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One of the most important growth factors in cannabis cultivation is light which plays a big 
role in its successful growth. However, understanding that how light controls the industrial 
hemp growth and development is poor and needs advanced research. Therefore, a pot 
study was conducted to investigate the effects of different colors of light, that is, white 
light (WL), blue light (BL), red light (RL), and 50% red with 50% blue mix light (RBL) on 
morphology, gaseous exchange and antioxidant capacity of industrial hemp. Compared 
with WL, BL significantly increase hemp growth in terms of shoot fresh biomass (15.1%), 
shoot dry biomass (27.0%), number of leaves per plant (13.7%), stem diameter (10.2%), 
root length (6.8%) and chlorophyll content (7.4%). In addition, BL promoted net 
photosynthesis, stomatal conductance, and transpiration, while reduces the lipid 
peroxidation and superoxide dismutase and peroxidase activities. However, RL and RBL 
significantly reduced the plant biomass, gas exchange parameters with enhanced 
antioxidant enzymes activities. Thus, blue light is useful for large-scale sustainable 
production of industrial hemp.

Keywords: antioxidant capacity, gaseous exchange, industrial hemp, light quality, morphophysiological traits

INTRODUCTION

Industrial hemp (Cannabis sativa L.) is an ancient and versatile crop valued for its uses in 
food, fiber, and medicinal industry (Rehman et  al., 2021a). Environmental stress lead to slower 
growth of hemp (Jiang et  al., 2021). Therefore, it is necessary to find out most favorable 
conditions for optimal production of industrial hemp.

Light is one of the essential environmental factors for plant growth and development. 
Varying light quality affects the plant growth (Rehman et al., 2017, 2020). During photosynthesis, 
green plants capture light energy and transform it into chemical energy (Fukuda et  al., 2008). 
However, shifting wavelengths can affect plant morphology, anatomy, and physiology, identified 
by phytochromes (Kami et  al., 2010; Saleem et  al., 2019). For example, The blue and red light 
wavelengths are identified to affect many plant physiological processes during growth and 
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development, mainly photosynthesis. (Li et  al., 2020). In a 
previous study, blue light increased the rate of germination, 
leaves number per plant, number of roots, and frequency of 
stomata and pigment contents in Stevia rebaudiana Bertoni 
(Simlat et  al., 2016). Blue light have an effect on chlorophyll 
biosynthesis, plant height, and stomatal opening (Heo et  al., 
2002; Jao et  al., 2005; Shimazaki et  al., 2007). Tomato grown 
under BL showed high yield and quality of fruit with resistance 
to disease (Xu et  al., 2012). Blue light can also promote the 
accumulation of phenylpropanoid-based compounds without 
affecting the plant morpho-anatomical traits, while red light 
alters the plant morphology and physiology without showing 
a positive effect on secondary metabolism (Landi et  al., 2020). 
Red light wavelength promote stem growth and flowering 
(Rehman et  al., 2017). According to Naznin et  al. (2019) Blue 
and red light proportion is important improve growth, pigment, 
and antioxidant capacity in vegetable plants under controlled 
conditions but the proportion of blue light with red light is 
species dependent. Furthermore, previous literature suggests 
species-specific response toward light stress in plants (Cope 
and Bugbee, 2013; Rehman et  al., 2020) and this response of 
plants to light is mediated by different photoreceptors. For 
example, cucumber is more responsive to spectral distribution 
than tomato in greenhouse (Trouwborst et al., 2010; Hernández 
and Kubota, 2012).

Light being an important environmental factor also influences 
the gas exchange characteristics of a plant. For example, guard 
cells respond directly to blue light (Mott, 2009). Red light 
showed higher photosynthetic activity in B. nivea (Rehman 
et  al., 2020). Red light increases stomatal conductance, net 
photosynthesis, intercellular CO2, and transpiration rate, while 
blue light reduce these gas exchange parameters (Saleem et  al., 
2020). Reduction in gas exchange attributes under blue light 
revealed a reduction in photosynthesis associated with stomatal 
closure, thus reducing transpiration rate and intercellular CO2 
(Hogewoning et  al., 2010).

Stressful environmental conditions trigger excessive production 
of reactive oxygen species (ROS), such as superoxide radical 
(O2−), hydrogen peroxide H2O2, hydroxyl radicals (OH), and 
singlet oxygen (O2; Maurya et  al., 2020; Turan, 2020; Rehman 
et  al., 2021b). According to Asada and Takahashi (1987), 1 
% of oxygen is diverted to produce ROS in plants. ROS can 
damage cellular components through oxidation of carbohydrates, 
lipids, proteins, and DNA which cause plant death (Shah et al., 
2019; Bhuyan et  al., 2020). To avoid this loss, plants regulate 
the production of ROS by recruiting enzymic and non-enzymic 
antioxidants (Kurutas, 2016; Sachdev et  al., 2021). Antioxidant 
enzymes activity under varying light spectra is more complex 
for example callus grown in dark showed higher antioxidant 
enzymes activities (Adil et  al., 2019). Exposure of higher 
proportion of blue light with red light caused an increase in 
antioxidant activity in lettuce (Son and Oh, 2013). Blue light 
showed significantly greater antioxidant enzymes activity in 
Anoectochilus roxburghii (Ye et  al., 2017). Similar observations 
of higher SOD and CAT activity in tomato leaves were recorded 
under blue light as compared to red light (Kim et  al., 2013). 
Conversely, the antioxidant activity in Rubus hongnoensis was 

promoted under red light treatment (Oh et  al., 2021). 
Accumulation of MDA and proline contents in leaf indicate 
oxidative stress (Deng et al., 2012; Rehman et al., 2019). Proline 
protects the plants from stresses as well as helps to recover 
from stress (Hayat et  al., 2012). Above literature suggests that 
light quality evoke diverse morpho-physiological response in 
plants with contrasting results. Therefore, impacts of different 
color light wavelengths on plant response and their underlying 
mechanisms remain elusive and required further investigation.

Present study was designed to investigate the effects of light 
colors on industrial hemp growth, gaseous exchange, and 
antioxidant capacity with an objective to find the best suitable 
light spectrum for optimized hemp production. Findings of 
present study would provide an improved understanding of 
the physiological and photosynthetic responses of hemp to 
light quality.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
A pot experiment was conducted under glasshouse, at Kunming 
University, Yunnan, P.R. China during 2020. The seeds of 
C. sativa variety Bamahuoma (BM) were sown in pots of 30 cm 
length and 40 cm width in triplicate. Seeds of BM were provided 
by the Institute of Economic Crops, Yunnan Academy of 
Agricultural Sciences. Every pot was filled with 15 kg of soil. 
The soil was collected from experimental station of Yunnan 
University. Physio-chemical properties of the soil were: pH 
7.18, 52.65 g kg−1 of organic matter, 224.16 mg kg−1 of available 
nitrogen, 163.09 mg kg−1 of available phosphorus, and 758.30 g kg−1 
of available potassium. After emergence, the plants were thinned 
to five plants of uniform size per pot and placed in natural 
light till their height of 10 cm, then moved under color LEDs. 
Treatments were different color LED lights included white light 
as control (WL), blue (BL), red (RL), and 50% blue with 50% 
red mix light (RBL). LEDs were mixed at the height of 1.5 m. 
Red and Blue LEDs light wavelengths were as 650 and 450 nm, 
respectively. Recommended rate of fertilizer NPK in 3:1:2 was 
applied. Removal of weeds and irrigation was done when 
needed. Finally, pots were placed in the cabins made of porous 
black sheet within the glasshouse. A humidity level of 70–90% 
and ambient day/night temperatures of 25°/20°C (±1°C) were 
maintained. Sinopharm Chemical Reagent Co., Ltd. analytical 
grade chemicals were used in laboratory work.

Sampling and Data Collection
Thirty days after shifting under LED lights the young and 
fully expanded top leaves per treatment were collected at 
09:00–10:00 AM, using liquid nitrogen, and stored at −80°C 
for analysis in the laboratory. Sixty days after shifting under 
light spectra, three plants from each treatment were harvested 
carefully by cutting the stems at a height of 5 cm from the 
soil surface. Fresh biomass per plant was calculated in grams. 
Total number of leaves per plant, plant height (cm), and root 
length (cm) were measured by meter scale. Digital vernier 
caliper (ST22302, SG Tools, Hangzhou, China) was used to 
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measure stem diameter, 15 cm above the root neck. Stem and 
leaves were then separated and dried for 72 h in oven at 80°C 
to get their dry weight.

Chlorophyll Content and Gas Exchange
Chlorophyll content of the young and fully expanded top 
leaf per treatment was measured using Soil Plant Analysis 
Development meter SPAD-502 plus (Konica Minolta, Inc., 
Japan) during 09:30–10:30 h. Nine leaves per treatment were 
used to measurement net photosynthesis (Pn), stomatal 
conductance (Gs), transpiration rate (Tr), and intercellular CO2 
concentration (Ci), using portable photosynthesis system 
Li-6,400 (Li-COR, Lincoln, NE, United  States) during 
9:30–10:30 h.

Antioxidant Capacity
Half (0.5) gram industrial hemp leaf samples were collected 
from each treatment. Superoxide dismutase (SOD) and peroxidase 
(POD) activities were determined following Chen and Pan 
(1996) and Sakharov and Aridilla (1999), respectively. Lipid 
peroxidation in leaves was measured by thiobarbituric acid 
(TBA) test, which determines the content of malondialdehyde 
(MDA), an end product of lipid peroxidation (Heath and 
Packer, 1968). Leaf proline content was measured according 
to the method of Bates et  al. (1973).

Statistical Analysis
The data were subjected to one-way ANOVA using Statistix 
8.1 (Analytical Software, Tallahassee, United  States). Least 
significant difference (LSD) test was applied to identify differences 
between means (p ≤ 0.05). Values shown in tables or figures 
are mean ± standard deviation (SD). Sigma plot software was 
used for the graphical presentation. Pearson’s correlation was 
used to quantify relationships between different variables. Pearson 
Correlation Coefficients and Principal Component Analysis 
between variables of industrial hemp were calculated using 
R Studio.

RESULTS

Influence of Light Quality on Plant Growth
Shoot fresh biomass, Shoot dry biomass, plant height, number 
of leaves per plant, stem diameter, and root length were highest 
in plants under BL, and lowest values for the same parameters 
were observed under RL compared with WL (Table  1). Shoot 
fresh biomass and shoot dry biomasses under BL were increased 
by 15.1 and 27%, respectively, as compared to WL. In the 
same way, number of leaves per plant, stem diameter and root 
length were increased by 13.7, 10.2, and 6.8% under BL, 
respectively, as compared to WL (Table  2). Plant height was 
increased by 2.3% in BL treatment, which was at par with 
plant height under WL, while RL and RBL treatments resulted 
in reduction of 39.2 and 20.6% in plant height, respectively, 
as compared to WL. Maximum reduction of 39.7% in shoot 
fresh biomass, 45.5% in shoot dry biomass, 52.4% in number 

of leaves per plant, 36% in stem diameter, and 9% in root 
length were recorded under RL, compared with WL.

Influence of Light Quality on Chlorophyll 
Content and Gas Exchange
Chlorophyll change (SPAD unit) was determined in industrial 
hemp leaves grown under different color light-emitting diodes 
(Figure  1). Blue light improved the Chl contents by 7.4%; 
however, Chl contents were declined by 16.8 and 10.9% under 
RL and RBL, respectively, as compared to WL. Blue light 
promoted gas exchange traits in industrial hemp as represented 
by significant increase in net photosynthesis (Pn), stomatal 
conductance (Gs), transpiration rate (Tr), and intercellular CO2 
(Ci) by 13.3, 44.1, and 12.8 and 8.8%, respectively, as compared 
to WL. Conversely, RL caused significant decrease in net 
photosynthesis (47.3%), stomatal conductance (54.2%), 
transpiration rate (52.7%), and intercellular CO2 (43.9%) 
compared with the WL. Furthermore, mix light RBL also 
showed decreased in gas exchange trait compared with WL 
(Figure  2).

Antioxidant Capacity
The activities of antioxidant enzymes superoxide dismutase and 
peroxidase in industrial hemp were affected by differential light 
quality (Figure  3). Blue light reduced POD activity by 16.6%, 
respectively, compared with WL. However, SOD activity under 
BL was statistically similar to WL. Furthermore, SOD and 
POD activities were increased under both RL and RBL compared 
with WL. Red light caused lipid peroxidation in industrial 
hemp, compared with WL. Malondialdehyde contents were 

TABLE 1 | Changes in biomass and plant height of industrial hemp grown under 
varying colors of light.

Light colors
Shoot fresh 

biomass plant−1 
(g)

Shoot dry 
biomass plant−1 

(g)

Plant height  
(cm)

White Light (control) 23.9 ± 1.10b 4.48 ± 0.09b 95.2 ± 3.75a

Blue Light 27.5 ± 1.00a 5.69 ± 0.14a 97.4 ± 4.05a

Red Light 14.4 ± 0.74d 2.44 ± 0.07d 57.9 ± 1.84c

Red Blue Light 18.4 ± 0.21c 3.10 ± 0.05c 75.6 ± 3.34b

Values in the table are means ± SD (n = 3). Different letters within a column indicate 
significant difference between treatments (p ≤ 0.05).

TABLE 2 | Changes in number of leaves, stem diameter, and root length of 
industrial hemp grown under varying colors of light.

Light colors
Number of 

leaves plant−1

Stem diameter 
(mm)

Root length  
(cm)

White Light 
(control)

50.2 ± 1.17b 5.76 ± 0.17b 17.7 ± 1.70b

Blue Light 57.1 ± 1.02a 6.35 ± 0.29a 18.9 ± 3.53a

Red Light 23.9 ± 0.84d 3.69 ± 0.15d 16.1 ± 2.25c

Red Blue Light 39.4 ± 1.84c 4.15 ± 0.16c 16.8 ± 2.54c

Values in the table are means ± SD (n = 3). Different letters within a column indicate 
significant difference between treatments (p ≤ 0.05).
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FIGURE 1 | Effects of differential light quality on SPAD (Soil Plant Analysis Development) value of industrial hemp grown under different color light-emitting diodes. 
Bars indicated the mean ± SD (n = 3). Different letters on bars indicated significant difference between treatments at p ≤ 0.05. Different abbreviations used in the figure 
are as follows: WL, white light LED (control); BL, blue light LED, RL, red light LED; RBL, 50% red and 50% blue Light LED.

A B

C D

FIGURE 2 | Effects of differential light quality on net photosynthesis (A), stomatal conductance (B), transpiration rate (C), and intercellular CO2 concentration (D) in industrial 
hemp grown under different color light-emitting diodes. Bars indicated the mean ± SD (n = 3). Different letters on bars indicated significant difference between treatments at 
p ≤ 0.05. Different abbreviations used in the figure are as follows: WL, white light LED (control); BL, blue light LED, RL, red light LED; RBL, 50% red and 50% blue Light LED.
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reduced by 12.3% under BL compared with WL. Proline contents 
in the leaves were also reduced under BL but were statistically 
similar to WL. Mix light RBL resulted in increase of MDA 
and proline contents compared with WL.

Correlation and Principal Component 
Analysis
Correlation between different studied parameters of plant growth, 
chlorophyll content, gas exchange, and antioxidant capacity of 
industrial hemp grown under different colors of LEDs is shown 
in Figure 4. Correlation showed shoot fresh biomass and shoot 
dry biomass, plant height, leaf number per plant, stem diameter, 
and root length were positively correlated with chlorophyll 
content, Pn, Gs, Tr, and Ci, while negatively correlated with 
malondialdehyde (MDA), and proline (Pro) contents and SOD 
and POD activities in leaves of industrial hemp. This correlation 

suggested a close relation between observed parameters of 
hemp. The loading plots of principal component analysis (PCA) 
to evaluate the effect of different light wavelengths on different 
studied attributes of C. sativa are presented in Figure  5.

DISCUSSION

Light is essential for plant growth and development (Kim et al., 
2002). Plants respond to light variations for the completion 
of their life cycle (Ye et  al., 2017). However, different colors 
of light influenced differently on plant growth (Fukuda et  al., 
2008). Seed germination, photosynthesis, biomass accumulation, 
stomatal opening, and closing can be  optimized by adjusting 
light wavelengths (Taiz and Zeiger, 2002; Pinho, 2008; Vänninen 
et  al., 2010; Saleem et  al., 2019, 2020; Rehman et  al., 2020).

A B

C D

FIGURE 3 | Effects of differential light quality on superoxide dismutase (SOD) activity (A), peroxidase (POD) activity (B), malondialdehyde (MDA) content (C), and 
proline content (D) in the leaves of industrial hemp grown under different color light-emitting diodes. Bars indicated the mean ± SD (n = 3). Different letters on bars 
indicated significant difference between treatments at p ≤ 0.05. Different abbreviations used in the figure are as follows: WL, white light LED (control); BL, blue light 
LED, RL, red light LED; RBL, 50% red and 50% blue Light LED.
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FIGURE 4 | Correlation of different studied parameters in industrial hemp. 
Different abbreviations used in the figure are as follows: SFM, shoot fresh 
weight; SDM, shoot dry weight; NL, number of leaves per plant; PH, plant 
height; SD, stem diameter; RL, root length, SPAD, Chlorophyll; Pn, net 
photosynthesis; Gs, stomatal conductance; Tr, transpiration rate; Ci, 
intercellular CO2 concentration; SOD, superoxide dismutase; POD, 
peroxidase; MDA, malondialdehyde; Pro, proline.

The light-emitting diode (LED) is today’s most energy-
efficient and rapidly developing lighting technology. Present 
study investigates the effects of different color LEDs (White, 
blue, red, 50% red with 50% blue mix light) on the growth, 
chlorophyll content, gaseous exchange, and antioxidant capacity 
of industrial hemp, to screen out the best suitable light 
spectrum higher growth of plants. Our results showed that 
BL significantly increase the industrial hemp growth in terms 
of shoot fresh and dry biomass, plant height, number of 
leaves per plant, stem diameter, and root length. Similar 
results were reported by Oana et al. (2019) that BL determined 
a high level of rate and fresh weight of hemp sprouts. In 
another study, Nanya et  al. (2012) reported that stem height 
in tomato seedlings depend on proportion of BL. Reduction 
in stem height and improvement in plant extension growth 
was observed in cucumber grown under blue radiation which, 
shows a species-specific response (Hernández and Kubota, 
2012). Red light and RBL reduced the growth of plants as 
shown by low shoot fresh biomass and shoot dry biomass, 
leaf number per plant, plant height, stem diameter, and root 
length compared with control (Tables 1, 2). Goins et  al. 
(1997) and Yorio et  al. (2001) also reported a lower dry 
weight accumulation in wheat, spinach, lettuce, and radish 
grown under red light compared with white fluorescent tubes. 
Thus an optimized light spectrum develop the value and 
quality of cannabis (Magagnini et  al., 2018).

The blue light has been associated with leaf characteristics 
(Hogewoning et  al., 2010). Chloroplast is an organelle where 
chlorophyll pigment captures light energy and converts in 

energy storing molecules (Kirchhoff, 2019). However, 
ultrastructure of chloroplast is influenced by light exposure 
(Chen et  al., 2018). Our results revealed higher chlorophyll 
content in C. sativa leaves under BL. Similar results of higher 
chlorophyll content in lettuce leaves under blue light in 
comparison with red light were reported by (Kobayashi et al., 
2013). In the current study, boost in industrial hemp biomass 
grown under BL might associated with higher photosynthetic 
rate in leaves. Blue light influenced gas exchange traits 
(Figure  2) and signifying an increase in photosynthesis in 
hemp plants. However, different species showed different 
photosynthetic responses under BL, and this response also 
vary with an increase or decrease in BL portion within a 
spectrum. Conversely, Matsuda et al. (2004) reported reduced 
photosynthetic rate in rice grown under RL, which is  
similar to our results. Blue light also regulates the opening 
and closing of stomata. Stomatal function affects the 
photosynthesis rate by exchange of CO2 and H2O between 
atmosphere and plant leaf, and the influence on stomata 
physiology is a well-known process regulated by BL (Lanoue 
et  al., 2017).

FIGURE 5 | Loading plots of principal component analysis (PCA) on different 
studied attributes of industrial hemp grown under different color light-emitting 
diodes. Different abbreviations used in the figure are as follows: SFM, shoot 
fresh weight; SDM, shoot dry weight; NL, number of leaves per plant; PH, 
plant height; SD, stem diameter; RL, root length, SPAD, Chlorophyll; Pn, net 
photosynthesis; Gs, stomatal conductance; Tr, transpiration rate; Ci, 
intercellular CO2 concentration; SOD, superoxide dismutase; POD, 
peroxidase; MDA, malondialdehyde; Pro, proline.
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Reactive oxygen species (ROS) are produced in plant cells 
under abiotic stress conditions. However, ROS production 
varies to a great extent with species of plants, their genotypes, 
level of stress tolerance, and the stress duration (Hasanuzzaman 
et  al., 2020). In present study, industrial hemp grown under 
RL and RBL exhibit the high SOD and POD activities, while 
BL showed declined activity of antioxidant enzymes as 
compared to control (Figure 3). In contrary, a previous study 
on S. rebaudiana Bertoni showed higher POD activity when 
grown under BL however, RL exhibit reverse trend (Simlat 
et  al., 2016). Uneven antioxidative response might be  due 
to changes in protein functions in various tissues of the 
plants. Consequently, ROS scavenging enzymes SOD and 
POD are involved in the mechanisms of protection of 
protoplasm and cell integrity (Rehem et al., 2012). Furthermore, 
current research demonstrates that the plants under RL, RBL 
exhibit higher accumulation of MDA and proline contents, 
represent an oxidative damage to lipid membranes (Figure 5), 
while BL helps to reduce oxidative stress in industrial hemp 
plants. Furthermore, it was reported that hemp grown using 
LEDs had higher concentrations of CBD, THCV, CBG, and 
cannabinoids (Magagnini et  al., 2018). However, the 
mechanisms underlying the effect of blue wavelengths on 
the cannabinoid pathways will require further research. Present 
results further confirmed that blue light benefits industrial 
hemp production.

CONCLUSION

The results of this experiment confirm that blue light has a 
significant promotive effect on industrial hemp growth, biomass, 
gas exchange characteristics, and chlorophyll content. Moreover, 
blue light reduce oxidative stress on plants. However, red light 
and red blue mix light lessen the plant growth and photosynthesis 

along with higher MDA and proline contents accumulation 
in hemp leaves, which may damage cellular organelle membranes. 
Furthermore, findings of present study showed a close link 
between quality of light and investigated morphophysiological 
attributes in industrial hemp. Thus blue light can successfully 
be  used for hemp production in industry. Keeping in view 
the economic significance, present technique is beneficial due 
to its low-cost over large-scale cultivation. However, potential 
of blue light spectrum for industrial hemp production should 
be  tested at higher level.
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