted from S. laureola was documented (Jangwan
et al., 2010; Irshad et al., 2012). Similarly, Zeb et al. (2016)
reported the antibacterial activity of aqueous leaf extract of
S. laureola. It can be interpreted from the aforementioned
justification that S. anquetilia possesses a wide range of
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therapeutic phytoconstituents capable of an array of
bioactivities such as antibacterial, antifungal, antioxidant,
anti-inflammatory, antidiabetic, antiaging, anticancer, hepato-
protective, hypercholesterolemic, antihistaminic, anticoagulant,
diuretic, etc. Therefore, the detection of different phyto-
constituents of n-hexane, ethyl acetate, and methanol root
extracts of S. anquetilia exhibits important pharmacological
applications. Besides, investigations such as bioprospecting
are required to sustain its pharmacological attributes and the
biological significance of these novel bioconstituents will be
noteworthy to be explored.

Conclusion

The present study is the first report on the identification
of various bioactive compounds by GC-MS analysis and
antibacterial efficacy of root extracts of S. anquetilia. 5, 10-
pentadecadien-1-ol, (Z,Z)- in n-hexane and ethyl acetate
extracts, and 1-hexyl-2 nitrocyclohexane in methanol extract
were the major compounds, respectively. These compounds
may be responsible for the different therapeutic and
pharmacological properties of S. anquetilia in conventional
medicine. The root extracts of S. anquetilia demonstrated
promising antibacterial efficacy towards the gram-positive
as well as gram-negative bacterial strains as is obvious by
high inhibition-zones, and lower MICs. This study, therefore,
recommends the assessment of antibacterial activity of bioactive
compounds from root extracts of S. anquetilia, which could
be a vital source for the development of novel antibacterial
drug candidate beneficial in the management of life-threatening
microbial infections.
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